Matris

Kom ihåg att 193 studenter redan har bedömts med den här matrisen. Om du ändrar den påverkas deras bedömningar.
Peer review guide
Peer review guide
Kriterier Bedömningar Poäng
Question 1: 1 point for each correct result: MTTF = 3 month, MTTR = 1/2 month and MTBF = MTTF + MTTR = 3.5 month, Availability = MTTF/MTBF = 6/7
tröskel: poäng
4 poäng Full marks
0 poäng No marks
poäng
4 poäng
--
Question 2: Define the states of the Markov process, two states are sufficient, one for the component working and one for component not working. (1p) The intensity matrix Q = [-1/3 1/3; 2 -2]. Note that the entries may be on a different rows and columns if you switch the states. (1p) . Simulating the process by generating exponentially distributed staytimes in each state (1p). Determining the ergodic estimates of MTTF,MTTR, MTBF and availability (1p). Determining the necessary siimulation time to reach 1% precision should be in the range 500-500000 (1p)
tröskel: poäng
5 poäng Full marks
0 poäng No marks
poäng
5 poäng
--
Question 3: Determining the one-step transition matrix P=[299/300 1/300; 6/300 294/300], Note that the entries may be on a different rows and columns if you switch the states. (1p) . Simulating the process by generating uniform random variables to determine jumps between states (1p). Determining the ergodic estimates of MTTF,MTTR, MTBF and availability (1p). Determining the necessary number of simulation steps to reach 1% precision should be in the range 500-500000 (1p)
tröskel: poäng
5 poäng Full marks
0 poäng No marks
poäng
5 poäng
--
Question 4: Define the states of the Markov process, four states are sufficient, state i corresponding to i components not working. (1p) The intensity matrix Q = [-1 1 0 0; 2 -8/3 2/3 0; 0 2 -7/3 1/3; 0 0 2 -2 ] if you assume that there is only one repair active at each time and the intensity matrix Q = [-1 1 0 0; 2 -8/3 2/3 0; 0 4 -13/3 1/3; 0 0 6 -6 ] if you assume that there is one repair per component active at each time (1p). Simulating the process by generating exponentially distributed staytimes in each state or by determining a discrete time Markov chain and simulating it (1p). Determining the ergodic estimates of MTTF,MTTR, MTBF and availability (1p). Determining the ergodic estimates of MTTF =~ 1, MTTR =~ 0.7, MTBF =~ 1.7 and availability =~0.58 for one repairman and MTTF =~ 1, MTTR =~ 0.6, MTBF =~ 1.6 and availability =~0.6 for one repaiman for each component (1p).
tröskel: poäng
5 poäng Full marks
0 poäng No marks
poäng
5 poäng
--
Question 5: Define the states of the Markov process, three states are sufficient, state i corresponding to i components not working. (1p) The intensity matrix Q = [-2/3 2/3 0; 2 -7/3 1/3 0; 0 2 -2 ] if you assume that there is only one repair active at each time and the intensity matrix Q = [ -2/3 2/3 0; 2 -7/3 1/3; 0 4 -4 ] if you assume that there is one repair per component active at each time (1p). Simulating the process by generating exponentially distributed staytimes in each state or by determining a discrete time Markov chain and simulating it (1p). Determining the ergodic estimates of MTTF,MTTR, MTBF and availability (1p). Determining the ergodic estimates of MTTF =~ 12.2, MTTR =~ 0.5, MTBF =~ 12.7 and availability =~0.96 for one repairman and MTTF =~ 12, MTTR =~ 0.25, MTBF =~ 12.25 and availability =~0.98 for one repairman for each component (1p).
tröskel: poäng
5 poäng Full marks
0 poäng No marks
poäng
5 poäng
--