Replicated State Machines, § ‘
Sequence Consensus X

Seif Haridi

Motivation

 We wish to implement a Replicated State
Machine (RSM)

 Processes need to agree on the sequence of
commands (or messages) to execute

e The standard approach is to use multiple
iInstances of Paxos for single-value
consensus

S. Haridi, KTHx 1D2203.2x

What is a state machine?
e A state machine O

. request o7
Executes a sequence of commands i l — J-
Transform its state and may produce “*™ ™ se

Machine

some output

e Commands are deterministic

Outputs of the state machine are solely determined by
the initial state and by the sequence of commands
that it has executed

S. Haridi, KTHx 1D2203.2x 3

Replicated State Machine
CEEeEEBRE R B

X

” Consensus " Consensus N " Consknsus ate R
Module achine Module Machins m le hina
l‘ ST "ok 1 s ok Y 5P

. ’
v

_.4__ (s R % = T
Log \ T Log \’ T Log W T
| [x—1 | yee3 %4 z+ox | ¥—4 y—3 | x4 | z—x | x| y—3 | xed | zoox |)

7 J

Replicated log ensures state machines execute same commands in
same order

Consensus module guarantees agreement on command sequence in the
replicated log
System makes progress as long as any majority of servers are up

S. Haridi, KTHx 1D2203.2x 4

@l Our Trial (1)

 Consensus is an agreement on a single value/command
e Let us use multiple instances of Paxos

e Single-value consensus has two events
» Request: Propose(C)
» Indication/Response: Decide(C’)

S. Haridi, KTHx 1D2203.2x

<1 Single Value Consensus Properties
e Validity
Only proposed values may be decided
e Uniform Agreement
No two processes decide different values
e Integrity
Each process can decide at most one value
e Termination
Every correct process eventually decides a value

S. Haridi, KTHx 1D2203.2x 6

Our Trial (Informal)

Consensus is agreement on a single value

Let us use multiple instances of Paxos

Organize the algorithm in rounds

Initially all processes p; (servers) are at round 1

« ProCmds = @; Log := O; s, (initial state); proposed := false

A client g that wants to execute a command C, it reliably
rb-broadcast (C, Pidq> to all servers

upon delivery <C, Pid) at p,, the command pair is added to ProCmds
unless it is already in Log

S. Haridi, KTHx 1D2203.2x 7

Our Trial

o Atround j, each server of

Start new instance i of Paxos (single-value)
e If ProCmds # @ A not proposed:

Choose a command <C, Pid) in ProCmds
Propose (C, Pid, iy in instance i; proposed := true

« upon Decide(<C,, Pid’,i)):
remove <C,, Pid’ from ProCmds; Append (Cg, Pid’, i) to Log
Execute C, on s, to get (s;, res;) and return res; to Pid’
Proposed .= false;
Move to the next round i+1

S. Haridi, KTHx 1D2203.2x

Problems with our Trial !

e The algorithms works
o This algorithm is sequential!

In order to select a command at round i any process (learner)
have to agree on the sequence of commands C, ... C, ,

Using Paxos every round takes 4 communication steps, 2 for
the prepare phase, and 2 for the accept phase

* Not easy to pipeline proposals
Same proposal C might end decided in different slots
Holes in the Log might arise

S. Haridi, KTHx 1D2203.2x 9

Sequence Consensus

What is the problem?

 \WWe need to agree on each command
Handled well by Paxos

e We also need to agree on the sequence
of commands

A mismatch with the consensus specification

e We would like to agree on a growing
sequence of commands

S. Haridi, KTHx 1D2203.2x 11

=1l Consensus Mismatch

e Integrity property says that a process can decide
at most one value

"Cannot change one’s mind”

e But, we don’t want to change what's been decided
before
Just extend it with more information

e This is allowed by Sequence Consensus

Can decide again if old decided sequence is a prefix of the
new one

S. Haridi, KTHx 1D2203.2x 12

Consensus Properties
e Validity
Only proposed values may be decided

o Uniform Agreement
No two processes decide different values

e Integrity
Each process can decide at most one value
e Termination
Every correct process eventually decides a value

S. Haridi, KTHx 1D2203.2x

13

@] ISequence Consensus Properties
. Validity

« If process p decides v then v is a sequence of proposed commands
(without duplicates)

e Uniform Agreement

» |If process p decides u and process q decides v then one is a prefix of
the other

o [ntegrity
» If process p decides u and later decides v then u is a strict prefix of v

e Termination (liveness)

» If command C is proposed by a correct process then eventually every
correct process decides a sequence containing C

S. Haridi, KTHx 1D2203.2x 14

Sequence Consensus

e Event Interface

» propose(C)
request event to append single command C to the sequence of
decided command

» decide(CS)
Indication event where CS is a decided command sequence
e Abortable Sequence Consensus adds

e abort

Indication event

S. Haridi, KTHx 1D2203.2x 15

Sequence-Paxos

koadmap: From Paxos to Sequence-Paxos

 Make the minimal modifications to Paxos to
obtain correct Sequence-Paxos algorithm

 Then add optimizations to make the algorithm
efficient

e |In Paxos each process may assume any or all of
the three roles: proposer, acceptor, and learner

S. Haridi, KTHx 1D2203.2x 17

Initial State for Paxos

e Proposer
n, := 0 Proposer’s current round number

v, := L Proposer’s current value

e Acceptor

Norom = 0 Promise not to accept in lower rounds

n, := 0 Round number in which a value is accepted
v, := L Accepted value

e Learner
v, := 1 Decided value

S. Haridi, KTHx 1D2203.2x

18

 Paxos Algorithm

Proposer

o« On(Propose, C):

. n, = unique higher proposal number

. S:=d,acks =0

- send (Prepare, n) to all acceptors
« On(Promise, n,n’,v)s.t.n=n

. add (n’, v’) to S (multiset union)

o if|S|=[(N+1)/2]:

. (k, v) := max(S) // adopt v

. v, =ifv= Lthenvelse C

. send (Accept, n,, v,) to all acceptors
« On(Accepted, n)s.t. n=n:

. acks := acks + 1

o if acks =[(N+1)/2]:

. send (Decide, v,) to all learners

« On(Nack,n)s.t.n=n;
. trigger Abort()

. np.—O

Acceptor
On (Prepare, n):
. if Nprom < N:
¢ Nprom := N
. send (Promise, n, n,, v,) to Proposer

- else: send (Nack, n) to Proposer

On (Accept, n, v):

TAVAY,

max(S) is any element (k, v) of S s.t. k is highest
proposal number

. if Nprom < N

¢ Nprom -~ N

¢ (na’ Va) =(n, v)

. send (Accepted, n) to Proposer

- else: send (Nack, n) to Proposer
Learner

On (Decide, v):

a0 fvy= 1L

a Vyi=V

= trigger Decide(v,)

S. Haridi, KTHx 1D2203.2x

19

From Paxos to Sequence-Paxos

e Values are sequences
» L is the empty sequence (L = ())
 We make two changes:

» After adopting a value (seq) with highest proposal
number, the proposer is allowed to extend the sequence
with (nonduplicate) new command(s)

» Learner that receives (Decide, v) will decide v if v is
longer sequence than previously decided sequence

S. Haridi, KTHx 1D2203.2x 20

d 'Agreeing on (non-duplicate) commands

As a client is allowed to issue the same (instance) command C multiple
times we cannot avoid proposing the same command C multiple times

We hide this issue in the sequence append operator ©:

Non-duplicate @ :
(C,, ..., C,)if Cis equal some C,
s (C, ... CleCH .
(Cy4, ..., C,, C),otherwise

Duplication allowed ®
» (Cy....CreC®(C,, .. C,C)

S. Haridi, KTHx 1D2203.2x

21

=i Initial State for Sequence Paxos
e Proposer

n,=0 Proposer’s current round number
vV, =0 Proposer’s current value (empty sequence)
e Acceptor
Nyrom == 0 Promise not to accept in lower rounds
n,:=0 Round number in which a value is accepted
V, = O Accepted value (empty sequence)
e Learner

Vy = O Decided, yalue tempty sequence) s

~ Sequence Paxos Algorithm

Proposer

On (Propose, C):

¢ n,:=unique higher proposal number
o S:=U,acks:=0

- send (Prepare, n,) to all acceptors
On (Promise, n, n’, v)s.t. n=n:

« add (n’, v’) to S (multiset union)
if |S|=[(N+1)/2]:

(k, v) := max(S) // adopt v

v, = if v= 1 thenvelse O

. Vp:=v @ (C

. send (Accept, n,, v, to all acceptors
On (Accepted, n)s.t. n=n:

« acks :=acks + 1

« if acks =[(N+1)/2]:

. send (Decide, v,) to all learners

On(Nack, n)s.t. n=n:
« trigger Abort()
e n,:=0

Acceptor
On (Prepare, n):
o dfng o, <n
. Norom -= N
. send (Promise, n, n,, v,) to Proposer

. else: send (Nack, n) to Proposer

On (Accept, n, v):

. if Nprom < N

¢ Nprom -= N

¢ (na’ Va) =(n, V)

. send (Accepted, n) to Proposer

. else: send (Nack, n) to Proposer

TAVAY,

Learner
On (Decide, v):
5 I vl < IVI:
Q Vg =V
= trigger Decide(v,)

S. Haridi, KTHx 1D2203.2x

23

\ Sequence Paxos Algorithm

Proposer

On (Propose,C):

- n,, ‘= unique higher precposal number

e S:=0 acks:=0

- send Prepare, n,) to all acceptors
» On (Promise,n, n',v)st n=n,

e add(n, v)te S (multiset union)

o fIS|=[(Nv1)2:

- (k, v) :=max(S) // adopt v

- v, :=v @ (C)

* send (Accept, n,, v,) to all acceptors

e On (Prepare, n):

Acceptor

if Nprom < N:

nprom =n

send (Promise, n, n,, v,) to Proposer
else: send (Nack, n) to Proposer

e S={ny, V), ..., (N,)}
. fun max(S):

(n,v) =:(0,0)

for (n',v’)in S:

ifn<n or(n=n"and vi < IV):
(n,v) :=(n",V)
return (n,v)

S. Haridi, KTHx 1D2203.2x 24

Where to go from here?

e Correctness ?

* Follow the steps of Lamport

» Correctness in modeled after the single-value Paxos
correctness proof

S. Haridi, KTHx 1D2203.2x 25

Where to go from here?

« Efficiency ?
Every proposal takes two round-trips
Proposals are not pipelined
Sequences are sent back and forth
Decide carries sequences

S. Haridi, KTHx 1D2203.2x

26

Prepare phase

o« On{(Propose, C):

o n, = unique higher proposal number \
« S:=¢,acks:=0

- send (Prepare, n,) to all acceptors

¢ On(Promise,n,n’,v)s.t.n=n:

« add(n’, v')to S (multiset union)

. if|S|=[(N+1)/2]:

\ (k, v) ;== max(S) // adopt v /
v, :=ifv= Lthenvelse C \
. Vp:=v ® (C)

. send (Accept, n, v,) to all acceptors

+ On(Accepted, n)s.t.n=n:
» acks:=acks +1

- if acks = [(N+1)/2]:
. send (Decide, v,) to all learners

o On(Nack, n)s.t.n=n;:
« trigger Abort()

o n, =0

Accept phase

On (Prepare, n):
o ifng, <n
¢ Norom = N

. send (Promise, n, n,, v,) to Proposer
. else: send (Nack, n) to Proposer

" On (Accept, n, v):

. if Nprom < N

¢ Nprom = N

¢ (na’ Va) = (n’ V)

. send (Accepted, n) to Proposer

.+ else: send (Nack, n) to Proposer

AV,

max(S) is any element (k, v) of S s.t. k is highest
proposal number and v is a sequence

Learner
On (Decide, v):
5 I vl < IVI:
Q Vg =V
= trigger Decide(v,)

S. Haridi, KTHx 1D2203.2x

27

Correctness of
Sequence Paxos

Correctness

 How do we know that algorithm is correct?

e Build on proof structure for Paxos

S. Haridi, KTHx 1D2203.2x

29

Prepare phase

o« On{(Propose, C):

o n, = unique higher proposal number \
« S:=¢,acks:=0

- send (Prepare, n,) to all acceptors

¢ On(Promise,n,n’,v)s.t.n=n:

« add(n’, v')to S (multiset union)

. if|S|=[(N+1)/2]:

\ (k, v) ;== max(S) // adopt v /
v, :=ifv= Lthenvelse C \
. Vp:=v ® (C)

. send (Accept, n, v,) to all acceptors

+ On(Accepted, n)s.t.n=n:
» acks:=acks +1

- if acks = [(N+1)/2]:
. send (Decide, v,) to all learners

o On(Nack, n)s.t.n=n;:
« trigger Abort()

o n, =0

Accept phase

On (Prepare, n):
o ifng, <n
¢ Norom = N

. send (Promise, n, n,, v,) to Proposer
. else: send (Nack, n) to Proposer

" On (Accept, n, v):

. if Nprom < N

¢ Nprom = N

¢ (na’ Va) = (n’ V)

. send (Accepted, n) to Proposer

.+ else: send (Nack, n) to Proposer

AV,

max(S) is any element (k, v) of S s.t. k is highest
proposal number and v is a sequence

Learner
On (Decide, v):
5 I vl < IVI:
Q Vg =V
= trigger Decide(v,)

S. Haridi, KTHx 1D2203.2x

30

Ballot (round) Array
« Replicas p,, p, and p,

n=>5 (C,,Cy) (C,,Cy)

h= () (C2)
n=1 (C))
=0 0 0 0

We looking at the state of acceptors at each p,
Empty sequence accepted in round O

S. Haridi, KTHx 1D2203.2x

Chosen Sequence v

« Letv,[p,n]is the sequence accepted
by acceptor p at round n
n=5 (C,C; (C,Cy)

e Asequence vV is chosen at round n

» if there exists an quorum Q of acceptors
at round n such that v is prefix v, [p,n], for n=2 (C,) (C,)

every acceptor g in Q
ry ptor g =1 (C,)

« A sequence Vv is chosen n=0 ¢ 9; 9
« if vis chosen at n, for some round n

S. Haridi, KTHx 1D2203.2x 32

Chosen Sequences

 \When request arrives from

proposer at round 5 the

chosen sequences are
<>

<C,>,
<C,,C;>,

n=5 (CpC;3C1) (CpC3C)

n=2 (C2)

n=1 (Cy
n=0 ()

S. Haridi, KTHx 1D2203.2x

(Cy)

9;

33

Paxos Invariants

P2c. For any v and n, if a proposal with value v and number n is
issued, then there is a Quorum S of acceptors such that either (a)
no acceptor in S has accepted any proposal numbered less than
n, or (b) v is the value of the highest-numbered proposal among
all proposals numbered less than n accepted by the acceptors In

S

= P2b. If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

= P2a. If a proposal with value v is chosen, then every higher-
numbered proposal accepted by any acceptor has value v

= P2. If a proposal with value v is chosen, then every higher-
numbered proposal that is chosen has value v

S. Haridi, KTHx 1D2203.2x 34

‘ Multi-Paxos Invariants

o P2c. if a proposal with seq v and number n is issued, then there is a
quorum S of acceptors such that seq v is an extension of the sequence of
the highest-numbered proposal less than n accepted by any acceptor in S

(C,,Cy,b,d)
(C,,Cs.a)
(C,,C3)

(Cy)
0

(C5,Cs,b.d)

(Cy)

0

(C2,Cy)
(Cy)

0

Highest numbered proposal
accepted before round 4 is
<c2,c3>

It is ok to issue <c2,c3,a> at
4 or<c2,c3,b,d>at5

S. Haridi, KTHx 1D2203.2x 35

Prepare phase

On (Append, C):
/% n,:= unique higher prcposal number
- S:=0, acks:=0
» send (Prepare, n) to all acceptors
On (Promrige n, 7', V') st. n=ry
- add (n', v') 1o S (multiset union)
o ifIS=iN+1)2]:
(vp = v@ (C)
- send (Accept n,, v, to all acceptors
On (Accepted,nis.t n=n;
o acks:=acks+1
- if acks =[(N+1)y2]:

| ® send (Decidz, v,) to allleamers

On (Nack, n)s.t.n=n,:
- trigger Abort()
+ n,:=0

Accept phase

~———

e [On (Prepare, n):

if Nprom < N:

nprom =n

send (Promise, n, n,, v,) to Proposer
else: send (Nack, n) to Proposer

. | On (Accept, n, v):

if Nprom < Nt

Norom -= N
(ny, v,) == (n, V)

send (Accepted, n) to Proposer

- —else: send (Nack, n) to Proposer ,

AVEY

max(S) is any element (k, v) of S s.t. k is highest
proposal number and v is a sequence

Learner

On (Decide, v):

Q

Q

a

If vyl < VI:
Vq =V
trigger Decide(v,)

S. Haridi, KTHx 1D2203.2x

36

If a sequence is chosen
« Replicas p4, p, and p,

n=>5 (C,,Cs) (C,,Cy)

n=2 (Cy) (Cy)
n=1 (Cy)
n=0 Q) 9, Q)

If sequence v is issued in round n then v is an extension
of all sequences chosen in rounds < n

S. Haridi, KTHx 1D2203.2x 37

Paxos to Sequence-Paxos Invariants

o P2Db. If a proposal with value v is chosen, then
every higher-numbered proposal issued by any
proposer has value v

<

e P2b. If a proposal with seq v is chosen, then every
higher-numbered proposal issued by any proposer
has v as a prefix

S. Haridi, KTHx 1D2203.2x 38

21 Paxos to Sequence-Paxos Invariants

o P2a. If a proposal with value v is chosen, then
every higher-numbered proposal accepted by any
acceptor has value v

<

e P2a. If a proposal with seq v is chosen, then every
higher-numbered proposal accepted by any
acceptor has v as a prefix

S. Haridi, KTHx 1D2203.2x 39

Paxos to Sequence-Paxos Invariants

o P2. If a proposal with value v is chosen, then every
higher-numbered proposal that is chosen has

value v

e P2.If a proposal with seq v is chosen, then every
highefr-numbered proposal that is chosen has v as
a prefix

S. Haridi, KTHx 1D2203.2x 40

Multi-Paxos Invariants

Initially, the empty sequence is chosen in round n =0

P2c. If a proposal with seq v and number n is issued, then there is
a set S consisting of a majority of acceptors such that seq v is an
extension of the sequence of the highest-numbered proposal less
than n accepted by the acceptors in S

= P2b. If a proposal with seq v is chosen, then every higher-
numbered proposal issued by any proposer has v as a prefix

= P2a. If a proposal with seq v is chosen, then every higher-
numbered proposal accepted by any acceptor has v as a prefix

= P2. If a proposal with seq v is chosen, then every higher-
numbered proposal that is chosen has v as a prefix

S. Haridi, KTHx 1D2203.2x 41

Leader- Based
Sequence Paxos

Problems with current algorithm

e The previous algorithm as presented satisfies all the
safety properties but may not make progress

A proposer can run only one proposal until decide before taking the
next proposal. No pipelining of proposals

Multiple proposers may lead to live-locks (liveness violation)
Two round-trips for each sequence chosen

Entire sequences are sent back and forth

Vp, Vo and vy are mostly redundant

S. Haridi, KTHx 1D2203.2x 43

 Assume eventual leader election abstraction
with a ballot number BLE (Leader, L, n)
» BLE satisfies completeness and eventually accuracy
» And also monotonically unique ballots

 The Leader-based Sequence Paxos is optimized

for the case when a single proposer runs for a
longer period of time as a leader

» Thus, will not be aborted for a while
« But must guarantee safety if aborted

S. Haridi, KTHx 1D2203.2x

44

Interface of Leader Election

 Module:

Name: BallotLeaderElection (Ble)
 Events:

Indication: (ble, Leader | p,, n)

Indicate that leader is node p; with ballot number n
 Properties:

BLE1 (completeness). Eventually every correct process elects
some correct process if a majority are correct

BLEZ2 (eventual agreement). Eventually no two correct
processes elect ditfferent correct processes

BLE3 (monotonic unique ballots). If a process L with ballot n is
elected as leader by p;, all previously elected leaders by p; have
ballot numbers less than n, and (L,n) is a unique number

S. Haridi, KTHx 1D2203.2x 45

BLE desirable properties

» Ballot leader election elects a leader L with higher
ballot humber n than all previous leaders U’

o If a process p elects a leader (Leader, L, n) then for
previously elected leader at p (Leader, L', n’); , n">n and
all pairs (L', n’) are unique

elect p;,n, elect p,,n, electp,,n, | electpy,n,
@ L 4 @ ; L 4

P :
elect p,,n, : elect p,,n, n,<n,<n,<n,
® i e

P2

elect p;,n,
@

K

Ps3

S. Haridi, KTHx 1D2203.2x

46

The state of proposers

We still have a set of proposers

Any proposer will be either a
leader or a follower

A leader may be in either:

» Prepare state, or
» Accept state

Until overrun by a higher leader,
and moves to a follower state

S. Haridi, KTHx 1D2203.2x

leader(L, n)

v

prepare

v

accept

v

follower

47

Ballot Leader Election BLE

T
3
.“0

. d!;

7
At

U]

BLE desirable properties

o We will allow a process p to “inaccurately” leave a

correct leader as long as the new leader has a
higher ballot number

e We will also require that a process is elected as a
leader only if a majority of processes are correct
and alive. This fits Sequence Paxos (see later)

 BLE1: Eventually every correct process trusts some correct
correct process if a majority are correct

 BLE 2: Eventually no two correct correct processes trust
different correct processes

S. Haridi, KTHx 1D2203.2x 49

Assumptions

 We assume initially a Fail-Noisy model
Processes fail by crashing

Initial arbitrary network delays but eventually
stabilizes (partially synchronous system)

Perfect point-to-point links

S. Haridi, KTHx 1D2203.2x

50

)] Basic idea

e Ballots are unique
Each process p has its own ballot (n, pid,). This pair is always
unique since pid;, is unique can comes from an totally ordered set

A ballot is the rank of a process

e Max ballot is available at each correct process
Each correct process periodically gossips its ballot to all processes

e Processes are ranked

Eventually each correct process will elect the process with the
highest rank (max ballot) given good network conditions (eventual

agreement)

S. Haridi, KTHx 1D2203.2x 51

5] Basic idea

e Majority requirement

Each correct process will trust a leader only if the leader’s max ballot
is among the collected ballots from a majority of processes

e Monotonically increasing ballots

Every process p that do not receive the leader’s ballot (n, pid,)
among collected ballots consider the leader has crashes

p increases his own ballot (n+1, pid))

e BLE3 (monotonic unique ballots) is satisfied and also
BLE1 (completeness) assuming eventual synchrony

S. Haridi, KTHx 1D2203.2x 52

The algorithm |

« Each process p, is ranked with a ballot: (n, pid;)) where n is an
increasing epoch number and pid, is a process identifier

e At any epoch n, ‘under stable network conditions’ the
correct process with the highest pid is the leader and
remains the leader if supported by a majority

e Periodically (delay A) each process collects the ballots of
correct process in ballots (votes) and disseminates the
known max ballot ballot,

S. Haridi, KTHx 1D2203.2x 53

@]/ The algorithm Il

Each process pi starts as a follower vl l {

Periodically each process pi collects ballots follower —
from a majority to check the leader

Leader detected

Leader absent in a majority

If the leader’s ballot is absent after collecting Lostvote

ballots from a majority at pi v

< pimoves to become a candidate candidate Increase ballot

» piincreases in own ballot to a value one
higher than ballot,

- The one with highest rank wins and is Max ballot won
elected

If message from a suspected process is Leader

received the delay is increased by A

S. Haridi, KTHx 1D2203.2x 54

() \ Implementing BLE

BallotLeaderElection, instance ble

Uses: PerfectPointToPointLinks, instance pp2p
upon event (ble, Init) do

* round := 0; ballots := @

« ballot := (0; pid); leader := 1; ballot, ., := ballot
- delay := A; startTimer(delay)

upon event (Timeout) do

« if ballots + 1 2 TT1/21 then checkLeader()

* ballots := &, round := round + 1

- forallpelldo

if p # self then
trigger (pp2p, Send | p, [HeartbeatRequest, round, ballot, ., 1)

- startTimer(delay)
S. Haridi, KTHx 1DD2203.2x

55

D,

G ‘ Implementing BLE
e upon event (pp2p, Deliver | p, [HeartbeatRequest, r, bmax]) do

then ballot
- trigger (pp2p, Send | p, [HeartbeatRelpy, r, ballot])

- if bmax > ballot = bmax

max max

« upon event ((pp2p, Deliver | p, [HeartbeatReply, r, b])) do

* if r=round then ballots := ballots u { (p,b) }

- else
delay := delay + A

S. Haridi, KTHx 1D2203.2x

(s ‘ CheckLeader

Procedure ChecklLeader()

top := (topProcess, topBallot) := MaxByBallot(ballots u{(self , ballot) })
if topBallot < ballot_ .. then

leader ;= 1

while ballot < ballot ., do

max

ballot := Increment(ballot)

Else (topBallot 2 ballot,_,

if top # leader then
ballot,_, := topBallot; leader := top

trigger (ble, Leader | topProcess, topBallot »

S. Haridi, KTHx 1D2203.2x

57

BLE conclusions

The algorithm satisfies eventual agreement since the period A will
increase so that heartbeats are delivered to each correct process
by all correct process

Once a leader L crashes or is disconnected from a majority, this
majority with increase their ballot to a number higher than that of
L

In the next round one of processes will be elected based on the
highest rank among them satisfying eventual completeness and
monotonic ballots

The algorithm works even if messages even if messages are lost or a
process crashes and recovers

S. Haridi, KTHx 1D2203.2x 58

