
Leader- Based
Sequence Paxos

S. Haridi, KTHx ID2203.2x

Assumptions
● Assume eventual leader election abstraction

with a ballot number BLE 〈Leader, L, n〉
● BLE satisfies completeness and eventually accuracy
● And also monotonically unique ballots

● The Leader-based Sequence Paxos is optimized
for the case when a single proposer runs for a
longer period of time as a leader
● Thus, will not be aborted for a while
● But must guarantee safety if aborted

2

S. Haridi, KTHx ID2203.2x

The state of proposers
● We still have a set of proposers
● Any proposer will be either a

leader or a follower
● A leader may be in either:

● Prepare state, or
● Accept state

● Until overrun by a higher leader,
and moves to a follower state

3

prepare

accept

leader(L, n)

follower

ß

Proposer
● On 〈Propose, C〉 :

● np := unique higher proposal number
● S := ∅, acks := 0
● send 〈Prepare, np〉 to all acceptors

● On 〈Promise, n, n’, v’〉 s.t. n = np:
● add (n’, v’) to S (multiset union)
● if |S|= ⎡(N+1)/2⎤:
● (k, v) := max(S) // adopt v
● vp := if v ≠ ⊥ then v else C
● vp := v ⊕ ⟨C⟩
● send 〈Accept, np, vp〉 to all acceptors

● On 〈Accepted, n〉 s.t. n = np:
● acks := acks + 1
● if acks = ⎡(N+1)/2⎤:
● send 〈Decide, vp〉 to all learners

●

Acceptor
● On 〈Prepare, n〉:

● if nprom < n:
● nprom := n
● send 〈Promise, n, na, va〉 to Proposer

● On 〈Accept, n, v〉:
● if nprom ≤ n:
● nprom := n
● (na, va) := (n, v)
● send 〈Accepted, n〉 to Proposer

S. Haridi, KTHx ID2203.2x

Learner
■ On 〈Decide, v〉:

❑ If |vd| < |v|:
❑ vd := v
❑ trigger Decide(vd)

max(S) is any element (k, v) of S s.t. k is highest
proposal number and v is a sequence

Accept phase

4

Prepare phase

Prepare once and Pipeline
Accept

S. Haridi, KTHx ID2203.2x

● Current Sequence-Paxos is inefficient:
● With multiple concurrent proposers, conflicts and

restarts are likely (higher load → more conflicts)
● 2 rounds of messages for each value chosen

(Prepare, Accept)
Solution:

● Pick a Leader(L, n) where n is a unique higher
round number (leader election algorithm)

● The Leader acts as sole Proposer for round n
● After first Prepare (if not aborted) only perform

Accepts until aborted by another Leader(n’),
where n’ > n

Solution outline

prepare

promise

accept

accepted

aborted
decide

6

 replica q
acceptor & learner

proposer p
is a leader

proposer p
is a follower

S. Haridi, KTHx ID2203.2x

Prepare Once, Pipeline Accept
● Benefit:

● Proposer does prepare(n) before first-accept(n,v)
● After that only one round-trip to decide on an

extension of sequence v, as long as round is not
aborted

● (new leader with higher number)
● Allows multiple outstanding accept requests

(pipelining)
● Lower propose-to-decide latency for multiple

proposals

prepare

promise

accept

accepted

 replica q
acceptor & learner

decide

proposer p
leader

7

S. Haridi, KTHx ID2203.2x

● 〈C2,C3,C1〉 and all its prefixes are chosen in round 5
8

Chosen Sequence at round n

Round Accepted by p1 Accepted by p2 Accepted by p3

n = 5 〈C2,C3,C1〉
〈C2,C3〉 〈C2,C3〉

〈C2,C3,C1,C4〉
〈C2,C3,C1〉
〈C2,C3〉

...

n=2 〈C2〉 〈C2〉

n=1 〈C1〉

n=0 〈〉 〈〉 〈〉

■ Sequence v is chosen in round n if acceptors in a majority set have
accepted (in round n) sequences having v as a prefix

S. Haridi, KTHx ID2203.2x

Prepare Once, Pipeline Accepts
● After first Prepare

● Allow issuing and accepting multiple proposals in round n
● We have now multiple (values) v’s issued in the

same round n?
● Acceptor accepts longer sequences in the same

round n as long as n ≥ nprom (acceptor’s promise)

9

S. Haridi, KTHx ID2203.2x

Prepare at round n, Proposer (Leader) behavior
● Proposer p becomes a leader with round n (By a leader

election algorithm)
● At this state n is the highest known proposal number
● But p might be aborted by a leader with higher number m > n
● n is unique, since only one leader is elected with a given round

number n, n is higher than the rounds of previous leaders
● After successful completion of prepare phase the leader

has the sequence v0, and following invariant holds
● The longest chosen sequence at any lower round m < n is a prefix

of v0 (quorum property guarantee)

10

S. Haridi, KTHx ID2203.2x

● 〈C2,C3,C1〉 and all its prefixes are chosen in round 5
11

Chosen Sequence at round n

Round Accepted by p1 Accepted by p2 Accepted by p3

n = 5 〈C2,C3,C1〉
〈C2,C3〉 〈C2,C3〉

〈C2,C3,C1,C4〉
〈C2,C3,C1〉
〈C2,C3〉

...

n=2 〈C2,C3 〉 〈C2〉

n=1 〈C1〉

n=0 〈〉 〈〉 〈〉

■ Sequence v is chosen in round n if acceptors in a majority set have
accepted (in round n) sequences having v as a prefix

S. Haridi, KTHx ID2203.2x

Accepts in round n, Proposer behavior
● A proposer (leader) issues multiple proposals in

round n extending v0
● (n, v0), (n,v1), (n,v2), ...
● Proposer guarantees that v0 ≺ v1 ≺ v2 ≺ ...
● Doesn’t have to wait for one proposal to be chosen

before the next is issued

● Continues until aborted

12

S. Haridi, KTHx ID2203.2x

Accepts in round n, Acceptor behavior
● We order proposals in the following way:

● (n, v) < (n’, v’) iff n < n’ or (n = n’ and |v|<|v’|)

● An acceptor extends its accepted sequence when it
receives a new proposal
● As long as it is a higher proposal according to the

ordering above

● Accepted messages include the length of accepted
values
● Since multiple outstanding accept/accepted requests can

be delivered out of order

13

prepare

promise

accept

accepted

decide

proposer p
leader

 replica q
acceptor & learner

S. Haridi, KTHx ID2203.2x

Accepts in round n, Acceptor behavior
● Let va,q = va at acceptor q, and vp,L = vp at a leader L
● After q has accepted a proposal sent by L, it must be

the case that va,q ≤ vp,L
● It is enough for q to send back ∣va,q∣
● The proposer L can recreate va,q from its vp,L as

prefix(vp,L, ∣va,q∣)

● on 〈Accept, n, v〉 from p:
● if nprom ≤ n:
● nprom := n
● (na, va) := max((na, va), (n, v))
● send 〈Accepted, n, ∣va∣〉 to p

prepare

promise

accept

accepted

decide

proposer L
leader

 replica q
acceptor & learner

14

Deciding on Sequences

S. Haridi, KTHx ID2203.2x

Proposer behavior upon Accepted
● Proposer maintains in las[p] the length of

longest sequence accepted by acceptor p

● Sequence v is chosen
● If for a majority of acceptors p: las[p] ≥ |v|

● If v is longer than previous sequence and chosen:
● v is Decided and learners notified

16

S. Haridi, KTHx ID2203.2x

Proposer behavior upon Accepted
● rename vp to vL the current extended proposed sequence
● At round nL any value accepted by an acceptor a is a

prefix of vL
● A leader L, maintains 𝑙c :

● 𝑙c is the length of the longest sequence that L knows is
chosen (initially 0)

● On 〈Accepted, n, m〉 from a, n = nL:
● las[a] := max(m, las[a])
● if prefix(vL, m) is chosen and 𝑙c < m:
● 𝑙c := m
● send 〈Decide, prefix(vL, m) 〉 to learners

prepare

promise

accept

accepted

decide

Leader Acceptor

17

Our leader-based
Sequence Paxos

S. Haridi, KTHx ID2203.2x

Initial State for Sequence Paxos
● Proposers

● nL = 0, vL= Leader’s current round number, proposed value
● propCmds = ⟨⟩ Leader’s current set of proposed commands (empty set)
● las = [0]N Length of longest accepted sequence per acceptor
● 𝑙c = 0 Length of longest chosen sequence
● state = {(leader, prepare), (leader, accept), follower}

● Acceptor
● nprom = 0 Promise not to accept in lower rounds
● na = 0 Round number in which a value is accepted
● va = ⟨⟩ Accepted value (empty sequence)

● Learner
● vd = ⟨⟩ Decided value (empty sequence)

19

S. Haridi, KTHx ID2203.2x

Leader Initiation & Prepare Phase
● On 〈Leader, L, n〉:

● if self = L and n > nL:
● S := ∅; state := (leader, prepare)
● propCmds = ⟨⟩; (vL, nL) := (⟨⟩, n)
● las := [0]N, 𝑙c := 0
● send 〈Prepare, nL〉 to all acceptors

● else: (state, leader) := (follower, L)  

● On 〈Propose, C〉 and. state = (leader, prepare)
● propCmds := propCmds ⊕ ⟨C〉

● On 〈Promise, n, na, va〉 s.t. n = nL and state = (leader, prepare)
● add (na, va) to S
● If |S|= ⎡(N+1)/2⎤:
● (k, v) := max(S) // adopt v
● vL = v ⊕ propCmds; propCmds = ∅
● send 〈Accept, nL, vL〉 to all acceptors
● state := (leader, accept)

20

Proposer is in synch
with majority of
acceptors

prepare

accept

leader(L, n)

follower

S. Haridi, KTHx ID2203.2x

Leader Accept Phase
● On 〈Propose, C〉 and state = (leader, accept)

● vL := vL ⊕ ⟨C 〉
● send 〈Accept, nL, vL 〉 to all acceptors

● On 〈Accepted, n, m〉 from a, and n = nL and  
 state = (leader, accept)
● las[a] := max(m, las[a)
● If 𝑙c < m and prefix(vL,m) is chosen:
● 𝑙c := m,
● send 〈Decide, prefix(vL, m) 〉 to all learners

21

prepare

accept

leader(L, n)

follower

S. Haridi, KTHx ID2203.2x

Acceptor and Learner behavior
● On 〈Prepare, np 〉 from (a leader) p:

● if nprom < np:
● nprom := np
● send 〈Promise, np, na, va〉 to p

● On 〈Accept, np, v〉 from (a leader) p:
● If nprom ≤ np :
● nprom := np
● (na, va) := max((na, va), (np, v))
● send 〈Accepted, n, |va| 〉 to p

● On 〈Decide, v〉:
● If |vd| < |v|:
● vd := v
● trigger Decide(vd) 22

prepare

promise

accept

accepted

decide

Leader Acceptor &
Learner

Leader
● On 〈Leader, L, n〉:

● if self = L and n > nL:
● S := ∅, state := (leader, prepare)
● propCmds = ⟨⟩; (vL, nL) := (⟨⟩, n)
● las := [0]N, 𝑙c := 0
● send 〈Prepare, nL〉 to all acceptor

● else: state, leader := follower, L
● On 〈Promise, n, na, va〉 s.t. n = nL and  

 state = (leader, prepare)
● add (na, va) to S
● if |S|= ⎡(N+1)/2⎤:
● (k, v) := max(S) // adopt v
● vL = v + propCmds; propCmds = ∅
● send 〈Accept, nL, vL〉 to all acceptors
● state := (leader, accept)

● On 〈Propose, C〉 and state = (leader, accept)
● vL = vL ⊕ ⟨C 〉
● send 〈Accept, nL, vL 〉 to all acceptors

● On 〈Propose, C〉 and state = (leader, prepare)
● propCmds := propCmds + ⟨C〉

● On 〈Accepted, n, m〉 from a, and n = nL and  
state = (leader, accept)
● las[a] := max(las[a], m)
● If 𝑙c < m and prefix(vL,m) is supported:
● 𝑙c := m,
● send 〈Decide, prefix(vL, m) 〉 to all learners

Acceptor

● On 〈Prepare, np 〉 from (a leader) p:
● if nprom < np:
● nprom := np
● send 〈Promise, np, na, va〉 to p

● On 〈Accept, np, v〉 from (a leader) p:
● If nprom ≤ np :
● nprom := np
● (na, va) := max((na, va), (np, v))
● send 〈Accepted, n, |va| 〉 to p

Learner
■ On 〈Decide, v〉:

❑ If |vd| < |v|:
❑ vd := v
❑ trigger Decide(vd)

23

Correctness 
Leader Based Algorithm

S. Haridi, KTHx ID2203.2x

Correctness
● We must guarantee that:

● If proposal (n, v) is chosen, then for every higher proposal (n’, v’) that is
chosen, v ≤ v’

● We have two cases:
● n = n’: only successively longer sequences can become chosen within

the same round since acceptors accept growing sequences

● n < n’: the prepare phase guarantees that all chosen sequences in
round n will be adopted in round n’, and no new sequences can be
chosen in round n after that

25

S. Haridi, KTHx ID2203.2x

Performance
● At this point, the algorithm

● Pipelines of proposals for each proposer (leader) until
losing leader role

● Only first proposal requires two round-trips once a proposer
becomes a leader

● What remains
● vL, va and vd are mostly redundant
● Entire sequences are sent back and forth

● We fix these in the next unit
26

Removing redundancy of 
 vL, va and vd

S. Haridi, KTHx ID2203.2x

Assumptions so far
● A1: Optimized for the case when a single proposer

runs for a longer period of time (leader)
● We add a new assumption
● A2: Each process acts in all roles as proposer,

acceptor and learner (replicated state machines)
● Proposers have access to is own va and vd
● Acceptors know what is decided vd

28

S. Haridi, KTHx ID2203.2x

Removing VL
● The leader p has access to its own va
● When p becomes a leader, it is possible to remove the need to

store the sequences vL and va separately at the leader
● By updating the local replica (acceptor) directly instead of

sending a prepare message to itself it is possible to merge vL
into va

● At this state when p gets 〈Leader, L, n〉 and L = p:
● n > n (prom at p)
● Hence 〈Promise, n, n(a at p), v(a at p)〉 is unnecessary

● From now on the leader is extending his va
29

S. Haridi, KTHx ID2203.2x

Leader
● On 〈Leader, L, n〉:

● if self = L and n > nL:
● propCmds = ⟨⟩, (nL, nprom) := (n, n)
● S := { (na, va) }, state := (leader, prepare)
● las := [0]N, 𝑙c := 0, leader := self
● send 〈Prepare, nL〉 to all acceptor – { self }

● else: (state, leader) := (follower, L) abort()
● On 〈Promise, n, na, va〉 s.t. n = nL and state := (leader, prepare)

● add (na, va) to S
● if |S|= ⎡(N+1)/2⎤:
● (k, va) := max(S) // adopt v
● va = va ⊕ propCmds; propCmds = ⟨⟩
● send 〈Accept, nL, va 〉 to all acceptors
● state := (leader, accept)

● On 〈Propose, C〉 s.t. state = (leader, accept)
● va = va ⊕ ⟨C〉
● send 〈Accept, nL, va 〉 to all acceptors

● On 〈Propose, C〉 and state = (leader, prepare)
● propCmds := propCmds ⊕ ⟨C〉

● On 〈Accepted, n, m〉 from a, s.t. n = nL and state = accept
● …..

Acceptor

● On 〈Prepare, np 〉 from (a leader) p:
● if nprom < np:
● nprom := np
● send 〈Promise, np, na, va〉 to p

● On 〈Accept, np, v〉 from (a leader) p:
● If nprom ≤ np :
● nprom := np
● (na, va) := max((na, va), (np, v))
● send 〈Accepted, n, |va| 〉 to p

Learner
■ On 〈Decide, v〉:

❑ If |vd| < |v|:
❑ vd := v
❑ trigger Decide(vd)

30

Removing redundancy of 
 va and vd

S. Haridi, KTHx ID2203.2x

Assumptions so far
● A1: Optimized for the case when a single proposer runs

for a longer period of time (leader)

● A2: Each process acts in all roles as proposer, acceptor
and learner (replicated state machines)

● We add a new assumption
● A3: FIFO Perfect Links

32

S. Haridi, KTHx ID2203.2x

The FIFO link assumption
● We assume FIFO Perfect Links (FPL)

● This will be important for accepting commands incrementally
● No performance penalties

● Out of order commands has be buffered before decision
● Not a too strong assumption in practice

● In Fail-Silent model you get FPL from PL (Perfect Link) by adding sequence
numbers

● ZooKeeper makes this assumption too
● If we implement Perfect Links on top of TCP then FIFO is more or less

already provided during a session

33

S. Haridi, KTHx ID2203.2x

Removing vd
● Each replica stores both va and vd, even though they

are highly redundant
● Because of FIFO links:

● At the same round n accept messages are
delivered before corresponding decide
messages from to any replica :

● it always holds that at any replica q:  
v(d at q) is a prefix of v(a at q)

● Sequence vd can be replaced with an integer 𝑙d, such
that vd = prefix(va, 𝑙d)

prepare

promise

accept

accepted

decide

Leader Acceptor &
Learner

34

S. Haridi, KTHx ID2203.2x

Leader
● On 〈Leader, L, n〉:

● if self = L and n > nL:
● S := { (na, va) }, state := (leader, prepare)
● …
● send 〈Prepare, nL〉 to all acceptor – { self }

● else: (state, leader) := (follower, L)
● On 〈Promise, n, na, va〉 s.t. n = nL and state := (leader, prepare):

● …
● On 〈Propose, C〉 s.t. state = (leader, accept)

● va = va + ⟨C 〉
● send 〈Accept, nL, va 〉 to all acceptors

● On 〈Propose, C〉 s.t. state = (leader, prepare)
● propCmds := propCmds + ⟨C〉

● On 〈Accepted, n, m〉 from a, s.t. n = nL and state = (leader, accept)

● las[a] := max(las[a], m)
● If 𝑙c < m and prefix(va,m) is supported:
● 𝑙c := m,
● send 〈Decide, prefix(va, m), nL 〉 to all learners

Acceptor

● On 〈Prepare, np 〉 from (a leader) p:
● if nprom < np:
● nprom := np
● send 〈Promise, np, na, va〉 to p

● On 〈Accept, np, v〉 from (a leader) p:
● If nprom ≤ np :
● nprom := np
● (na, va) := max((na, va), (np, v))
● send 〈Accepted, n, |va| 〉 to p

Learner
■ Initially 𝑙d is 0
■ On 〈Decide, v, n〉:

❑ If 𝑙d < |v| and nprom = n:
❑ 𝑙d := |v|
❑ trigger Decide(prefix(va , 𝑙d))

35

Avoid sending
sequences

Leader
● On 〈Leader, L, n〉:

● if self = L and n > nL:
● S := { (na, va) }, state := (leader, prepare)
● propCmds = ∅, (nL, nprom) := (n, n)
● las := [0]N, 𝑙c := 0, leader := self
● send 〈Prepare, nL〉 to all acceptor – { self }

● else: (state, leader) := (follower, L)
● On 〈Promise, n, na, va〉 s.t. n = nL and state = …prepare…

● add (na, va) to S
● if |S|= ⎡(N+1)/2⎤:
● (k, va) := max(S) // adopt v
● va = va + propCmds; propCmds = ∅

● send 〈Accept, nL, va 〉 to all acceptors
● state := (leader, accept)

● On 〈Propose, C〉 s.t. state = …accept..
● va = va + ⟨C 〉
● send 〈Accept, nL, va 〉 to all acceptors

● On 〈Propose, C〉 s.t. state = …prepare..
● propCmds := propCmds + ⟨C〉

● On 〈Accepted, n, m〉 from a, s.t. n = nL and state = …
● las[a] := max(las[a], m)
● If 𝑙c < m and prefix(va,m) is supported:
● 𝑙c := m,
● send 〈Decide, prefix(va, m), nL 〉 to all learners

Acceptor

● On 〈Prepare, np 〉 from (a leader) p:
● if nprom < np:
● nprom := np
● send 〈Promise, np, na, va〉 to p

● On 〈Accept, np, v〉 from (a leader) p:
● If nprom ≤ np :
● nprom := np
● (na, va) := max((na, va), (np, v))
● send 〈Accepted, n, |va| 〉 to p

Learner
■ Initially 𝑙d is 0
■ On 〈Decide, v, n〉:

❑ If 𝑙d < |v| and nprom = n:
❑ 𝑙d = |v|
❑ trigger Decide(prefix(va , 𝑙d))

S. Haridi, KTHx ID2203.2x

Idea of Trim Promise
● Leader L sends a Prepare message to replica p that responds

with a Promise msg
● Promise message currently contains entire sequence va at p
● But L knows that the sequence that will eventually by adopted by

all replicas is an extension of vd at L
● Changes:

● Prepare message at L includes (𝑙d = |vd|, na) at L

● Promise message includes either
● (na, suffix(va, 𝑙d))p if na at p ≥ na at L

● (na, ⟨⟩)p if na at p < na at L

● Proposer reconstructs the adopted sequence using max()

prepare

promise

accept

accepted

decide

Leader L Acceptor &
Learner p

38

S. Haridi, KTHx ID2203.2x

● If p1 becomes a leader at 3
● Its decided sequence is 〈C1〉

● (n = 1, suffix = 〈A, B, D〉)p1

● p1 consults a majority, itself and either p2
or p3 by sending ∣〈C1〉∣

● p2 sends (n = 2, suffix = 〈C2, C3〉)p2
● p3 sends (n = 2, suffix = 〈C2〉) p3

● If p2 consulted: va,p1 = 〈C1〉 + 〈C2, C3〉 and
extended locally by 〈E, F, G〉
● va,p1 = 〈 C1,C2, C3,E,F,G〉

39

Leader at round 3 p1 leader
Round Accepted by p1 Accepted by p2 Accepted by p3

n = 3

n = 2 〈C1,C2, C3〉 〈C1,C2〉

n = 1 〈C1,A, B, D〉 〈C1〉

n = 0 〈〉 〈〉 〈〉

〈 C1,C2, C3, E, F, G〉

S. Haridi, KTHx ID2203.2x

● If p1 becomes a leader at 3
● Its decided sequence is 〈C1〉

● (n = 1, suffix = 〈A, B, D〉)p1

● p1 consults a majority, itself and either
p2 or p3 by sending ∣〈C1〉∣
● p2 sends (n = 2, suffix = 〈C2, C3〉)p2
● p3 sends (n = 2, suffix = 〈C2〉) p3

● If p3 consulted: 〈C2〉 is added to 〈C1〉
extended locally by 〈E, F, G〉
● va,p1 = 〈 C1,C2,E,F,G〉

40

Leader at round 3 p1 leader
Round Accepted by p1 Accepted by p2 Accepted by p3

n = 3

n = 2 〈C1,C2, C3〉 〈C1,C2〉

n = 1 〈C1,A, B, D〉 〈C1〉

n = 0 〈〉 〈〉 〈〉

〈 C1,C2,, E, F, G〉

S. Haridi, KTHx ID2203.2x

● If p3 becomes a leader at 3
● Its decided sequence is 〈C1, C2〉

● (na = 2, suffix = 〈〉)p3

● p3 consults a majority, itself and either p1
or p2 by sending (|vd| = |〈C1, C2〉|, na=2)

● p1 sends (na = 1, suffix = 〈〉)p1

● p2 sends (na = 2, suffix = 〈C3〉)p2

● If p1 consulted: va,p3 = 〈C1, C2〉 + 〈〉 and
extended locally by 〈E, F, G〉

● va,p3 = 〈 C1,C2,E,F,G〉

41

Leader at round 3 p3 leader
Round Accepted by p1 Accepted by

p2

Accepted by p3

n = 3

n = 2 〈C1,C2, C3〉 〈C1,C2〉

n = 1 〈C1,A, B, D〉 〈C1〉

n = 0 〈〉 〈〉 〈〉

〈 C1,C2, E, F, G〉

S. Haridi, KTHx ID2203.2x

● If p3 becomes a leader at 3
● Its decided sequence is 〈C1, C2〉

● (na = 2, suffix = 〈〉)p3
● p3 consults a majority, itself and either p1

or p2 by sending (|vd| = |〈C1, C2〉|, na=2)

● p1 sends (na = 1, suffix = 〈〉)p1
● p2 sends (na = 2, suffix = 〈C3〉)p2

● If p2 consulted: 〈C3〉 is added to 〈C1 C2 〉
and extended locally by 〈E, F, G〉

● va,p3 = 〈 C1,C2, C3, E,F,G〉

42

Leader at round 3 p3 is a leader
Round Accepted by p1 Accepted by p2 Accepted by p3

n = 3

n = 2 〈C1,C2, C3〉 〈C1,C2〉

n = 1 〈C1,A, B, D〉 〈C1〉

n = 0 〈〉 〈〉 〈〉

〈 C1,C2, C3 E, F, G〉

S. Haridi, KTHx ID2203.2x

● If p2 becomes a leader at 3
● Its decided sequence is 〈C1, C2〉

● (na = 2, suffix = 〈 C3 〉)p3

● p2 consults a majority, itself and either p1 or
p3 by (|vd| = |〈C1, C2〉|, na=2)p2
● p1 sends (na = 1, suffix = 〈〉)p1

● p3 sends sends (na = 2, suffix = 〈〉)p2

● If p1 consulted: va,p2 = 〈C1, C2〉 + 〈 C3 〉 and
extended locally by 〈E, F, G〉

● va,p2 = 〈 C1,C2, C3 ,E,F,G〉
● If p2 consulted: va,p2 = 〈C1, C2〉 + 〈 C3 〉 and

extended locally by 〈E, F, G〉
● va,p2 = 〈 C1,C2, C3, E,F,G〉

43

Leader at round 3 p2 is a leader
Round Accepted by p1 Accepted by p2 Accepted

by p3

n = 3

n = 2 〈C1,C2, C3〉 〈C1,C2〉

n = 1 〈C1,A, B, D〉 〈C1〉

n = 0 〈〉 〈〉 〈〉

〈 C1,C2, C3 E, F, G〉

S. Haridi, KTHx ID2203.2x

Implementation
● On 〈Leader, L, n〉:

● if self = L and n > nL:
● leader := self, state := prepare

● S := {(na ,suffix(va , 𝑙d)) },
● propCmds = ⟨⟩, (nL, nprom) := (n, n)
● las := [0]N, 𝑙c := 0, leader := self
● send 〈Prepare, nL, 𝑙d, na 〉 to all acceptor – { self }

● else: (state, leader) := (follower, L) abort()
● On 〈Prepare, np , 𝑙d, n〉 from (a leader) p:

● if nprom < np:
● nprom := np
● suffx := if na ≥ n : suffix(va,, 𝑙d) else ⟨⟩
● send 〈Promise, np, na, suffx〉 to p

44

S. Haridi, KTHx ID2203.2x

Implementation
● On 〈Promise, n, na, suffxa〉 s.t. n = nL and state = prepare

● add (na, suffxa) to S
● if |S|= ⎡(N+1)/2⎤:
● (k, suffx) := max(S) // adopt v
● va = prefix(va, 𝑙d) + suffx + propCmds;
● propCmds = ⟨⟩
● send 〈Accept, nL, va 〉 to all acceptors
● state := accept

● On 〈Prepare, np , 𝑙d, n〉 from (a leader) p:
● if nprom < np:
● nprom := np
● suffx := if na ≥ n : suffix(va,, 𝑙d) else ⟨⟩
● send 〈Promise, np, na, suffx〉 to p

45

● S = {(n1, v1), …., (nk,vk)}
● fun max(S):

● (n,v) =: (0,⟨⟩)
● for (n’,v’) in S:

● if n < n’ or (n = n’ and ∣v∣ < ∣v’∣):
● (n,v) := (n’,v’)

● return (n,v)

Leader
● On 〈Leader, L, n〉:

● if self = L and n > nL:
● leader := self, state := …prepare…

● S := {(na ,suffix(va , 𝑙d)) },
● propCmds = ⟨⟩, (nL, nprom) := (n, n)
● 𝑙as := [0]N, 𝑙c := 0, leader := self
● send 〈Prepare, nL, 𝑙d, na 〉 to all acceptor – { self }

● else: (state, leader) := (follower, L)
● On 〈Promise, n, na, suffxa〉 s.t. n = nL and state = prepare…

● add (na, suffxa) to S
● if |S|= ⎡(N+1)/2⎤:
● (k, suffx) := max(S) // adopt v
● va = prefix(va, 𝑙d) + suffx + propCmds;
● propCmds = ∅

● send 〈Accept, nL, va 〉 to all acceptors
● state := …accept…

● On 〈Propose, C〉 s.t. state = …accept..
● va = va + ⟨C 〉
● send 〈Accept, nL, va 〉 to all acceptors

● On 〈Propose, C〉 s.t. state = …prepare..
● propCmds := propCmds + ⟨C〉

● On 〈Accepted, n, m〉 from a, s.t. n = nL and state = …accept.
● las[a] := max(las[a], m)
● If 𝑙c < m and prefix(va,m) is supported:
● 𝑙c := m,
● send 〈Decide, prefix(va, m), nL 〉 to all learners

Acceptor

● On 〈Prepare, np , 𝑙d, n〉 from (a leader) p:
● if nprom < np:
● nprom := np
● suffx := if na ≥ n : suffix(va,, 𝑙d) else ⟨⟩
● send 〈Promise, np, na, suffx〉 to p

● On 〈Accept, np, v〉 from (a leader) p:
● If nprom ≤ np :
● nprom := np
● (na, va) := max((na, va), (np, v))
● send 〈Accepted, n, |va| 〉 to p

Learner
■ Initially 𝑙d is 0
■ On 〈Decide, v, n〉:

❑ If 𝑙d < |v| and nprom = n:
❑ 𝑙d = |v|
❑ trigger Decide(prefix(va , 𝑙d))

 
The Accept phase  

 
The first Accept 

AcceptSync

S. Haridi, KTHx ID2203.2x

First Accept
● After getting Promise messages from a

majority, The leader L updates the state
of its accepted sequence va

● Leader needs to update the accepted
sequence va’s of the replicas

● We have two cases
● Replica qi from which L received a promise

message in state prepare
● Replicas qi from which L received a promise

message in state accept
● In both cases the leader needs to know

the length of decided sequence at
each replica

prepare

accept

follower

〈Leader, L, n〉

〈Prepare … 〉
〈Promise …〉

〈Accept … 〉

〈Accept … 〉
〈Accepted …〉

〈Decide … 〉

〈Promise …〉

replica q

49

〈Leader, L’, n’〉

follower

S. Haridi, KTHx ID2203.2x

AcceptSync
● In both cases the first accept is special
● It synchronizes the state of the replicas

to reflect the state of the leader

● We call the first Accept AcceptSync
● We extend the state of a follower to

distinguish the first accept from
subsequent accepts
● (follower, ⊥) initially
● (follower, prepare) after Prepare message
● (follower, accept) after AcceptSync message

prepare

accept

follower

〈Leader, L, n〉

〈Prepare … 〉
〈Promise …〉

〈AcceptSync … 〉

〈Accept … 〉
〈Accepted …〉

〈Decide … 〉

〈Promise …〉

replica q

50

〈AcceptSync … 〉

〈Leader, L’, n’〉

follower

S. Haridi, KTHx ID2203.2x

AcceptSync, leader in prepare state
● Leader L has acquired the knowledge of the length

of decided sequence from a majority of replicas
through promise messages
● Each replica q sends the length of its decided sequence

𝑙d at q in the promise
● Leader L reconstructs his own va
● For each replica q in the majority: L sends an AcceptSync

message suffix(va at L, 𝑙d at q) and 𝑙d at q

51

S. Haridi, KTHx ID2203.2x

Implementation
● On 〈Promise, n, na, suffxa, 𝑙da〉 from a s.t. n = nL and state = …prepare…

● add (na, suffxa) to S, lds[a] := 𝑙da
● if |S|= ⎡(N+1)/2⎤:
● (k, suffx) := max(S) // adopt v
● va = prefix(va, 𝑙d) + suffx + propCmds;
● 𝑙as[self] := |va| /** selecting chosen sequence */
● propCmds = ∅, state := (leader, accept)
● for p in 𝜋- {self} s.t. lds[p] ≠ ⊥ :
● send 〈AcceptSync, nL, suffix(va, lds[p]), lds[p] 〉 to p

● On 〈Prepare, nL , 𝑙d, n〉 from (a leader) L:
● if nprom < nL:
● nprom := nL
● state := (follower, prepare)
● suffx := if na ≥ n : suffix(va,, 𝑙d) else ⟨⟩
● send 〈Promise, nL, na, suffx, 𝑙d 〉 to p

52

S. Haridi, KTHx ID2203.2x

Implementation
● On 〈Promise, n, na, suffxa, 𝑙da〉 from a s.t. n = nL and state = (leader, prepare)

● add (na, suffxa) to S, lds[a] := 𝑙da
● if |S|= ⎡(N+1)/2⎤:
● (k, suffx) := max(S) // adopt v
● va = prefix(va, 𝑙d) + suffx + propCmds;
● 𝑙as[self] := |va| /** selecting chosen sequence */
● propCmds = ∅, state := (leader, accept)
● for p in 𝜋- {self} s.t. lds[p] ≠ ⊥ :
● send 〈AcceptSync, nL, suffix(va, lds[p]), lds[p] 〉 to p

● On 〈AcceptSync, nL, suffxv, 𝑙d 〉 from L and state = (follower, prepare):
● If nprom = nL :
● na := nL
● va := prefix(va, 𝑙d) + suffxv
● send 〈Accepted, nL, |va| 〉 to p
● state = (follower, accept)

53

S. Haridi, KTHx ID2203.2x

● If p1 becomes a leader at 3
● Its decided sequence is 〈C1〉

● (n = 1, suffix = 〈A, B, D〉)p1

● p1 consults itself and p2 by sending ∣〈C1〉∣
● p2 sends (n = 2, suffix = 〈C2, C3〉)p2 , 𝑙d,p2 = 2

● P1 constructs va,p1 = 〈C1〉 + 〈C2, C3〉
extended locally by 〈E, F, G〉
● va,p1 = 〈 C1,C2, C3,E,F,G〉

● p1 sends
● suffix(va,p1, 𝑙d,p2) = 〈C3,E,F,G〉
● 𝑙d,p2 = 2

● p2 reconstructs its va at round 3
● va,p2 = 〈 C1,C2, C3, E, F, G〉

54

Leader at round 3
Round Accepted by p1 Accepted by p2 Accepted

by p3

n = 3

n = 2 〈C1,C2, C3〉 〈C1,C2〉

n = 1 〈C1,A, B, D〉 〈C1〉

n = 0 〈〉 〈〉 〈〉

〈 C1,C2, C3, E, F, G〉 〈 C1,C2, C3, E, F, G〉

S. Haridi, KTHx ID2203.2x

● If p1 becomes a leader at 3
● Its decided sequence is 〈C1〉

● (n = 1, suffix = 〈A, B, D〉)p1

● p1 consults a majority
● If p3 consulted: va,p1 = 〈C1〉 + 〈C2〉 and

extended locally by 〈E, F, G〉
● va,p1 = 〈 C1,C2,E,F,G〉

● p1 sends
● suffix(va,p1, 𝑙d,p3) = 〈E,F,G〉 +

● 𝑙d,p2 = 2

● p3 reconstructs its va at round 3
● va,p2 = 〈 C1,C2, E, F, G〉

55

Leader at round 3
Round Accepted by p1 Accepted by p2 Accepted by p3

n = 3

n = 2 〈C1,C2, C3〉 〈C1,C2〉

n = 1 〈C1,A, B, D〉 〈C1〉

n = 0 〈〉 〈〉 〈〉

〈 C1,C2, E, F, G〉 〈 C1,C2, E, F, G〉

S. Haridi, KTHx ID2203.2x

● If p2 becomes a leader at 3
● Its decided sequence is 〈C1, C2〉

● (na = 2, suffix = 〈 C3 〉)p3

● p2 consults a majority, itself and either p1 or
p3 by (|vd| = |〈C1, C2〉|, na=2)p2
● p1 sends (na = 1, suffix = 〈〉)p1 , 𝑙d,p1 = 1

● p2 sends to p1
● suffix(va,p1, 𝑙d,p1) = 〈 C2, C3 E,F,G〉
● 𝑙d,p1 = 1

● p1 reconstructs its va at round 3
● va,p1 = 〈 C1,C2, C3 , E, F, G〉

56

Leader at round 3 p2 is leader
Round Accepted by p1 Accepted by p2 Accepted

by p3

n = 3

n = 2 〈C1,C2, C3〉 〈C1,C2〉

n = 1 〈C1,A, B, D〉 〈C1〉

n = 0 〈〉 〈〉 〈〉

〈 C1, C2, C3 E, F, G〉 〈 C1, C2, C3 E, F, G〉

 
Leader at the Accept Phase II  

S. Haridi, KTHx ID2203.2x

First Accept, leader in Accept State
● After getting Promise msgs from a

majority, The leader L updates the state
of its accepted sequence va

● Leader needs to update the accepted
sequence va’s of the replicas

● We have two cases
● Replica qi from which L received a promise

message in state prepare
● Replicas qi from which L received a promise

message in state accept
● In both cases the leader needs to know

the length of decided sequence at
each replica

prepare

accept

follower

〈Leader, L, n〉

〈Prepare … 〉
〈Promise …〉

〈Accept … 〉
〈Accepted …〉
〈Decide … 〉

〈Promise …〉

replica q

58

〈AcceptSync … 〉

〈AcceptSync … 〉

S. Haridi, KTHx ID2203.2x

AcceptSync, leader in accept state
● Leader L receives a promise from replica q while in the

accept state
● Each replica q sends the length of its decided sequence 𝑙d at q in

the Promise
● Leader has already reconstructed his sequence va
● For each other replica q after receiving a promise, L sends an

AcceptSync message:
● suffix(va at L, 𝑙d at q) and 𝑙d at q

● If some sequence is already decided it sends the  
decide index 𝑙d at L

59

S. Haridi, KTHx ID2203.2x

AcceptSync, leader in accept state
● Other replicas

● Leader L waits until it receives Promise msg
from q before sending AcceptSync message
to q

● Receiving a promise synchronizes L’s
knowledge about q

● Maintain invariant at q: vd ≤ va
● L may not send Decide msg or subsequent

Accept msgs to q until AcceptSync msg is
sent to q

● If some sequence has been chosen before
L received promise from q then L must send
Decide msg to q after first Accept
● This is indicated by 𝑙c ≠ 0: Length of longest

chosen (learned) sequence

prepare

accept

follower

〈Leader, L, n〉

〈Prepare … 〉
〈Promise …〉

〈AcceptSync … 〉

〈Accept … 〉
〈Accepted …〉

〈Decide … 〉

〈Promise …〉

replica q

60

〈AcceptSync … 〉

S. Haridi, KTHx ID2203.2x

Implementation
● On 〈Promise, n, na, suffxa, 𝑙da〉 from a and n = nL and state = (leader, accept)

● lds[a] := 𝑙da
● send 〈AcceptSync, nL, suffix(va, lds[a]), lds[a] 〉 to a
● if 𝑙c ≠ 0:
● send 〈Decide, 𝑙d, nL 〉 to a

● On 〈AcceptSync, nL, suffxv, 𝑙d 〉 from L and state = (follower, prepare):
● If nprom = nL :
● na := nL
● va := prefix(va, 𝑙d) + suffxv
● send 〈Accepted, nL, |va| 〉 to p
● state = (follower, accept)

61

S. Haridi, KTHx ID2203.2x

Updating replicas (incremental Accepts)
● Subsequent Accept messages:

● Let m1 = 〈Accept, nL, v1〉 and  
m2 = 〈Accept, nL, v2〉, and m1 is sent before m2
from leader L to a replica q

● L knows that at the time when q processes m2,
q will have accepted v1, or blocked round nL
● Holds because of FIFO links

● Therefore L will send vs = suffix(v2, |v1|) and  
offset = |v1| instead of v2
● In particular if v2 = v1 + ⟨C〉: m2 is  

〈Accept, nL, ⟨C〉, |v1| 〉

62

prepare

accept

follower

〈Leader, L, n〉

〈Prepare … 〉
〈Promise …〉

〈AcceptSync … 〉

〈Accept … 〉
〈Accepted …〉

〈Decide … 〉

〈Promise …〉

replica q

〈AcceptSync … 〉

〈Leader, L’, n’〉

follower

S. Haridi, KTHx ID2203.2x

Implementation
● When a leader L in the accept state gets a new command C

● Updates its accepted sequence and its 𝑙as[L]
● Sends Accept messages to all replicas that passed the prepare phase

● On 〈Propose, C〉 and state = (leader, accept)
● va = va ⊕ 〈C〉
● 𝑙as[self] := 𝑙as[self] + 1
● for p in 𝝅- {self} s.t. lds[p] ≠ ⊥ :
● send 〈Accept, nL, ⟨C〉〉 to p

● A replica that moved to the accept phase will accept the command if leader is in the
current round as the promise, extends its accepted sequence and acknowledges to the
leader

● On 〈Accept, nL, ⟨C〉 〉 from (a leader) L and state = (follower, accept)
● If nprom = nL :
● va := va ⊕ ⟨C〉
● send 〈Accepted, np, |va| 〉 to L 63

 
How to Decide  

S. Haridi, KTHx ID2203.2x

Implementation
● The leader maintains
● 𝑙as[0]: the leader’s knowledge of the longest accepted sequence per replica
● 𝑙c : the longest learned sequence so far
● If m the length of the acknowledged sequence is greater than 𝑙c , a majority of

replicas responded : a longer sequence is chosen (supported)
● A decision is sent to all replicas in the accept phase

● On 〈Accepted, n, m〉 from a, s.t. n = nL and state = (leader, accept)
● 𝑙as[a] := m
● If 𝑙c < m and |{p in 𝝅 : 𝑙as[a] ≥ m}| ≥ ⎡(N+1)/2⎤
● 𝑙c := m,
● for p in 𝝅 s.t. lds[p] ≠ ⊥
● send 〈Decide, 𝑙c , nL 〉 to p

65

S. Haridi, KTHx ID2203.2x

Deliver One Command At A Time
● Currently every decided sequence is handed

to the application in its entirety
● It makes more sense to change the API and

decide one command at a time

● Initially 𝑙d is 0 // zero-based indexing

● On 〈Decide, 𝑙, nL〉:
▪ if nprom = nL:
▪ while 𝑙d < 𝑙:
▪ trigger Decide(va[𝑙d])
▪ 𝑙d := 𝑙d + 1

Initially 𝑙d is 0
On 〈Decide, v, n〉:

▪if 𝑙d < |v| and nprom = n:
▪ 𝑙d = |v|
▪ trigger Decide(prefix(va , ld))

66

 
The final algorithm

S. Haridi, KTHx ID2203.2x

The final Sequence Paxos algorithm
● The algorithm use

● BallotLeaderElection

● FIFOPerfectPointToPointLinks

● The algorithm works in the asynchronous model

● but requires BLE which works in the partially synchronous model

68

S. Haridi, KTHx ID2203.2x

Initial Replica for Sequence Paxos
● Leader specific

● propCmds = ⟨⟩ Leader’s current set of proposed commands (empty set)
● las = [0]N Length of longest accepted sequence per acceptor
● lds = [⊥]N Length of longest known decided sequence per acceptor

● 𝑙c = 0 Length of longest chosen (learned) sequence
● acks = [⊥]N Promise acks per acceptor p ⟼ (n, v)

● Replica (including Acceptor and Learner)
● (nL, leader) = (0, ⊥) Leader’s current round number, leader process
● state = ({follower, leader}, {prepare, accept, ⊥}) initially (follower, ⊥)
● nprom = 0 Promise not to accept in lower rounds
● na = 0 Round number in which a value is accepted
● va = ⟨⟩ Accepted value (empty sequence)

● 𝑙d = 0 Length of decided value (length of empty sequence) 69

S. Haridi, KTHx ID2203.2x

Replicas
On 〈Leader, L, n〉:
 if n > nL :
 leader := L , nL := n
 if self = L and nL > nprom :
 state := (leader, prepare)
 propCmds = ⟨⟩; las := [0]N; lds := [⊥]N

 acks := [⊥]N ; 𝑙c := 0,
 send 〈Prepare, nL, 𝑙d, na 〉 to all 𝝅 – { self }
 acks[L] := (na ,suffix(va , 𝑙d))
 lds[self] := 𝑙d; nprom:= nL
 else:
 state = (follower, state[2])

On 〈Prepare, nL , 𝑙d, n〉 from L:
if nprom < nL:
 nprom := nL ; state := (follower, prepare)
 suffx := if na ≥ n : suffix(va,, 𝑙d) else ⟨⟩
 send 〈Promise, nL, na, suffx, 𝑙d 〉 to L

70

On 〈Promise, n, na, suffxa, 𝑙d〉 from a
 s.t. n = nL and state = (leader, prepare):
 acks[a] := (na, suffxa) , lds[a] := 𝑙d
 P := {p in 𝝅 : acks[p] ≠ ⊥}

if |P| = ⎡(N+1)/2⎤:
 (k, suffx) := max({acks[p]: p in P}) // adopt v
 va = prefix(va, 𝑙d) + suffx + propCmds;
 𝑙as[self] := |va|
 propCmds := ⟨⟩; state := (leader, accept)
 for p in 𝝅- {self} and lds[p] ≠ ⊥:
 sufx := suffix(va, lds[p])
 send 〈AcceptSync, nL, sufx, lds[p] 〉 to p

On 〈Promise, n, na, suffxa, 𝑙d〉 from a
 s.t. n = nL and state = (leader, accept):

lds[a] := 𝑙d
send 〈AcceptSync, nL, suffix(va, lds[a]), lds[a] 〉 to a
if 𝑙c ≠ 0:
 send 〈Decide, 𝑙d, nL 〉 to a

S. Haridi, KTHx ID2203.2x

Replicas

On 〈AcceptSync, nL, sufx, 𝑙d 〉 from p
 s.t. state = (follower, prepare):
 If nprom = nL :

 na := nL
 va := prefix(va, 𝑙d) + sufx
 send 〈Accepted, nL, |va| 〉 to p
 state = (follower, accept)

On 〈Accept, nL, ⟨C〉, 𝑙d 〉 from p
 s.t. state = (follower, accept):

If nprom = nL :
 va := va + ⟨C〉
 send 〈Accepted, np, |va| 〉 to p

On 〈Decide, 𝑙, nL〉:
if nprom = nL:
 while 𝑙d < 𝑙:
 trigger Decide(va[𝑙d])
 𝑙d := 𝑙d + 1

71

On 〈Propose, C〉
 s.t. state = (leader, prepare):
 propCmds := propCmds + ⟨C〉
On 〈Propose, C〉
 s.t. state = (leader, accept):
 va = va + ⟨C 〉
 𝑙as[self] := 𝑙as[self] + 1
 for p in 𝝅- {self} s.t. lds[p] ≠ ⊥ :

 send 〈Accept, nL, ⟨C〉 〉 to p
On 〈Accepted, n, m〉 from a,
 s.t. n = nL and state = (leader, accept) :
 𝑙as[a] := m

If 𝑙c < m and |{p in 𝝅 : 𝑙as[a] ≥ m}| ≥ ⎡(N+1)/2⎤ :
 𝑙c := m,
 for p in 𝑙 s.t. lds[p] ≠ ⊥:
 send 〈Decide, 𝑙c , nL 〉 to p

S. Haridi, KTHx ID2203.2x

The final Sequence Paxos algorithm
● We developed a complete, simple and efficient Sequence

Paxos algorithm in the fail-silent model (asynchronous
model) that creates a consistent replicated log va

● The algorithm guarantees the safety properties of
sequence consensus as long as the following
assumptions hold
● FIFO perfect links
● An eventual leader election abstraction that guarantees for any

indication (response) event 〈Leader, L, n〉 the combination (L,n) is
unique (same requirement as single value Paxos)

72

S. Haridi, KTHx ID2203.2x

The final Sequence Paxos algorithm
● Most of the time once a command C is delivered to the

leader, one round trip is needed for deciding on C
● For liveness (progress) the leader election should satisfy

● For any process p: if p is elected by 〈Leader, p, n〉, then for any
for previous event and process q:
● 〈Leader, q, n’〉: n’ < n should hold

● A leader p should stay and be considered as a leader by a
majority of processes “for a sufficient time” before overtaken by a
higher numbered process

● No requirement on strong accuracy on the leader election
algorithm otherwise.

73

