
Seif Haridi
KTH

Time and Clocks in
Distributed Systems

S. Haridi, KTHx ID2203.2x

Outline
● Motivation for using physical clocks

● Two algorithms:
● Time-based leader leases

● Shared memory using clocks

2

S. Haridi, KTHx ID2203.2x

Motivation
● Consider a slightly stronger system model:

● Computation
● No bounds on time to take a step

● Communication
● No bounds on latency
● So far, this is the asynchronous system model

● Clocks
● Lower and upper bounds on clock rate

3

S. Haridi, KTHx ID2203.2x

Motivation
● This is a fairly weak model in practice

● “Our machine statistics show that bad CPUs are 6
times more likely than bad clocks. That is, clock issues
are extremely infrequent, relative to much more
serious hardware problems.” – Google

4

S. Haridi, KTHx ID2203.2x

Motivation
● Why consider algorithms that use clocks?
● By making stronger assumptions about the system we

can get better efficiency/performance
● In this slightly stronger model we cannot still solve

problems that are harder than what can be solved in the
asynchronous model
● i.e. the FLP impossibility still holds

● But we can define some abstractions will better
properties

5

Time-based Leader
Leases

S. Haridi, KTHx ID2203.2x

Outline – Leader Leases
● The optimization opportunity by using clocks

● The proposed algorithm

● An argument why correctness is maintained

7

S. Haridi, KTHx ID2203.2x

Background
● We implement a key-value store using RSM
● Supporting the following commands:

● Read(k), Write(k, v), CAS(k, vexp, vnew)
● CAS:
▪ writes vnew if old value is vexp; returns old value

● Needs RSM to do CAS (Shared Mem. is too weak)
● Service runs on leader-based Sequence Paxos

● N=3 replicas, Πr={p1, p2, p3}
● Each acting as proposer, acceptor, learner

p1

p2 p3

8

S. Haridi, KTHx ID2203.2x

Command ordering
● Paxos guarantees that all replicas execute

commands in same order

Old state Command Result New state
{} Write(x,1) OK {x=1}
{x=1} Write(y,0) OK {x=1,y=0}
{x=1,y=0} Read(x) 1 {x=1,y=0}
{x=1,y=0} CAS(y,0,1) 0 {x=1,y=1}
{x=1,y=1} CAS(y,0,1) 1 {x=1,y=1}
{x=1,y=1} Read(y) 1 {x=1,y=1}
{x=1,y=1} Write(y,0) OK {x=1,y=0}
...

9

S. Haridi, KTHx ID2203.2x

Clients and Leader
● Can have any number of clients Πc={p4,...}
● Assume network is stable and p1 is leader  

(has started the highest round)

p1

p2 p3

p4

p6

p7
p8

p5

p9

10

S. Haridi, KTHx ID2203.2x

Executing a Command
● Client p4 that wants to execute a command

sends a request (1) to leader p1

p1

p2 p3

p4

p6

p7
p8

p5

p9

1

11

S. Haridi, KTHx ID2203.2x

Executing a Command
● p1 proposes command using Paxos, which sends

Accept msgs (2) to replicas (using previously
prepared round number)

p1

p2 p3

p4

p6

p7p8

p5

p9

1

2

2

2

12

S. Haridi, KTHx ID2203.2x

Executing a Command
● The replicas accept and respond with AcceptAck

(Accepted) messages (3)

p1

p2 p3

p4

p6

p7
p8

p5

p9

1

2

3 3

2,3

2

13

S. Haridi, KTHx ID2203.2x

Executing a Command
● After p1 gets AcceptAck msgs from a majority, the

command order is chosen and p1 sends Decide
msgs (4)

p1

p2 p3

p4

p6

p7
p8

p5

p9

1

2,4
2,4

3 3

2,3,4

14

S. Haridi, KTHx ID2203.2x

Executing a Command
● p1 executes the command using the state of the

state machine, and sends response (4’) with result of
the operation to p4

p1

p2 p3

p4

p6

p7p8

p5

p9

1

2,4
2,4

3 3

2,3,4
,4’

15

S. Haridi, KTHx ID2203.2x

Opportunity: Faster Reads
● Assume that the operation requested by p4 is a read operation,

C=Read(x)
● p1 stores the entire state, so can p1 read the state variable x and respond

immediately?

p1

p2 p3

p4

p6

p7
p8

p5

p9

1
2

16

S. Haridi, KTHx ID2203.2x

What could go wrong?
● A network split partitions p1 away from p2 and p3

● p2 is elected leader but p1 never hears about this

p1

p2 p3

p4

p6

p7p8

p5

p9

17

S. Haridi, KTHx ID2203.2x

What could go wrong?
● Client p9 sends a Write(x,valnew) request to p2, p2

communicates with p3 and then executes the write
operation

p1

p2 p3

p4

p6

p7
p8

p5

p9

1 3

2,4

4’

18

S. Haridi, KTHx ID2203.2x

What could go wrong?
● After this, p1 gets Read(x) request from p4

● p1 is unaware of the split and the write operation, and responds to p4
with the old value of x

● Linearizability is violated!

p1

p2 p3

p4

p6

p7
p8

p5

p9

1

2

19

S. Haridi, KTHx ID2203.2x

Problem summarized
● The reason p1 can’t respond with its current state because some

other replica may have assumed leadership and modified the
state without p1 knowing about it

● Is there some way to avoid this?

● False attempt:
● p2 must communicate with p1 before p2 can become leader
● But this can’t work since p1 may be dead

20

Time Leases

Solution: time-based leader lease
● We would like leaders to be disjoint in time
● Think of this as a Paxos group

● Only one leader at an given point of time t
● If q is a follower of p at time t then no other no other process can be a leader at t

p1

q

t2t1

p2

follower of p1

p1

follower of p2

Solution: time-based leader lease
● We would like leaders to be disjoint in time
● Think of this as a Paxos group

● Only one leader at an given point of time t
● If q is a follower of p at time t then no other no other process can be a leader at t

p1

q

t2t1

p2

follower of p1

p1

follower of p2

t2

Solution: time-based leader lease
● A propose p to become leader: sends a request (prepare) to acceptors

● An acceptor gives a time-based leader lease to p , lasting for 10 seconds
● If a proposer gets leases from a majority of acceptors, then proposer

holds lease on group and becomes a leader
● In the time until the first acceptor lease expires, the proposer knows that

no other proposer can hold the lease on the group
● During this time, the leader can safely respond to reads from local

state

p
q

t2 t4=t2+10st1 t3=t1+10s

Solution: time-based leader lease
● Can be integrated with Paxos messages:

● As before acceptor q joins round n by sending a Promise in
response to a Prepare(n), and promises to not accept
proposals in lower rounds

● In addition, we require that if q joins round n at time t then q
promises not to join a higher round until after time t+10s

● If proposer p gets promises from a majority then p knows
that no other proposer can get a majority of promises during
next 10 seconds

Issues

● Notice that we are only taking about physical time
intervals and not about absolute clock values

● We have to take two issues into account:

● Network is asynchronous
● Clocks drift

Issue 1: asynchronous network

p

q
t0

Prepare Promise

t3=t0+10st2 t4=t1+10st1

● p can’t know at what exact time q sent the Promise, only that
t0≤t1≤t2
● p has to be conservative and assume that t1=t0
● p holds lease until t3=t0+10s

Clock Drift

S. Haridi, KTHx ID2203.2x

Issue 2: clock drift

● To understand the clock drift issue, we have to
describe clocks and time more formally and in
more detail

● A clock at a process pi is a monotonically increasing function
from real-time to some real value

29

S. Haridi, KTHx ID2203.2x

Introduction to clocks
● Each process pi has an associated clock Ci

● Ci(.) is modelled as a function from real times to clock times
● Real time is defined by some time standard, such as

Coordinated Universal Time (UTC)
● The unit of time in UTC is the SI second, whose

definition states that:
● “The second is the duration of 9 192 631 770

periods of the radiation corresponding to the
transition between the two hyperfine levels of the
ground state of the caesium 133 atom.”

30

S. Haridi, KTHx ID2203.2x

Clock implementation
● A clock is implemented as an oscillator

and a counter register that is
incremented for each period of the
oscillator
● The oscillator frequency is not completely

stable, varying depending on
environmental conditions such as
temperature, and aging

● The oscillator’s manufacturer specifies a
nominal frequency and an error bound

31

S. Haridi, KTHx ID2203.2x

Clock rate
●

32

S. Haridi, KTHx ID2203.2x

Clock drift
●

Real time

Clock time

Accumulated clock time

33

S. Haridi, KTHx ID2203.2x

Issue 2: clock drift at proposer
● Reason about what happens if proposer uses

clock time instead of real time without any
compensation?
● Clock runs faster than real time: safety cannot be

violated as proposer believes that its lease expired
sooner than it actually did

● Clock runs slower than real time: proposer believes it
holds lease even after lease has expired, and proposer
may respond to read, and violate safety

34

S. Haridi, KTHx ID2203.2x

Issue 2: clock drift at proposer
●

35

S. Haridi, KTHx ID2203.2x

Issue 2: clock drift at acceptor
● What happens if acceptor uses clock time

instead of real time without compensation?
● Clock runs faster than real time: acceptor believes

its promise expired too soon, and may give new
lease early, violating safety

● Clock runs slower than real time: safety cannot be
violated if acceptor waits longer than necessary to
give new promise

36

S. Haridi, KTHx ID2203.2x

Issue 2: clock drift at acceptor
●

37

S. Haridi, KTHx ID2203.2x

Leases at acceptor
● Acceptors have new state variable, tprom

● The clock time when gave last promise
● If acceptor pj gets Prepare(n) at time T and

● n>nprom and Cj(T) – tprom > 10*(1+ρ)
● then give promise to reject rounds lower than n, and not

give new promises within the next 10s (set tp= Cj(T))
● Otherwise respond with Nack

38

S. Haridi, KTHx ID2203.2x

Leases at proposer
● Proposer has new state variable tL

● Before proposer pi sends Prepare(n) at time T
messages it sets variable tL=Ci(T)

● If pi gets promises from a majority, pi knows that no
other process can become leader until 10s after tl

● As long as Ci(T) - tL <10*(1-ρ), pi can respond to
reads from its local state

39

S. Haridi, KTHx ID2203.2x

Time diagram

p1

p2

p3

t0

tL=C1(t0)

Prepare

t1

Promise

C1(t3)-tL=10*(1-ρ)

t3t2 t4

C2(t4)-tprom=10*(1+ρ)

Prepare

Nack

p1 knows it has lease
between t2 and t3

p2 may grant
another promise
after t4

tprom=C2(t1)

40

S. Haridi, KTHx ID2203.2x

Extending a lease
● As long as pi is alive and well it should remain the

leader
● To not loose the lease, pi can ask for an extension of

the lease
● I.e. a few seconds before the lease expires, pi records the

current clock time t and asks for an extension
● If an extension is granted by a majority of replicas then pi

holds the lease until 10s after t
● Each acceptor adjust its tprom accordingly

41

Shared Memory Using
Clocks

S. Haridi, KTHx ID2203.2x

Review of shared memory
● A set of atomic registers
● Two operations:

● Write(v): update register’s value to v
● Read(): return the register’s value

● Correctness: Linearizability
● If operation o1 returns before operation o2 is

invoked, then o1 must be ordered before o2 (the
linearization point of o1 is before the linearization
point of o2)

pi

pj

o1

o2

t1 t2

43

S. Haridi, KTHx ID2203.2x

Algorithm in course: RIWCM
● The Read-Impose Write-Consult-Majority algorithm does 2

round-trips to a majority of processes for both reads and writes

p1

p2

p3

Value
Ack

Value

Invoke
Read

Read
Returns

Invoke
Write

Write
Returns

Ack

Query

Update

Query

Update

44

S. Haridi, KTHx ID2203.2x

Phases

● A phase is one round-trip of communication to
a majority of replicas

● Refer to the first phase as the query phase
and the second phase as the update phase

45

S. Haridi, KTHx ID2203.2x

Read operation
● Process pi invokes read operation or

● In the query phase, each process responds with the highest
timestamp-value pair received

● pi picks the highest timestamp-value pair received in the query
phase, denoted (ts, v)

● Before returning value v, pi performs an update phase using the
pair
● This way, any operation invoked after or is completed is guaranteed to see

a timestamp greater than or equal to ts

46

S. Haridi, KTHx ID2203.2x

Optimizing read operation
● If in the query phase all processes in a majority set

respond with the same timestamp-value pair (ts, v),
then the update phase can be skipped
● This works since a majority of the processes already store a

timestamp-value pair with a timestamp greater than or equal
to ts

● In good conditions (network is stable, low contention)
this is likely to be the case, and reads can complete in
a single round-trip

47

S. Haridi, KTHx ID2203.2x

Write operation
● Process pi invokes write operation ow

● In the query phase, each process responds with the highest
timestamp-value pair received

● After the query phase, pi picks a unique timestamp higher than
all timestamps received and pairs it with the value to write

● In the update phase, each process stores this timestamp-value
pair if the pair is greater the timestamp than the previously
stored pair’s timestamp

48

S. Haridi, KTHx ID2203.2x

Optimizing write operation
● If processes have access to clocks then it is possible to skip

the query phase
● Process pi invoking a write instead picks a timestamp by

reading the current time and forms a timestamp ts=(Ci, i)
● Timestamps are time-pid pairs; (t, pid)

● How well clocks are synchronized will determine if the atomicity
property of the Atomic Register abstraction is satisfied

49

Synchronized Clocks

S. Haridi, KTHx ID2203.2x

Optimizing write operation
● If processes have access to clocks then it is possible to skip

the query phase
● Process pi invoking a write instead picks a timestamp by

reading the current time and forms a timestamp ts=(Ci, i)
● Timestamps are time-pid pairs; (t, pid)

● How well clocks are synchronized will determine if the atomicity
property of the Atomic Register abstraction is satisfied

51

S. Haridi, KTHx ID2203.2x

Clock synchronization
● Clocks Ci and Cj are δ-synchronized if,  

for all times t, |Ci(t)-Cj(t)| ≤ δ

● Saying that Ci and Cj are synchronized to within 10ms means
that δ=10ms

● A set of clocks are perfectly synchronized if each pair of clocks  
is δ = 0-synchronized

● Loosely synchronized clocks attempts to be as closely
synchronized as possible, but give no guarantees
● In practice, can be arbitrarily out of synch

52

S. Haridi, KTHx ID2203.2x

Correctness of write optimization
● If clocks are perfectly synchronized then registers satisfy linearizability

● o1 is read or write, o2 is read: by the same argument as before, o1 is
ordered before o2

● o1 is write, o2 is write: as o1 is completed before o2 is invoked,
ts(o1)<ts(o2), and value written by o1 is overwritten by value of o2

● o1 is read, o2 is write: exists a write o0 that was invoked before o1
completed, ts(o0)=ts(o1)<ts(o2)

● Writes (and often reads) take one round-trip, and correctness is
guaranteed

53

S. Haridi, KTHx ID2203.2x

Correctness of write optimization
● If clocks are loosely synchronized then registers

don’t satisfy linearizability
● If write o1 is complete before write o2 is invoked then the

timestamp picked by o1 may still be greater than the
timestamp picked by o2

● Important to remember in practice
● Cassandra uses loosely synchronized clocks in this

way, and can therefore not guarantee linearizability
54

S. Haridi, KTHx ID2203.2x

Correctness – Logical clocks
● If clocks are logical clocks (Lamport clocks) then

the shared memory doesn’t satisfy linearizability
● Instead, the memory satisfies sequential

consistency
● We have seen the proof in part 1 of the course

55

S. Haridi, KTHx ID2203.2x

Problem solved?
● Using perfectly synchronized clocks (PSCs)

guarantees linearizability, so just use PSCs and
everything is good?

● No, since PSCs are impossible to implement
● Any measurement contains some uncertainty
● Synchronizing clocks across an asynchronous network

adds more uncertainty
● We introduce a new kind of clocks…

56

Interval Clocks

S. Haridi, KTHx ID2203.2x

Interval clocks
● An interval clock (IC) at process pi read at time t returns a

pair Ci(t)=(lo, hi)
● Represents an interval [Ci(t).lo .. Ci(t).hi]

● The correct time t is guaranteed to be in interval
● Ci(t).lo ≤ t ≤ Ci(t).hi

● Synchronization uncertainty is exposed in width of interval
● This is the strongest guarantee that can be implemented in

practice
● Wide interval may hurt performance of algorithm using ICs, but

does not affect correctness

58

S. Haridi, KTHx ID2203.2x

Overlapping intervals
● The interval values of a set of clocks read at the same

time t are guaranteed to overlap in the correct time

C1(t).hi
C2(t).hi

C3(t).hitC1(t).lo
C2(t).lo

C3(t).lo

Overlap

59

S. Haridi, KTHx ID2203.2x

Clocks read at different times
● Ci read at t1, Cj read at t2, and t1 < t2

● Ci(t1).lo ≤ t1 ≤ Ci(t1).hi
● Cj(t2).lo ≤ t2 ≤ Cj(t2).hi
● Implies: Ci(t1).lo < Cj(t2).hi

Ci(t1).hi
Cj(t2).hi

t1Ci(t1).lo
Cj(t2).lo

t2
● Ci(t1).lo ≤ t1 < t2 ≤ Cj(t2).hi

60

S. Haridi, KTHx ID2203.2x

Using ICs to remove query phase in write
operations

● Two changes:
● In process pi that is invoking a write operation, use

timestamp ts = (Ci.hi, i)
● Before an operation o (a read or a write) executed by

process pi can return it has to wait until ts(o).t < Ci.lo
● ts(o) is the timestamp associated with the value that is read or

written by operation o

61

S. Haridi, KTHx ID2203.2x

Intuition why waiting is needed
● o1 is allowed to return when ICs guarantee that later write

will pick a higher timestamp

p1

p2

p3
AckWrite

Invoke  
Write o1

Write o1
Returns

Invoke
Write o2

t0 t1 t2

p1 must wait until
ts(o1).t ≤ C1(t1).lo

ts(o1).t =C1(t0).hi ts(o2).t = C2(t2).hi

IC guarantee:
 If t1 < t2 then
 C1(t1).lo < C2(t2).hi

We have:
 ts(o1).t ≤ C1(t1).lo < C2(t2).hi = ts(o2).t

Hence: ts(o1) < ts(o2)

...

62

S. Haridi, KTHx ID2203.2x

Intuition why waiting is needed

p1

p2

p3
AckWrite

Invoke  
Write o1 Write o1

Returns

Invoke
Write o2

t0 t1 t2

p1 must wait until
ts(o1).t ≤ C1(t1).lo

ts(o1).t =C1(t0).hi

ts(o2).t = C2(t2).hi

Write o2
Returns

If o1 is completed before o2 is
invoked, then o1 must be
ordered before o2

Case: o1 does not wait
o1 completes before o2 is
issued: no guarantee that o1
before o2 (ts(o1).t > ts(o2).t)

ts(o2).t ts(o1).t 63

S. Haridi, KTHx ID2203.2x

Correctness
● Algorithm with ICs satisfy linearizability:

● o1 is read or write, o2 is read: by the same argument as before, o1 is ordered
before o2

● o1 is read or write, o2 is write:
● o1 is completed at t1 by pi, and o2 is invoked at t2 by pj

● t1<t2 implies that ts(o1).t ≤ Ci(t1).lo < Cj(t2).hi = ts(o2).t
● Since ts(o1) < ts(o2), the value in o1 is overwritten by the value of o2

pi

pj

o1

o2

t1 t2
64

S. Haridi, KTHx ID2203.2x

● On Init:
● ts := (0, 0)
● v := 0

● On ReadInvoke:
● reading := true
● readlist := [⊥]N

● send 〈Read〉 to Π
● On 〈Read〉 from pi:

● send 〈Value, ts, v〉 to pi

● On 〈Value, ts’, v’〉 from q:
● readlist[q] := (ts’, v’)
● if #(readlist) > N/2:
● (rts, rv) = max(readlist)
● if all pairs in readlist are equal:
● DoReturn()
● else:
● acks := 0
● send 〈Write, rts, rv〉 to Π

■ On WriteInvoke(v):
❑ reading := false
❑ rts := (Ci.hi, i)
❑ acks := 0
❑ send 〈Write, rts, v〉 to Π

■ On 〈Write, ts’, v’〉 from pi:
❑ if ts’ > ts:
❑ ts := ts’
❑ v := v’
❑ send 〈Ack〉 to pi

■ On 〈Ack〉:
❑ acks := acks + 1
❑ if acks > N/2:
❑ DoReturn()

■ fun DoReturn():
❑ wait until rts.t < Ci.lo
❑ if reading: trigger ReadReturn(rv)
❑ else: trigger WriteReturn

65

