
Introduction to
Distributed Systems

Seif Haridi
haridi@kth.se

S. Haridi, KTHx ID2203x 2

What is a distributed system?
● “A set of nodes, connected by a network,

which appear to its users as a single
coherent system”

Network

p1 pnp2 ….

send receive

S. Haridi, KTHx ID2203x 3

Our focus in this course

● Concepts
● Models
● Given the model

● Which problems are solvable/ not solvable
● What are the core problems in distributed systems
● What are the algorithms
● How to reason about correctness

S. Haridi, KTHx ID2203x 4

Why study distributed systems?

● It is important and useful
● Societal importance

● Internet
● WWW
● Cloud computing
● Edge computing
● Small devices (mobiles, sensors)

S. Haridi, KTHx ID2203x 5

Why study distributed systems?

Internet Edge Computing Cloud Computing

S. Haridi, KTHx ID2203x 6

Why study distributed systems?

p1

p2

p3

p4

p5

p6 p7 p8 p9

p10

Internet Edge Computing Cloud Computing

p11 p12 p13

S. Haridi, KTHx ID2203x 7

Why study distributed systems?

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

Network

S. Haridi, KTHx ID2203x 8

Why study distributed systems?

● It is important and useful

● Technical importance
● Improve scalability
● Improve reliability
● Inherent distribution

S. Haridi, KTHx ID2203x 9

Why study distributed systems?
● It is very challenging

● Partial Failures
● Network (dropped messages, partitions)
● Node failures

● Concurrency
● Nodes execute in parallel
● Messages travel asynchronously

● Recurring core problems

Parallel
computing

Core Problems
 What types of problems are there?

S. Haridi, KTHx ID2203x 11

Teaser: Two Generals’ Problem
● Two generals need to coordinate an attack
● Must agree on time to attack
● They’ll win only if they attack simultaneously
● Communicate through messengers
● Messengers may be killed on their way

S. Haridi, KTHx ID2203x 12

Teaser: Two Generals’ Problem
● Lets try to solve it for general g1 and g2
● g1 sends time of attack to g2

● Problem: how to ensure g2 received msg?
● Solution: let g2 ack receipt of msg
● Problem: how to ensure g1 received ack
● Solution: let g1 ack the receipt of the ack…
● …

● This problem is impossible to solve!

S. Haridi, KTHx ID2203x 13

Teaser: Two Generals’ Problem

1 2

S. Haridi, KTHx ID2203x 14

Teaser: Two Generals’ Problem

attack!
1 2

S. Haridi, KTHx ID2203x 15

Teaser: Two Generals’ Problem

is 18:00 ok?
yes.please confirm

sure! please confirm

1 2

S. Haridi, KTHx ID2203x 16

Teaser: Two Generals’ Problem

alright! confirm?

ok.confirmed?

is 18:00 ok?
yes.please confirm

sure! please confirm

1 2

S. Haridi, KTHx ID2203x 17

Teaser: Two Generals’ Problem

Impossible to solve!

ambushed!

1 2

S. Haridi, KTHx ID2203x 18

Teaser: Two Generals’ Problem

● Applicability to distributed systems
● Two nodes need to agree on a value before a

specific time-bound
● Communicate by messages using an unreliable

channel

● Agreement is a core problem…

S. Haridi, KTHx ID2203x 19

Consensus:  
agreeing on a number

● Consensus problem
● All nodes propose a value
● Some nodes might crash & stop responding

● The algorithm must ensure:
● All correct nodes eventually decide
● Every node decides the same
● Only decide on proposed values

S. Haridi, KTHx ID2203x 20

1 2

Example: Agreeing on a Target

Consensus Consensus

attack A attack B

?

3

Consensus
attack B

?

A B

S. Haridi, KTHx ID2203x 21

1 2

Example: Agreeing on a Target

Consensus Consensus

A confirmed

Consensus

B

A confirmed

A confirmed

3

A

S. Haridi, KTHx ID2203x 22

1 2

Example: Agreeing on a Target

Consensus ConsensusConsensus

B

attack!

3

A

S. Haridi, KTHx ID2203x 23

1 2

Example: Agreeing on a Target

Consensus Consensus

attack A attack B

? Consensus
attack B

?

B

3

A

S. Haridi, KTHx ID2203x 24

1 2

Example: Agreeing on a Target

Consensus ConsensusConsensus

B

? ?

ambush!

3

A

S. Haridi, KTHx ID2203x 25

1 2

Example: Agreeing on a Target

Consensus Consensus

A confirmed

Consensus

B

A confirmed

3

A

S. Haridi, KTHx ID2203x 26

1 2

Example: Agreeing on a Target

Consensus ConsensusConsensus

B

attack!

3

A

S. Haridi, KTHx ID2203x 27

Is Consensus is Solvable?

● Consensus problem
● All nodes propose a value
● Some nodes might crash & stop responding

● The algorithm must ensure:
● All correct nodes eventually decide
● Every node decides the same
● Only decide on proposed values

S. Haridi, KTHx ID2203x 28

Consensus is Important

● Databases
● Concurrent changes to same data
● Nodes should agree on changes

● Use a kind of consensus: atomic commit
● Only two proposal values {commit, abort}

S. Haridi, KTHx ID2203x 29

Broadcast Problem
● Atomic Broadcast
● A node broadcasts a message
● If sender correct, all correct nodes deliver msg
● All correct nodes deliver same messages
● Messages delivered in the same order

S. Haridi, KTHx ID2203x 30

Atomic broadcast is Important
● Replicated services
● Multiple servers (processes)
● Execute the same sequence of commands
● Replicated State Machines RSM

● Use atomic broadcast
● Provide fault tolerance

S. Haridi, KTHx ID2203x 31

Atomic Broadcast ↔ Consensus
● Given Atomic broadcast

● Can use it to solve Consensus

● Every node broadcasts its proposal
● Decide on the first received proposal
● Messages received in same order

● All nodes will decide the same
● Given Consensus

● Can use it to solve Atomic broadcast [d]

● Atomic Broadcast equivalent to Consensus

S. Haridi, KTHx ID2203x 32

Atomic Broadcast ↔ Consensus
1

Consensus

Atomic
Broadcast

Consensus

Atomic
Broadcast

Consensus

Atomic
Broadcast

2 3

attack A attack B

? ?

attack A attack B

attack B

attack B

S. Haridi, KTHx ID2203x 33

Atomic Broadcast ↔ Consensus
1

Consensus

Atomic
Broadcast

Consensus

Atomic
Broadcast

Consensus

Atomic
Broadcast

2 3

attack A attack A

attack A attack A attack A

attack A

S. Haridi, KTHx ID2203x 34

Atomic Broadcast ↔ Consensus
1

Consensus

Atomic
Broadcast

Consensus

Atomic
Broadcast

Consensus

Atomic
Broadcast

2 3
attacking A

attack B attack B attack B

attacking A attacking A

 Models
How to reason about them?

S. Haridi, KTHx ID2203 36

Modeling a Distributed System
● Timing assumptions
● Processes

● bounds on time to make a computation step
● Network

● Bounds on time to transmit a message between a
sender and a receiver

● Clocks:
● Lower and upper bounds on clock drift rate

S. Haridi, KTHx ID2203 37

Modeling a Distributed System
● Failure assumptions
● Processes

● What kind of failure a process can exhibit?
● Crashes and stops
● Behaves arbitrary (Byzantine)

● Network
● Can a network channel drop messages?

S. Haridi, KTHx ID2203 38

Modeling a Distributed System

p1 p2 p3

Network

S. Haridi, KTHx ID2203 39

Modeling a Distributed System

p1 p2 p3

Network

S. Haridi, KTHx ID2203 40

Modeling a Distributed System

p1 p2 p3

Network

S. Haridi, KTHx ID2203 41

Network Failures

p1 p2 p3

Network

Network

S. Haridi, KTHx ID2203 42

p1 p2 p3

dropped

Network Failures

S. Haridi, KTHx ID2203 43

Process Failures

p1 p2 p3

Network

S. Haridi, KTHx ID2203 44

Process Failures

p1 p2 p3

Network

S. Haridi, KTHx ID2203 45

Process Failures

p1 p3

Network
p 2

S. Haridi, KTHx ID2203 46

Process Failures

p1

p 2

p3

Network

S. Haridi, KTHx ID2203 47

Byzantine Processes

p1 p2 p3

Network

S. Haridi, KTHx ID2203 48

Byzantine Processes

p1 p2 p3

Network

S. Haridi, KTHx ID2203 49

Byzantine Processes

p1 p2 p3

Network

? ?

S. Haridi, KTHx ID2203 50

Modeling a Distributed System

● Asynchronous system
● No bound on time to deliver a message
● No bound on time to compute
● Clocks are not synchronized

● Internet essentially asynchronous

S. Haridi, KTHx ID2203 51

Impossibility of Consensus
● Consensus cannot be solved in asynchronous

system
● If a single node may crash

● Implications on
● Atomic broadcast
● Atomic commit
● Leader election
● …

S. Haridi, KTHx ID2203 52

Modeling a Distributed System
● Synchronous system

● Known bound on time to deliver a message (latency)
● Known bound on time to compute
● Known lower and upper bounds in physical clock drift

rate
● Examples:

● Embedded systems
● Multicore computers

S. Haridi, KTHx ID2203 53

Possibility of Consensus
● Consensus solvable in synchronous system

● with up to N-1 crashes

● Intuition behind solution
● Accurate crash detection

● Every node sends a message to every other node
● If no msg from a node within bound, node has crashed

● Not useful for Internet, how to proceed?

S. Haridi, KTHx ID2203 54

Modeling a Distributed System
● But Internet is mostly synchronous
● Bounds respected mostly
● Occasionally violate bounds (congestion/failures)
● How do we model this?

● Partially synchronous system
● Initially system is asynchronous
● Eventually the system becomes synchronous

S. Haridi, KTHx ID2203 55

Possibility of Consensus

●Consensus solvable in partially synchronous system
● with up to N/2 crashes

●Useful for Internet?

S. Haridi, KTHx ID2203 56

Failure detectors
● Let each node use a failure detector
● Detects crashes
● Implemented by heartbeats and waiting
● Might be initially wrong, but eventually correct

● Consensus and Atomic Broadcast solvable
with failure detectors
● How? Attend rest of course!

S. Haridi, KTHx ID2203 57

Modeling a Distributed System

● Timed Asynchronous system
● No bound on time to deliver a message
● No bound on time to compute
● Clocks have known clock-drift rate

● Realistic model Internet

Conclusions

 Topics not covered

S. Haridi, KTHx ID2203x 60

Processes always crash?

● Other types of failures
● Not just crash stops

● Byzantine faults
● Self-stabilizing algorithms

S. Haridi, KTHx ID2203x 61

Byzantine Faults

● Some processes might behave arbitrarily
● Sending wrong information
● Omit messages…

● Byzantine algorithms that tolerate such faults
● Only tolerate up to 1/3 Byzantine processes
● Non-Byzantine algorithms can often tolerate ½ nodes in the

asynchronous model

S. Haridi, KTHx ID2203x 62

Self-stabilizing Algorithms
● Robust algorithms that run forever

● System might temporarily be incorrect
● But eventually always becomes correct

● System can either by in a legitimate state or an
illegitimate state

● Self-stabilizing algorithm iff
● Convergence

● Given any illegitimate state, system eventually goes to a
legitimate state

● Closure
● If system in a legitimate state, it remains in a legitimate state

S. Haridi, KTHx ID2203x 63

Self-stabilizing Algorithms
● System can either by in a legitimate state

or an illegitimate state

● Self-stabilizing algorithm iff
● Convergence
● Closure

S. Haridi, KTHx ID2203x 64

Self-stabilizing Algorithms

● Advantages
● Robust to transient failures
● Don’t need initialization
● Can be easily composed

● A service composed of two self-stabilizing
services is self-stabilizing service

S. Haridi, KTHx ID2203x 65

Self-stabilizing Example
● Token ring algorithm
● Wish to have one token at all
 times circulating among processes

● Self-Stabilization
● Error leads to 2,3,… tokens
● Ensure always 1 token eventually

 Content of the Course

S. Haridi, KTHx ID2203x 67

Content I
● Formal Models of

Asynchronous Systems
● Basic Abstractions

● Reliable Broadcast Algorithms

● Distributed Shared Store and
Consistency Models

S. Haridi, KTHx ID2203x 68

Content II
● Single Value Consensus

● Paxos algorithm
● Sequence Consensus

● Multi-Paxos
● Replicated State Machines (RSM)

● Dynamic Reconfiguration
● Physical Clocks

● Leader election (timed asynchronous model)
● More efficient RSM)
● Shared stores with Strong Consistency

● Relaxed consistency models
● CAP theorem

S. Haridi, KTHx ID2203x 69

Summary
● Distributed systems everywhere

● Set of processes (nodes) cooperating
over a network

● Few core problems reoccur
● Consensus, Broadcast, Leader

election, Shared Memory
● Different failure scenarios important

● Crash stop, Byzantine, self-stabilizing
algorithms

● Interesting research directions
● Large scale dynamic distributed

systems

S. Haridi, KTHx ID2203x 70

Let’s start

