Raft for Consistent fé%i%

Replicated Log %t

Seif Haridi

Outline

e Sequence Paxos
Fail-Recovery Model
Session-based FIFO links

 The Raft algorithm

A functional restructuring of leader-based Sequence
Paxos with some innovations

Does not assume FIFO links
Tolerates arbitrary message losses

S. Haridi, KTHx 1D2203.2x

Sequence Paxos
Fail Recovery Model

KT

Once leader L is elected
Sends prepare to collect a majority of
promises and forms its accepted
sequence Vv,

v, .. has the longest chosen sequence
at a prefix
AcceptSync synchronizes v
majority of follower replicas

The leader and those followers move
to the accept phase

v, is extended incrementally as well

aatqfora

a
as the decided sequence prefix(v,, /)

S. Haridi, KTHx 1D2203.2x

‘Leader Based Sequence Paxos

replica q
follower
L (Leader, L, n)
prepare
-(Prepare ...) 4‘,
prepare
<—¢—— (Promise ...) -
, *(AcceptSync ...) ——
accept X
accept
(Promise ...) «————
AcceptSync ...) ——
e (ACCEPL ...)
g (Accepted ...) 4
p (Decide ...)
v
follower/crash leader/crash

Once leader L is elected

Sends prepare to collect a majority of promises
and forms its accepted sequence v,

V, ot has the longest chosen sequence at a
prefix

Late replicas q sends its promise while
leader is at the accept phase

AcceptSync synchronizes the state of

Va atq fOr the replicas q

Y is extended incrementally as well

l4)

aatq

as the decided sequence prefix(v,,

S. Haridi, KTHx 1D2203.2x

Leader Based Sequence Paxos

replica q
follower
— (Leader, L, n)
prepare 4‘
‘ .(Prepare ...) 1
prepare
accept
(Promise ...)
{AcceptSync ...)
accept
p(Accept ...) cm—
< (Accepted ...) uu—
p (Decide ...) m——
v
follower/crash leader/crash

= In the fail-recovery model a process is
correct as long as it fails (by crashing)
and recovers finite number of times

- By crashing and restarting a process p
loses any arbitrary suffixes of most
recent messages in each FIFO link

- Once a process restart: it joins the
leader-election algorithm in a recover
state

S. Haridi, KTHx 1D2203.2x

recover

Fail-Recovery in Sequence Paxos follower

recover

v

prepare
e

accept

<

v
follower/crash

p(Accept ...) cm———p

p (Decide ...) =

(Leader, L, n)

(PrepareReq ...) ~———

(Prepare ...)
prepare
(Promise ...)
(AcceptSync ...) ——
accept

(Accepted ...) 4

A

leader/crash

- In the fail-recovery model a process is
correct as long as it fails (by crashing)
and recovers finite number of times

- By crashing and restarting a process p
loses any arbitrary suffixes of
messages in each FIFO link

- Once a process restart it joins the
leader-election algorithm in a recover
state

S. Haridi, KTHx 1D2203.2x

recover

Fail-Recovery in Sequence Paxos follower

recover

v

prepare

accept

<

v
follower/crash

p(Accept ...) cm———p

p (Decide ...) =

(Leader, L, n)

(PrepareReq ...) ~——

(Prepare ...)
prepare
(Promise ...)
(AcceptSync ...) ——
accept

(Accepted ...) 4

A

leader/crash

2 Fail Recovery persistent variables

e The algorithm needs to store the following variables in a
persistent store for each process
n Promise not to accept in lower rounds

prom
Round number in which last command is accepted
Accepted sequence

I Length of decided sequence

« Arecovered process resets its ballot ., to n .. in BLE

e The leader election guarantees that a leader with higher ballot is
elected if the leader crashed and recovered

S. Haridi, KTHx 1D2203.2x

&) Fail Recovery

o Arecovered process p starts in the

state (follower, recovered)

Restores the persistent variables

Noroms Nas Vs, y I g

Waits for leader event (Leader, L, n)

e p=L:pistheleader

Moves to state (leader, prepare)

Runs normal prepare phase

follower
recover
recover
(Leader, L, n)
prepare
(PrepareReq ...) ——
(Prepare ...)
prepare
(Promise ...)
AcceptSync ...) ——
accept accept
p(Accept ...) cm—
< (Accepted ...) 4
p (Decide ...) m——
v
follower/crash leader/crash

S. Haridi, KTHx 1D2203.2x

)

by
Sttt

Fail Recovery

A recovered process p starts in the state
(follower, recovered)

» Restores the persistent variables n n

prom? ""a’

vV

a’ld

- Waits for leader event (Leader, L, n)

p #L: pis a follower

* Request a prepare message for the leader L

- send (PrepareReq) to L

* When it received a prepare message it
moves to (follower, prepare)

* Runs as normal

follower
recover
recover
(Leader, L, n)
prepare
(PrepareReq ...) ——
—(Prepare ...)
prepare
(Promise ...)
——(AcceptSync ...)——
accept accept
p(Accept ...) cm—
< (Accepted ...) uu—
p (Decide ...) m——
v
follower/crash leader/crash

S. Haridi, KTHx 1D2203.2x

10

If the leader L is still in the prepare
phase the recovered process needs
to know the length of decided

sequence 4 atL

Necessary to compute the longest
chosen sequence at the leader

\Why the need for PrepareReq

follower
recover
recover
< (Leader, L, n)
prepare
(PrepareReq ...) ~—
(Prepare ...)
prepare
(Promise ...) .
{AcceptSync ...) ——
accept accept
_><Accept > —
< (Accepted ...) qu—
» (Decide ...) >

follower/crash

S. Haridi, KTHx 1D2203.2x

leader/crash

11

7] Session based FIFO links

e Dropping a session between processes p1 and p2 means the
links between the two processes are broken and an arbitrary
suffix of messages are lost. Restarting a connection means
new links are established between p1 and p2

e Session failure is normally due to process crashes or network
partition
e In our algorithm if a session is dropped

If a follower p1 drops the session, it tries to reconnect in recovery state

If a leader p1 drops a session it just ignore it until a new connection
request from the follower. Leader continues as normal

S. Haridi, KTHx 1D2203.2x 12

d!}
: -

Raft s

7] > g5

An algorithm for Replicated Log B s’a

21 | Raft Consensus Algorithm

e Based on a presentation by the designers of Raft:
“Designing for Understandability: the Raft Consensus Algorithm”

Diego Ongaro and John Ousterhout
Some slides are borrowed from this presentation

 \We relate to Sequence Paxos

S. Haridi, KTHx 1D2203.2x 14

Sequence Paxos e Raft

v, The accepted sequence « »e+ TheLog
* » « The committed prefix of Log

The Decided sequence

Round/ballot number «—— ¢ Term

Process «— © Server
n e Highest Term

>, * Entry

prom , NL

Element in a sequence <

S. Haridi, KTHx 1D2203.2x

15

Raft Decomposition
e Leader election

» Select one server to act as leader (BLE)
» Detect crashes, choose new leader (BLE)
» Only servers with up-to-date logs can become leader

The leader election and Raft consensus are fused in
one component

Incorporates the prepare phase in the leader-election algorithm

In election a leader with highest term (round number) and
highest entry index (longest sequence) is elected

S. Haridi, KTHx 1D2203.2x 16

=i Raft Decomposition
* Log replication (normal operation)

Leader accepts commands from clients, appends to its

log
Leader replicates its log to other servers (overwrites
inconsistencies)

Keep logs consistent

Consistent replication is done differently from sequence
Paxos by some form of log reconciliation

S. Haridi, KTHx 1D2203.2x 17

Server States and RPCs

atart « Raft uses a request/reply pattern for

l sending messages RPCs
_Passive (but expects regular
_ Follower heartbeats)
discover o
higher heartbeat
term
- | - Issues RequestVote RPCs to get
Candidate elected as leader
win
election
Issues AppendEntries RPCs:
““““““““““ *Replicate its log
Leader *Heartbeats to maintain leadership

S. Haridi, KTHx 1D2203.2x 18

Terms (rounds)

Term 1 Term 2 Term 3 Term 4 Term 5

[Il 10 IS
N SN i

Elections Normal Split
Operation Vote

« At most 1 leader per term (some terms might fail to elect a leader)
o Each server maintains current term value (maintaining n

« Exchanged in every RPC
» Server has higher term? Update term, leader revert to follower

prom)

* Incoming RPC has lower term? Reply with error

S. Haridi, KTHx 1D2203.2x 19

Terms (rounds) vs. Ballot Array

Term 1 Term 2 Term 3 Term 4 Tearm 5
I a | [I b I:I C d
Elections Normal Split
Operation Vote

Round Accepted by p, Accepted by p, Accepted by p,

SIS aocbocad

Term 4

Term 3 aobac aobac

Term 2 a aob aob

Term 1 a a ()

20

The Election

Leader Election

Randomized starts

Each server gives only one
vote per term

Maijority required to win
election

Server p rejects candidate q

 If highest log entry of q has
a lower term or same term
but lower index

Become candidate

l

currentTerm++,
vote for self

timeout

-

\

Send RequestVote RPCs
to other servers

votes from majority |

Become leader,
send heartbeats

Become
follower

S. Haridi, KTHx 1D2203.2x

| RPC from leader

22

= Normal Operation

e Client sends command to leader
e Leader appends command to its log

e Leader sends AppendEntries RPCs to all followers (similar to
accept messages in Sequence Paxos)
 Entry is committed if

Replicated on majority of servers by leader of its term

Once committed Leader executes command in its state machine,
returns result to client

Notifies followers in subsequent AppendEntries(similar to decide
messages)

S. Haridi, KTHx 1D2203.2x 23

Log structure and Log
reconciliation

lerm N
.

Pl

command J

S. Haridi, KTHx 1D2203.2x

1 2 3 4 5 6 7 8 g 10
1 1 1 2 2 3 3 3 3 3
X3 | Q=8 jo=2 | Xe—C | 25 | ye—=1 | y+—=3 |] | X4 | 26

1 1 |.‘| 2 2 3 3
X—3 | Q8] J«2 | x—C | Z0 |y« 1| y-3
1 1 1 2 A 3 3 3 3 3
Xo—3 | =8| j—2 | X—C | 25 | ye—1 | y—3 | g—] | X4 |26
1 1
X«3|q« 8
1 | 1 | 11 2 [2 [ERERRE
Xe—3 | q—8] j—2 | Xe—C | Z=5 | Yo 1 | y—3 | G
| -

log index

leader for term 3

= followers

committed entries

25

e Crashes and network partitions my results in inconsistent logs

1 2 3 4 S 6 7 8 9
1 1 1 2 L 3 3 3
Xe—3 | qe—8| je—2 | Xi—q | 25| ye—1 | y«-3] g
1 1 1 2 2 3 3
Xe—3 | g8 | je—2 | Xi—q | 25| y—1 | y«3
1 1 1 2 2 3 3 3 3
X3 |8 | j—2 | x—q|ze5|y1|y3 | | x4 |
1 1
x—3| g8
1 1 1 2 2 2 2
Xe—3 | q—8| je—2 | Xe—q | Z5| y3 | g x-—8 x-—4

S. Haridi, KTHx 1D2203.2x

10

log index

leader for term 4

- followers

26

* If log entries on different servers have same index and term
* They store the same command
* The logs are identical in all preceding entries

o [f a given entry is committed, all preceding entries are also
committed

1 2 35 4 5 6 7 8 9 10

‘ 2 | 3| 4| 4
X—3|q—8 J<—2 X—q | ZS|y—1 | Xe=Z | y—T

S. Haridi, KTHx 1D2203.2x

27

Log reconciliation

 AppendEntries RPCs include <index, term> of entry preceding new

one(s)

* Follower must contain matching entry; otherwise it rejects request
» Leader retries with lower log index

leader:

follower before:

follower after:

1 2 3 4 1 2 3 4 &
1 1 2 % 1 1 Z 3
%3 | qe—B| x-—qf| y+—1 %3 | qg—8 | x yo—1
1 1 2 1 1 1 1 1
Xe 3|qe Blx q Xe 3|qe 8] 2 |ye Bfac
1 1 2 3 1 1 1 1 1
Xe 3)qe BIxe qfy: 1 Xe 3)qe 8] 2 |ye By

Xe 3|ge 8 x qfy: 1

Example #1: success

S. Haridi, KTHx 1D2203.2x

Example #2: mismatch

Example #3: success

28

e Raft as Sequence Paxos have the same basic Paxos idea

The longest chosen sequence is the decided (committed)
sequence

Leaders must have a higher round (term) number

o Raft differs from Sequence Paxos on
Leader election algorithm
Incorporating the prepare phase as part of electing a leader

Log (Accepted Sequence) reconciliation between leaders
and followers

S. Haridi, KTHx 1D2203.2x 29

