Kursöversikt

Kursmoment och Schema 

Kursen SF1672 består av två obligatoriska moment.

Det första momentet (6hp, TEN1) behandlar den matematiska teorin. Det består av 21 föreläsningar och 14  övningar.

Det andra momentet (1,5hp, LAB1) behandlar datortillämpningar med Python. Det består av en introduktionsföreläsning (tisdag 11 november, kl 15-17), tre datorlaborationer, och en poster-mässa (schemalagd som redovisning (fredag 12 december).

Schema och salar för CTFYS och CLGYM-MAFY

Schema och salar for CTMAT

Kurslitteratur

laylaymcd.jpeg

Vi kommer att använda boken Linear Algebra and its Applications
(Lay, Lay and McDonald; Sixth Edition).

Tidigare utgåvor än 6:an kan användas men sidonumren kommer att skilja sig.

 

Språk

Föreläsningar, uppgiftslydelser, tentamenslydelse, lösningsförslag: svenska
Övningar: svenska eller engelska
Dina inlämningsuppgifter och tentamenslösningar: svenska eller engelska
Textbok: engelska

En engelsk-svensk ordlista för denna kurs finns här:

Ordlista.pdf

En samling av ytterligare engelsk-svenska ordlistor finns, t.ex., här.

Tentamen

Vid tentamen (TEN1, 6hp), där skrivtiden är 3 timmar, är inga hjälpmedel tillåtna. Vid all examination tillämpas KTH:s regler för tentamensskrivningar. Alla som deltar i examinationen är skyldiga att sätta sig in i regelverket.

Tentamen består av tre delar. Varje del består av två uppgifter som kan ge upp till 6 poäng vardera.

Del A. Enklare problem och grundläggande begrepp och satser.
Del B. Lite mer avancerade problem, som även kan vara av teoretisk natur.
Del C. Mer avancerade problem, ofta av teoretisk natur, som kan kräva syntes av olika kursdelar och/eller egna idéer.

Betygsgränserna vid tentamen kommer att ges av följande tabell där kolumnerna anger poänggräns, inklusiv eventuella bonuspoäng. Se avsnittet om lärandemål och betygskriterier.

  FX E D C B A
Totalt 15 16 18 21 24 27
varav från del C minst     3 6

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden tilldelas inte full poäng.

Anmälan till tentamen sker via Mina tentor. Om du har problem att anmäla dig bör du kontakta studentexpeditionen för att kontrollera att du blivit registrerad på kursen.

Om du redan är godkänd men vill tentera upp ditt betyg (s.k. plussning) så kan du inte anmäla dig via Mina tentor utan ska istället anmäla dig via en särskild blankett på studentexpeditionen. Deltagande sker i mån av plats. Bonuspoäng gäller inte vid plussning.

Vid betyget Fx ges en möjlighet till komplettering till godkänt betyg vid en skriftlig kompletteringstentamen kort efter ordinarie tentamen. 

Uppgifter, redovisning och bonuspoäng

Varje vecka kommer du få en övningslapp med 4 uppgifter som du ska lösa hemma ("testuppgifter") och ett större antal uppgifter som du jobbar med i din övningsgrupp ("övningsuppgifter"). 

Varje veckas första övningstillfälle (förutom första vecka)  inleds med ett prov på 15 minuter. I detta prov kommer en av de fyra testuppgifterna av den gångna veckan, men du vet inte vilken. Du förväntas redan ha löst uppgiften, men du får inte använda dina anteckningar under provet. Provet rättas sedan av assistenten och du får mellan 0 och 2 poäng för din lösning. Du kan alltså få upp till 12 poäng. Dessa poäng delas med 3 och avrundas till närmaste heltal för att ge dig upp till 4 bonuspoäng till tentamen.

Du kan tjäna ytterligare 2 bonuspoäng genom att redovisa en uppgift på tavlan under övningsgruppstillfällena. Det kan vara en av testuppgifterna som inte förekom på provet eller en uppgift du har jobbat med i grupp under själva övningen. Assistenten kommer inte tvinga dig att redovisa en viss uppgift utan du måste träda fram frivilligt. 

Bonuspoängen (totalt maximalt 6) adderas till poängtalet av tentamens del A, som dock inte kan överstiga 12.

Det är tillåtet och uppmuntrat att jobba på alla uppgifter i grupp och använda diskussionsforumet för att diskutera dem och ställa frågor.

Varje vecka finns det dessutom en quiz bestående av 6 uppgifter med totalt 6 poäng. Quizzarna består av elementära uppgifter som snabbt kan besvaras. Quizzarna är till för att kontrollera dig själv och ger inga bonuspoäng.

Pythonprojektet

Momentet LAB1 (1,5hp) går i period 2 för samtliga program. Det examineras genom ett projekt som redovisas vid en postermässa. Betygsskalan är P/F. Se projektsidorna under Moduler för mer information.

Stöd för studenter med funktionsnedsättning

Studenter med funktionsnedsättning kan ha rätt till visst stöd vid exempelvis examination. Funka har samordnare som arbetar med pedagogiskt stöd åt studenter på KTH. Kontakta dem på funka@kth.se om du har frågor eller behöver stöd i dina studier. För mer detaljerad information gällande denna kurs se Regler för Funka.
OBS: Från och med HT2025 förkortas "förlängd skrivtid" från 50% till 25% för alla kurs på KTH. D.v.s. 45 minuter extra skrivtid på en 3-timmars-tenta.

Kursnämnd och Kursvärdering

En kursnämnd kommer att träffa kursledaren vid ett flertal tillfällen under kursens gång och efter att kursen är slut då kursenkäten har samlats in och resultatet från examinationen är känt. Kontakta gärna kursansvarig lärare, examinator eller kursnämnden om ni vill framföra era synpunkter. Kursnämndsledamöter listas på kursens framsida efter att de blev valda.

Lärandemål (se Kursplan)

Efter genomgången kurs ska studenten kunna

  • Använda begrepp, satser och metoder för att lösa, och presentera lösningen av, problem inom de delar av linjär algebra som beskrivs av kursinnehållet
  • Läsa och tillgodogöra sig matematisk text

Betygskriterier

Inom de delar av linjär algebra som beskrivs av kursinnehållet ska studenten kunna göra följande:

 För Betyg E:

  • Lösa enkla problem som även kan kräva förklaringar av innebörden av grundläggande begrepp och satser

För Betyg C dessutom: 

  • Lösa avancerade problem inom någon del av kursinnehållet, där problemen även kan vara av teoretisk karaktär.

För Betyg A dessutom:

  • Lösa avancerade problem inom flera delar av kursinnehållet, där problemen även kan vara av teoretisk karaktär.

Kursens huvudsakliga innehåll

Vektorer, matriser, linjära ekvationssystem, Gausselimination, vektorgeometri med skalärprodukt och vektorprodukt, determinanter, vektorrum, linjärt oberoende, baser, basbyten, minsta-kvadratmetoden, egenvärden, egenvektorer, kvadratiska former, ortogonalitet, inre-produktrum, Gram-Schmidts metod. Programmering och visualisering i Python.