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What is a distributed system? 
● “A set of nodes, connected by a network, 

which appear to its users as a single 
coherent system”

Network

p1 pnp2 ….

send receive
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Our focus in this course 

● Concepts  
● Models 
● Given the model 

● Which problems are solvable/ not solvable 
● What are the core problems in distributed systems 
● What are the algorithms 
● How to reason about correctness
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Why study distributed systems?

● It is important and useful 
● Societal importance 

● Internet 
● WWW 
● Cloud computing 
● Edge computing 
● Small devices (mobiles, sensors)
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Why study distributed systems?

Internet Edge Computing Cloud Computing
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Why study distributed systems?
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Why study distributed systems?

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

Network
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Why study distributed systems?

● It is important and useful 

● Technical importance 
● Improve scalability 
● Improve reliability 
● Inherent distribution
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Why study distributed systems?
● It is very challenging 

● Partial Failures 
● Network (dropped messages, partitions) 
● Node failures  

● Concurrency 
● Nodes execute in parallel  
● Messages travel asynchronously 

● Recurring core problems 

Parallel 
computing



Core Problems
 What types of problems are there?
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Teaser: Two Generals’ Problem
● Two generals need to coordinate an attack 
● Must agree on time to attack 
● They’ll win only if they attack simultaneously 
● Communicate through messengers 
● Messengers may be killed on their way
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Teaser: Two Generals’ Problem
● Lets try to solve it for general g1 and g2 
● g1 sends time of attack to g2 

● Problem: how to ensure g2 received msg? 
● Solution: let g2 ack receipt of msg 
● Problem: how to ensure g1 received ack 
● Solution: let g1 ack the receipt of the ack… 
● … 

● This problem is impossible to solve!
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Teaser: Two Generals’ Problem

1 2
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Teaser: Two Generals’ Problem

attack!
1 2
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Teaser: Two Generals’ Problem

is 18:00 ok?
yes.please confirm

sure! please confirm

1 2
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Teaser: Two Generals’ Problem

alright! confirm?

ok.confirmed?

is 18:00 ok?
yes.please confirm

sure! please confirm

1 2



S. Haridi, KTHx ID2203x 17

Teaser: Two Generals’ Problem

Impossible to solve!

ambushed!

1 2
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Teaser: Two Generals’ Problem

● Applicability to distributed systems 
● Two nodes need to agree on a value before a 

specific time-bound 
● Communicate by messages using an unreliable 

channel 

● Agreement is a core problem…
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Consensus:  
agreeing on a number

● Consensus problem 
● All nodes propose a value 
● Some nodes might crash & stop responding 

● The algorithm must ensure: 
● All correct nodes eventually decide 
● Every node decides the same 
● Only decide on proposed values



S. Haridi, KTHx ID2203x 20

1 2

Example: Agreeing on a Target

Consensus Consensus

attack A attack B

?

3

Consensus
attack B

?

A B
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1 2

Example: Agreeing on a Target

Consensus Consensus

A confirmed

Consensus

B

A confirmed

A confirmed

3

A
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1 2

Example: Agreeing on a Target

Consensus ConsensusConsensus

B

attack!

3

A



S. Haridi, KTHx ID2203x 23

1 2

Example: Agreeing on a Target

Consensus Consensus

attack A attack B

? Consensus
attack B

?

B

3

A
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1 2

Example: Agreeing on a Target

Consensus ConsensusConsensus

B

? ?

ambush!

3

A
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1 2

Example: Agreeing on a Target

Consensus Consensus

A confirmed

Consensus

B

A confirmed

3

A



S. Haridi, KTHx ID2203x 26

1 2

Example: Agreeing on a Target

Consensus ConsensusConsensus

B

attack!

3

A
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Is Consensus is Solvable?

● Consensus problem 
● All nodes propose a value 
● Some nodes might crash & stop responding 

● The algorithm must ensure: 
● All correct nodes eventually decide 
● Every node decides the same 
● Only decide on proposed values
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Consensus is Important

● Databases 
● Concurrent changes to same data 
● Nodes should agree on changes 

● Use a kind of consensus: atomic commit 
● Only two proposal values {commit, abort}
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Broadcast Problem
● Atomic Broadcast 
● A node broadcasts a message 
● If sender correct, all correct nodes deliver msg  
● All correct nodes deliver same messages  
● Messages delivered in the same order
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Atomic broadcast is Important
● Replicated services 
● Multiple servers (processes) 
● Execute the same sequence of commands 
● Replicated State Machines RSM 

● Use atomic broadcast 
● Provide fault tolerance
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Atomic Broadcast ↔ Consensus
● Given Atomic broadcast 

● Can use it to solve Consensus  

● Every node broadcasts its proposal 
● Decide on the first received proposal  
● Messages received in same order 

● All nodes will decide the same 
● Given Consensus 

● Can use it to solve Atomic broadcast [d]  

● Atomic Broadcast  equivalent to  Consensus
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Atomic Broadcast ↔ Consensus
1

Consensus

Atomic 
Broadcast

Consensus

Atomic 
Broadcast

Consensus

Atomic 
Broadcast

2 3

attack A attack B

? ?

attack A attack B

attack B

attack B
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Atomic Broadcast ↔ Consensus
1

Consensus

Atomic 
Broadcast

Consensus

Atomic 
Broadcast

Consensus

Atomic 
Broadcast

2 3

attack A attack A

attack A attack A attack A

attack A
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Atomic Broadcast ↔ Consensus
1

Consensus

Atomic 
Broadcast

Consensus

Atomic 
Broadcast

Consensus

Atomic 
Broadcast

2 3
attacking A

attack B attack B attack B

attacking A attacking A



 Models
How to reason about them?
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Modeling a Distributed System
● Timing assumptions 
● Processes 

● bounds on time to make a computation step 
● Network 

● Bounds on time to transmit a message between a 
sender and a receiver  

● Clocks: 
● Lower and upper bounds on clock drift rate 
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Modeling a Distributed System
● Failure assumptions 
● Processes 

● What kind of failure a process can exhibit? 
● Crashes  and stops 
● Behaves arbitrary (Byzantine) 

● Network 
● Can a network channel drop messages?
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Modeling a Distributed System

p1 p2 p3

Network
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Modeling a Distributed System

p1 p2 p3

Network
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Modeling a Distributed System

p1 p2 p3

Network
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Network Failures

p1 p2 p3

Network



Network
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p1 p2 p3

dropped

Network Failures
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Process Failures

p1 p2 p3

Network
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Process Failures

p1 p2 p3

Network
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Process Failures

p1 p3

Network
p 2
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Process Failures

p1

p 2

p3

Network
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Byzantine Processes

p1 p2 p3

Network
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Byzantine Processes

p1 p2 p3

Network
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Byzantine Processes

p1 p2 p3

Network

? ?
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Modeling a Distributed System

● Asynchronous system 
● No bound on time to deliver a message 
● No bound on time to compute 
● Clocks are not synchronized 

● Internet essentially asynchronous 
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Impossibility of Consensus
● Consensus cannot be solved in asynchronous 

system 
● If a single node may crash 

● Implications on  
● Atomic broadcast 
● Atomic commit 
● Leader election 
● …
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Modeling a Distributed System
● Synchronous system 

● Known bound on time to deliver a message (latency) 
● Known bound on time to compute 
● Known lower and upper bounds in physical clock drift 

rate 
● Examples: 

● Embedded systems 
● Multicore computers
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Possibility of Consensus
● Consensus solvable in synchronous system 

● with up to N-1 crashes 

● Intuition behind solution 
● Accurate crash detection 

● Every node sends a message to every other node 
● If no msg from a node within bound, node has crashed 

● Not useful for Internet, how to proceed?
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Modeling a Distributed System
● But Internet is mostly synchronous 
● Bounds respected mostly 
● Occasionally violate bounds (congestion/failures) 
● How do we model this? 

● Partially synchronous system 
● Initially system is asynchronous 
● Eventually the system becomes synchronous
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Possibility of Consensus

●Consensus solvable in partially synchronous system 
● with up to N/2 crashes 

●Useful for Internet?
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Failure detectors
● Let each node use a failure detector 
● Detects crashes 
● Implemented by heartbeats and waiting 
● Might be initially wrong, but eventually correct 

● Consensus and Atomic Broadcast solvable 
with failure detectors 
● How? Attend rest of course!
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Modeling a Distributed System

● Timed Asynchronous system 
● No bound on time to deliver a message 
● No bound on time to compute 
● Clocks have known clock-drift rate 

● Realistic model Internet 



Conclusions



 Topics not covered
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Processes always crash?

● Other types of failures 
● Not just crash stops 

● Byzantine faults 
● Self-stabilizing algorithms
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Byzantine Faults

● Some processes might behave arbitrarily 
● Sending wrong information 
● Omit messages… 

● Byzantine algorithms that tolerate such faults 
● Only tolerate up to 1/3 Byzantine processes 
● Non-Byzantine algorithms can often tolerate ½ nodes in the 

asynchronous model
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Self-stabilizing Algorithms
● Robust algorithms that run forever 

● System might temporarily be incorrect 
● But eventually always becomes correct 

● System can either by in a legitimate state or an 
illegitimate state 

● Self-stabilizing algorithm iff 
● Convergence 

● Given any illegitimate state, system eventually goes to a 
legitimate state 

● Closure 
● If system in a legitimate state, it remains in a legitimate state
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Self-stabilizing Algorithms
● System can either by in a legitimate state 

or an illegitimate state 

● Self-stabilizing algorithm iff 
● Convergence 
● Closure
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Self-stabilizing Algorithms

● Advantages 
● Robust to transient failures 
● Don’t need initialization 
● Can be easily composed 

● A service composed of two self-stabilizing 
services is self-stabilizing service
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Self-stabilizing Example
● Token ring algorithm 
● Wish to have one token at all  
 times circulating among processes 

● Self-Stabilization 
● Error leads to 2,3,… tokens  
● Ensure always 1 token eventually



 Content of the Course
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Content  I
● Formal Models of 

Asynchronous Systems 
● Basic Abstractions 

● Reliable Broadcast Algorithms 

● Distributed Shared Store and 
Consistency Models
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Content II
● Single Value Consensus 

● Paxos algorithm 
● Sequence Consensus 

● Multi-Paxos 
● Replicated State Machines (RSM) 

● Dynamic Reconfiguration 
● Physical Clocks 

● Leader election (timed asynchronous model) 
● More efficient RSM) 
● Shared stores with Strong Consistency 

● Relaxed consistency models 
● CAP theorem 
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Summary
● Distributed systems everywhere 

● Set of processes (nodes) cooperating 
over a network 

● Few core problems reoccur 
● Consensus, Broadcast, Leader 

election, Shared Memory 
● Different failure scenarios important 

● Crash stop, Byzantine, self-stabilizing 
algorithms 

● Interesting research directions 
● Large scale dynamic distributed 

systems
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Let’s start


