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Outline
● Motivation for using physical clocks 

● Two algorithms: 
● Time-based leader leases 

● Shared memory using clocks
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Motivation
● Consider a slightly stronger system model: 

● Computation 
● No bounds on time to take a step 

● Communication  
● No bounds on latency 
● So far, this is the asynchronous system model 

● Clocks 
● Lower and upper bounds on clock rate
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Motivation
● This is a fairly weak model in practice 

● “Our machine statistics show that bad CPUs are 6 
times more likely than bad clocks. That is, clock issues 
are extremely infrequent, relative to much more 
serious hardware problems.” – Google
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Motivation
● Why consider algorithms that use clocks? 
● By making stronger assumptions about the system we 

can get better efficiency/performance 
● In this slightly stronger model we cannot still solve 

problems that are harder than what can be solved in the 
asynchronous model 
● i.e. the FLP impossibility still holds 

● But we can define some abstractions will better 
properties
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Outline – Leader Leases
● The optimization opportunity by using clocks 

● The proposed algorithm 

● An argument why correctness is maintained
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Background
● We implement a key-value store using RSM 
● Supporting the following commands: 

● Read(k), Write(k, v), CAS(k, vexp, vnew) 
● CAS: 
▪  writes vnew if old value is vexp; returns old value 

● Needs RSM to do CAS (Shared Mem. is too weak) 
● Service runs on leader-based Sequence Paxos  

● N=3 replicas, Πr={p1, p2, p3} 
● Each acting as proposer, acceptor, learner

p1

p2 p3
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Command ordering
● Paxos guarantees that all replicas execute 

commands in same order

Old state Command Result New state
{} Write(x,1) OK {x=1}
{x=1} Write(y,0) OK {x=1,y=0}
{x=1,y=0} Read(x) 1 {x=1,y=0}
{x=1,y=0} CAS(y,0,1) 0 {x=1,y=1}
{x=1,y=1} CAS(y,0,1) 1 {x=1,y=1}
{x=1,y=1} Read(y) 1 {x=1,y=1}
{x=1,y=1} Write(y,0) OK {x=1,y=0}
... ... ... ...
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Clients and Leader
● Can have any number of clients Πc={p4,...} 
● Assume network is stable and p1 is leader  

(has started the highest round)

p1

p2 p3

p4

p6

p7
p8

p5

p9
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Executing a Command
● Client p4 that wants to execute a command 

sends a request (1) to leader p1

p1

p2 p3

p4

p6

p7
p8

p5

p9

1
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Executing a Command
● p1 proposes command using Paxos, which sends 

Accept msgs (2) to replicas (using previously 
prepared round number)

p1

p2 p3

p4

p6

p7p8

p5

p9

1

2

2

2
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Executing a Command
● The replicas accept and respond with AcceptAck 

(Accepted) messages (3)

p1

p2 p3

p4

p6

p7
p8

p5

p9

1

2

3 3

2,3

2
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Executing a Command
● After p1 gets AcceptAck msgs from a majority, the 

command order is chosen and p1 sends Decide 
msgs (4)

p1

p2 p3

p4

p6

p7
p8

p5

p9

1

2,4
2,4

3 3

2,3,4
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Executing a Command
● p1 executes the command using the state of the 

state machine, and sends response (4’) with result of 
the operation to p4

p1

p2 p3

p4

p6

p7p8

p5

p9

1

2,4
2,4

3 3

2,3,4
,4’

15



S. Haridi, KTHx ID2203.2x

Opportunity: Faster Reads
● Assume that the operation requested by p4 is a read operation, 

C=Read(x) 
● p1 stores the entire state, so can p1 read the state variable x and respond 

immediately?

p1

p2 p3

p4

p6

p7
p8

p5

p9

1
2
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What could go wrong?
● A network split partitions p1 away from p2 and p3 

● p2 is elected leader but p1 never hears about this

p1

p2 p3

p4

p6

p7p8

p5

p9
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What could go wrong?
● Client p9 sends a Write(x,valnew) request to p2, p2 

communicates with p3 and then executes the write 
operation

p1

p2 p3

p4

p6

p7
p8

p5

p9

1 3

2,4

4’
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What could go wrong?
● After this, p1 gets Read(x) request from p4 

● p1 is unaware of the split and the write operation, and responds to p4 
with the old value of x  

● Linearizability is violated!

p1

p2 p3

p4

p6

p7
p8

p5

p9

1

2
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Problem summarized
● The reason p1 can’t respond with its current state because some 

other replica may have assumed leadership and modified the 
state without p1 knowing about it 

● Is there some way to avoid this? 

● False attempt: 
● p2 must communicate with p1 before p2 can become leader 
● But this can’t work since p1 may be dead
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Time Leases 



Solution: time-based leader lease
● We would like leaders to be disjoint in time 
● Think of this as a Paxos group  

● Only one leader at an given point of time t 
● If q is a follower of p at time t then no other no other process can be a leader at t

p1

q

t2t1

p2

follower of p1 

p1

follower of p2 



Solution: time-based leader lease
● We would like leaders to be disjoint in time 
● Think of this as a Paxos group  

● Only one leader at an given point of time t 
● If q is a follower of p at time t then no other no other process can be a leader at t

p1

q

t2t1

p2

follower of p1 

p1

follower of p2 
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Solution: time-based leader lease
● A propose p to become leader: sends a request (prepare) to acceptors 

● An acceptor gives a time-based leader lease to p , lasting for 10 seconds 
● If a proposer gets leases from a majority of acceptors, then proposer 

holds lease on group and becomes a leader 
● In the time until the first acceptor lease expires, the proposer knows that 

no other proposer can hold the lease on the group 
● During this time, the leader can safely respond to reads from local 

state

p
q

t2 t4=t2+10st1 t3=t1+10s



Solution: time-based leader lease
● Can be integrated with Paxos messages: 

● As before acceptor q joins round n by sending a Promise in 
response to a Prepare(n), and promises to not accept 
proposals in lower rounds 

● In addition, we require that if q joins round n at time t then q 
promises not to join a higher round until after time t+10s 

● If proposer p gets promises from a majority then p knows 
that no other proposer can get a majority of promises during 
next 10 seconds



Issues

● Notice that we are only taking about physical time 
intervals and not about absolute clock values  

● We have to take two issues into account: 

● Network is asynchronous 
● Clocks drift



Issue 1: asynchronous network

p

q
t0

Prepare Promise

t3=t0+10st2 t4=t1+10st1

● p can’t know at what exact time q sent the Promise, only that 
t0≤t1≤t2  
● p has to be conservative and assume that t1=t0  
● p holds lease until t3=t0+10s



Clock Drift 
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Issue 2: clock drift

● To understand the clock drift issue, we have to 
describe clocks and time more formally and in 
more detail 

● A clock at a process pi is a monotonically increasing function 
from real-time to some real value 
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Introduction to clocks
● Each process pi has an associated clock Ci 

● Ci(.) is modelled as a function from real times to clock times 
● Real time is defined by some time standard, such as 

Coordinated Universal Time (UTC) 
● The unit of time in UTC is the SI second, whose 

definition states that: 
● “The second is the duration of 9 192 631 770 

periods of the radiation corresponding to the 
transition between the two hyperfine levels of the 
ground state of the caesium 133 atom.”
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Clock implementation
● A clock is implemented as an oscillator 

and a counter register that is 
incremented for each period of the 
oscillator 
● The oscillator frequency is not completely 

stable, varying depending on 
environmental conditions such as 
temperature, and aging 

● The oscillator’s manufacturer specifies a 
nominal frequency and an error bound
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Clock rate
●  
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Clock drift
●  

Real time

Clock time  
 

 

Accumulated clock time
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Issue 2: clock drift at proposer
● Reason about what happens if proposer uses 

clock time instead of real time without any 
compensation? 
● Clock runs faster than real time: safety cannot be 

violated as proposer believes that its lease expired 
sooner than it actually did 

● Clock runs slower than real time: proposer believes it 
holds lease even after lease has expired, and proposer 
may respond to read, and violate safety
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Issue 2: clock drift at proposer
●  
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Issue 2: clock drift at acceptor
● What happens if acceptor uses clock time 

instead of real time without compensation? 
● Clock runs faster than real time: acceptor believes 

its promise expired too soon, and may give new 
lease early, violating safety 

● Clock runs slower than real time: safety cannot be 
violated if acceptor waits longer than necessary to 
give new promise
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Issue 2: clock drift at acceptor
●  
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Leases at acceptor
● Acceptors have new state variable, tprom 

● The clock time when gave last promise 
● If acceptor pj gets Prepare(n) at time T and  

● n>nprom and    Cj(T) – tprom > 10*(1+ρ)  
● then give promise to reject rounds lower than n, and not 

give new promises within the next 10s (set tp= Cj(T)) 
● Otherwise respond with Nack
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Leases at proposer
● Proposer has new state variable tL 

● Before proposer pi sends Prepare(n) at time T 
messages it sets variable tL=Ci(T) 

● If pi gets promises from a majority, pi knows that no 
other process can become leader until 10s after tl 

● As long as Ci(T) - tL <10*(1-ρ), pi can respond to 
reads from its local state
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Time diagram

p1

p2

p3

t0

tL=C1(t0)

Prepare

t1

Promise

C1(t3)-tL=10*(1-ρ)

t3t2 t4

C2(t4)-tprom=10*(1+ρ)

Prepare

Nack

p1 knows it has lease 
between t2 and t3

p2 may grant 
another promise 
after t4

tprom=C2(t1)
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Extending a lease
● As long as pi is alive and well it should remain the 

leader 
● To not loose the lease, pi can ask for an extension of 

the lease 
● I.e. a few seconds before the lease expires, pi records the 

current clock time t and asks for an extension 
● If an extension is granted by a majority of replicas then pi 

holds the lease until 10s after t 
● Each acceptor adjust its tprom  accordingly 

41



Shared Memory Using 
Clocks



S. Haridi, KTHx ID2203.2x

Review of shared memory
● A set of atomic registers 
● Two operations: 

● Write(v): update register’s value to v 
● Read(): return the register’s value 

● Correctness: Linearizability 
● If operation o1 returns before operation o2 is 

invoked, then o1 must be ordered before o2 (the 
linearization point of o1 is before the linearization 
point of o2)

pi

pj

o1

o2

t1 t2
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Algorithm in course: RIWCM
● The Read-Impose Write-Consult-Majority algorithm does 2 

round-trips to a majority of processes for both reads and writes

p1

p2

p3

Value
Ack

Value

Invoke 
Read

Read 
Returns

Invoke 
Write

Write 
Returns

Ack

Query

Update

Query

Update
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Phases

● A phase is one round-trip of communication to 
a majority of replicas 

● Refer to the first phase as the query phase 
and the second phase as the update phase
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Read operation
● Process pi invokes read operation or 

● In the query phase, each process responds with the highest 
timestamp-value pair received  

● pi picks the highest timestamp-value pair received in the query 
phase, denoted (ts, v) 

● Before returning value v, pi performs an update phase using the 
pair 
● This way, any operation invoked after or is completed is guaranteed to see 

a timestamp greater than or equal to ts
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Optimizing read operation
● If in the query phase all processes in a majority set 

respond with the same timestamp-value pair (ts, v), 
then the update phase can be skipped 
● This works since a majority of the processes already store a 

timestamp-value pair with a timestamp greater than or equal 
to ts 

● In good conditions (network is stable, low contention) 
this is likely to be the case, and reads can complete in 
a single round-trip
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Write operation
● Process pi invokes write operation ow 

● In the query phase, each process responds with the highest 
timestamp-value pair received 

● After the query phase, pi picks a unique timestamp higher than 
all timestamps received and pairs it with the value to write 

● In the update phase, each process stores this timestamp-value 
pair if the pair is greater the timestamp than the previously 
stored pair’s timestamp
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Optimizing write operation
● If processes have access to clocks then it is possible to skip 

the query phase 
● Process pi invoking a write instead picks a timestamp by 

reading the current time and forms a timestamp ts=(Ci, i) 
● Timestamps are time-pid pairs; (t, pid) 

● How well clocks are synchronized will determine if the atomicity 
property of the Atomic Register abstraction is satisfied

49
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Optimizing write operation
● If processes have access to clocks then it is possible to skip 

the query phase 
● Process pi invoking a write instead picks a timestamp by 

reading the current time and forms a timestamp ts=(Ci, i) 
● Timestamps are time-pid pairs; (t, pid) 

● How well clocks are synchronized will determine if the atomicity 
property of the Atomic Register abstraction is satisfied
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Clock synchronization
● Clocks Ci and Cj are δ-synchronized if,  

for all times t, |Ci(t)-Cj(t)| ≤ δ

● Saying that Ci and Cj are synchronized to within 10ms means 
that δ=10ms 

● A set of clocks are perfectly synchronized if each pair of clocks  
is δ = 0-synchronized 

● Loosely synchronized clocks attempts to be as closely 
synchronized as possible, but give no guarantees 
● In practice, can be arbitrarily out of synch
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Correctness of write optimization
● If clocks are perfectly synchronized then registers satisfy linearizability 

● o1 is read or write, o2 is read: by the same argument as before, o1 is 
ordered before o2 

● o1 is write, o2 is write: as o1 is completed before o2 is invoked, 
ts(o1)<ts(o2), and value written by o1 is overwritten by value of o2 

● o1 is read, o2 is write: exists a write o0 that was invoked before o1 
completed, ts(o0)=ts(o1)<ts(o2) 

● Writes (and often reads) take one round-trip, and correctness is 
guaranteed
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Correctness of write optimization
● If clocks are loosely synchronized then registers 

don’t satisfy linearizability 
● If write o1 is complete before write o2 is invoked then the 

timestamp picked by o1 may still be greater than the 
timestamp picked by o2 

● Important to remember in practice 
● Cassandra uses loosely synchronized clocks in this 

way, and can therefore not guarantee linearizability
54
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Correctness – Logical clocks
● If clocks are logical clocks (Lamport clocks) then 

the shared memory doesn’t satisfy linearizability 
● Instead, the memory satisfies sequential 

consistency 
● We have seen the proof in part 1 of the course
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Problem solved?
● Using perfectly synchronized clocks (PSCs) 

guarantees linearizability, so just use PSCs and 
everything is good? 

● No, since PSCs are impossible to implement 
● Any measurement contains some uncertainty 
● Synchronizing clocks across an asynchronous network 

adds more uncertainty 
● We introduce a new kind of clocks…
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Interval clocks
● An interval clock (IC) at process pi read at time t returns a 

pair Ci(t)=(lo, hi) 
● Represents an interval [Ci(t).lo .. Ci(t).hi] 

● The correct time t is guaranteed to be in interval 
● Ci(t).lo ≤ t ≤ Ci(t).hi 

● Synchronization uncertainty is exposed in width of interval 
● This is the strongest guarantee that can be implemented in 

practice 
● Wide interval may hurt performance of algorithm using ICs, but 

does not affect correctness
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Overlapping intervals
● The interval values of a set of clocks read  at the same 

time t are guaranteed to overlap in the correct time

C1(t).hi
C2(t).hi

C3(t).hitC1(t).lo
C2(t).lo

C3(t).lo

Overlap
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Clocks read at different times
● Ci read at t1, Cj read at t2, and t1 < t2 

● Ci(t1).lo ≤ t1 ≤ Ci(t1).hi 
● Cj(t2).lo ≤ t2 ≤ Cj(t2).hi 
● Implies: Ci(t1).lo < Cj(t2).hi

Ci(t1).hi
Cj(t2).hi

t1Ci(t1).lo
Cj(t2).lo

t2
● Ci(t1).lo ≤ t1 < t2 ≤ Cj(t2).hi 
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Using ICs to remove query phase in write 
operations

● Two changes: 
● In process pi that is invoking a write operation, use 

timestamp ts = (Ci.hi, i) 
● Before an operation o (a read or a write) executed by 

process pi can return it has to wait until ts(o).t < Ci.lo 
● ts(o) is the timestamp associated with the value that is read or 

written by operation o
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Intuition why waiting is needed
● o1 is allowed to return when ICs guarantee that later write 

will pick a higher timestamp

p1

p2

p3
AckWrite

Invoke  
Write o1

Write o1 
Returns

Invoke 
Write o2

t0 t1 t2

p1 must wait until 
ts(o1).t ≤ C1(t1).lo

ts(o1).t =C1(t0).hi ts(o2).t = C2(t2).hi

IC guarantee: 
  If t1 < t2 then 
    C1(t1).lo < C2(t2).hi 

We have: 
  ts(o1).t ≤ C1(t1).lo < C2(t2).hi = ts(o2).t 

Hence:  ts(o1) < ts(o2)

...
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Intuition why waiting is needed

p1

p2

p3
AckWrite

Invoke  
Write o1 Write o1 

Returns

Invoke 
Write o2

t0 t1 t2

p1 must wait until 
ts(o1).t ≤ C1(t1).lo

ts(o1).t =C1(t0).hi

ts(o2).t = C2(t2).hi

Write o2 
Returns

If o1 is completed before o2 is 
invoked, then o1 must be 
ordered before o2 

Case: o1 does not wait 
o1 completes before o2 is 
issued:  no guarantee that o1 
before o2  (ts(o1).t > ts(o2).t ) 

ts(o2).t ts(o1).t 63
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Correctness
● Algorithm with ICs satisfy linearizability: 

● o1 is read or write, o2 is read: by the same argument as before, o1 is ordered 
before o2 

● o1 is read or write, o2 is write: 
● o1 is completed at t1 by pi, and o2 is invoked at t2 by pj 

● t1<t2 implies that ts(o1).t ≤ Ci(t1).lo < Cj(t2).hi = ts(o2).t 
● Since ts(o1) < ts(o2), the value in o1 is overwritten by the value of o2

pi

pj

o1

o2

t1 t2
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● On Init: 
● ts := (0, 0) 
● v := 0 

● On ReadInvoke: 
● reading := true 
● readlist := [⊥]N 

● send 〈Read〉 to Π 
● On 〈Read〉 from pi: 

● send 〈Value, ts, v〉 to pi 

● On 〈Value, ts’, v’〉 from q: 
● readlist[q] := (ts’, v’) 
● if #(readlist) > N/2: 
●   (rts, rv) = max(readlist) 
●   if all pairs in readlist are equal: 
●       DoReturn() 
●   else: 
●       acks := 0 
●       send 〈Write, rts, rv〉 to Π

■ On WriteInvoke(v): 
❑ reading := false 
❑ rts := (Ci.hi, i) 
❑ acks := 0 
❑ send 〈Write, rts, v〉 to Π 

■ On 〈Write, ts’, v’〉 from pi: 
❑ if ts’ > ts: 
❑     ts := ts’ 
❑     v := v’ 
❑ send 〈Ack〉 to pi 

■ On 〈Ack〉: 
❑ acks := acks + 1 
❑ if acks > N/2: 
❑    DoReturn() 

■ fun DoReturn(): 
❑ wait until rts.t < Ci.lo 
❑ if reading: trigger ReadReturn(rv) 
❑ else: trigger WriteReturn
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