
PAUL TOWNEND
ASSOCIATE PROFESSOR, UMEÅ

4th Generation standard for cellular networks

Launched in 2008

Designed for traditional mobile devices

5th Generation standard for cellular networks

Launched in 2020

Designed for a variety of devices

What does 5G enable for computing systems?

“The Internet of Things (IoT) is an

environment in which objects, animals or
people are provided with unique
identifiers and the ability to transfer data
over a network without requiring human-
to-human or human-to-computer
interaction... (it) may also be referred to

as the Internet of Everything”

TechTarget IoT Agenda

IoT represents a fundamental
shift in how the internet looks

and behaves.

Billions of mobile,
interconnected devices,

creating vast amounts of data
and requiring low latency

response, predictive analytics,
and more.

Computer systems are
becoming pervasive

and distributed

Smart cars generate
5-20TB per day

Medical data is
doubling every 73 days

28 billion connected
devices by 2021

Source: IDC Global DataSphere, November 2018

How do we store
this data?

How do we process
this data?

Big Data is not a single
technology, technique,
or initiative. Rather, it is
a characterisable trend.

Central
data centre

App

App App

App

Network
latency

Bandwidth
issues

Overwhelmed
data centre

Unsuitable
hardware

Central
data centre

App

App

Improved
latency

Better
bandwidth

Specialised
hardware

EDGE
DC

App

App

EDGE
DC

Reduce
processing load

Better
security?Reduced storage

requirements

Small and modular
Non-traditional
networking (5G)

Mixture of hardware
devices

Mobile (moving) devices Discovery

Multiple administrative
domains

Load balancing

Migration Predicting demand

Central
data centre

App

EDGE
DC

App

EDGE
DC

EDGE
DC

EDGE
DC

Migrate as
device moves

Load
balance

Redundancy

Optimise
latency

Ultimately, fog computing represents the integration between Edge and Cloud

A layered, end-to-end architecture

Distributes resources and services along a continuum from Cloud to things

Solves problems that cannot be implemented using solely Cloud or intelligent Edge devices

A reference architecture has been published by the OpenFog consortium (55 organisations)

Established in November 2015 by ARM, Cisco, Dell, Intel, Microsoft and Princeton University

Published 162 page Fog Reference Architecture in November 2017

Aims to remove ”mandatory cloud connectivity” for IoT devices by emphasising information processing
and intelligence at the logical edge

Made ”official” by IEEE Standards Association in 2018.

Form a mesh to provide load-
balancing, resilience, fault-tolerance,

and minimise communication.

Communicate laterally and vertically

Able to discover, trust and utilise the
services of other nodes to sustain

relability, availability, serviceability.

Performance

Low latency is a major driver. A cross-cutting concern,
and involves time critical computing, time sensitive

networking, network time protocols, etc.

Security

End-to-end security is critical. Data integrity is a special
aspect of security for devices that currently lack

adequate security (including corruption).

Manageability

Managing all aspects of fog deployments is critical
across all layers of the hierarchy

Data analytics and control

For fog nodes to be autonomous, localised data
analytics combined with control are essential. Control

must happen at correct tier, which might not always be
the physical edge but higher.

Edge

• Distributed computing paradigm

• Computing and processing at Edge of
network

• Closer to data sources

• Reduces volume of data

• Reduces distance data must be moved

• Ultimately, improves latency and reduceds
pressure on central data centers

Fog

• Layered end-to-end architecture

• Is the integration between Cloud and Edge

• Distributed resources and services along a
continuum from Cloud to things

• Solves problems that cannot be successfully
implemented using soley Cloud or intelligent
Edge devices

M.Aazam, S.Zeadally, K.A. Harras. 2018. "Fog Computing Architecture, Evaluation, and Future Research Directions"

How many edge nodes
do we need?

Where do we put
them?

How do we manage
multiple domains?

How do we discover
Edge nodes?

How often do we
update topology?

How to detect Edge
hardware resource?

How to facilitate rapid
migration?

How to hand-over
workloads?

How to load balance
across Edge?

How to detect and
mitigate failure?

How do we know
workload types?

What can be passed to
the central DC?

Platform-as-a-Service (PaaS)

Infrastructure-as-a-Service (IaaS)

Software-as-a-Service (SaaS)

Ready-to-use applications
(O365, Spotify, Dropbox, etc)

Ready-to-use platform
(Windows, Google Apps Engine, etc)

Full access to a hosted machine / VM
(Amazon EC2, Windows Azure, etc)

Serverless – a new trend. Pay per request (no idle time)

Auto-scaling and availability provided out-of-the-box

Computation is implemented as functions and execution is event driven

Customers define functions

Users select functions and specify the events triggering them

Examples include AWS Lambda, Google Cloud Functions, etc.

https://dzone.com/articles/the-state-of-serverless-computing-2021

A “hot topic” in the data center industry

Serverless DOES NOT mean no servers! (not P2P)

Complex applications are built from simple functions

No server management, including containers, VMs

Stateless – results persisted to storage

Flexible scaling

Pay only for what resources you use

Automated high availability

Eric Jonas et al.2019. Cloud Programming Simplified: A Berkeley View on Serverless Computing. 2020.

Developer writes/codes a function

Developer defines an event which will trigger the

Cloud provider to execute the function

Event is triggered by a user (e.g. clicking a link, etc)

Function is executed by the Cloud. If the instance

isn’t running, it is started.

Result is sent to the Client

Paul Castro, Vatche Ishakian, Vinod Muthusamy, Aleksander Slominski. 2019. The Rise of Serverless Computing.
Communications of the ACM, December 2019, Vol. 62 No. 12, Pages 44-54, 2020

Netflix uses serverless functions

to process video files

Videos are uploaded to Amazon

S3, which emits events that

trigger the lambda functions

Functions are stateless and

idempotent – good in case of

failure, etc.

A mobile app providing a weather forecast

based on current location

To avoid invoking multiple APIs over a

resource constrained network, the app uses

the main function as an orchestrator

This is an “anti-pattern” as the orchestrator

costs money while waiting for results

Potential solution: chain functions using

AWS Step Functions, IBM Composer, etc.

PyWren uses serverless to reduce overhead

on MapReduce jobs

Able to get up to 40 TFLOPS peak

performance from AWS Lambda, using S3

Exemplifies a class of use cases that use

serverless for highly parallel analytics.

Inadequate storage for fine-grained operations

Cloud object stores (S3, Azure Blob, etc.) are highly

scalable but have high access cost and latency.

Recent tests show all services take at least 10ms to

read/write object. High throughput cost a lot

(e.g. $30 per minute for 100K IOPS on S3)

Lack of fine-grained coordination

If Function B requires input from Function A, it

needs to know when A has output available

Existing Cloud storage services do not come with

notification capabilities (without significant latency

and cost). Alternate methods need to be used.

Standard communication patterns have poor

performance

Common patterns include shuffle, aggregation,

broadcast, etc. (especially in ML workloads)

In a VM, local aggregation between tasks is

relatively easy. In serverless, much more messaging

required – 2 to 4 orders of magnitude more.

Unpredictable performance

Serverless functions have lower latency than VM-

based instances, but have high start-up times.

Must initialise the software environment of the

function, as well as application-specific

initialisation code.

Execution duration

Not really appropriate for long-lived tasks

Google Cloud Functions: maximum 9 minutes

AWS Lambda: maximum 15 minutes

State

Stateless components must interact with stateful

components to persist information. This introduces

latency and complexity.

Some serverless platforms do preserve some state

between function calls (for optimisation) which can

confuse the operational picture of a system.

The usual suspects….

Amazon Lambda / S3

IBM Cloud Functions

Microsoft Azure Functions

Google Cloud Functions

And others…

Platform9 Systems Fission

Joyent (Samsung) Manta

Syncano

GitHub Lever OS

Iron.io

Nstack

Serverless Framework

etc.

Source: Gojko Adzic, Robert Chatley Serverless Computing: Economic and Architectural Impact

For a service task of 200ms to execute:

Standard VMs billable for a unit hour

FaaS only billable for a 100ms unit

This represents a cost reduction of over 99.8%

So should we always use serverless to save money?

Heavily dependant on execution and volume

http://serverlesscalc.com/

Prices shift, and difficult to predict OpEx. Any other problems?

Major players charge on 3 variables:

Duration of code execution

Resources assigned to that code during execution

Number of times the code is executed

http://serverlesscalc.com/

How to reduce cold
start latency

How to design past
limited function

runtimes

How to migrate to
Serverless from a

traditional architecture

How to deal with
charging for I/O

waiting

How to migrate
between vendors

without lock-in

How to predict OpEx
with unpredictable
workloads (IoT etc)

How to integrate
serverless with

location-aware Edge?

How to ease function
management?

How to reduce
communication

complexity?

How to handle fault-
tolerance effectively

Can Serverless work
with long-running Edge

AI tasks?

GPU support?

Simulation?

Hope you enjoyed (or at least learned something on) day one!

Day two will look at:

Cloud Orchestration

Keynote from Ericsson Research

Learn how to use the ER DC

Cloud Economics

(extra special) Keynote from Google

Plus assignment details

Always feel free to email me: paul.townend@umu.se

