by

oS T S
£ KTH %
Consensus Xt

Seif Haridi

Consensus

e |n consensus, the processes propose values
they all have to agree on one of these values

e Solving consensus is key to solving many problems in
distributed computing
Total order broadcast (aka Atomic broadcast)
Atomic commit (databases)
Terminating reliable broadcast
Dynamic group membership
Stronger shared store models

S. Haridi, KTHx 1D2203.1x

=l! Single Value Consensus Properties
C1. Validity

* Any value decided is a value proposed

C2. Agreement

» No two correct nodes decide differently

C3. Termination
* Every correct node eventually decides

C4. Integrity

» A node decides at most once

S. Haridi, KTHx 1D2203.1x

Sample Execution

propose(0) decide(0)
p1 1 1 >
propose(1) decide(1) crash
P - & *
propose(0) decide(0)
p3 1 1 >

Does it satisfy consensus? yes

S. Haridi, KTHx 1D2203.1x

©l| Uniform Consensus Properties

C1. Validity
» Any value decided is a value proposed

C2’. Uniform Agreement
* No two nodes decide differently

C3. Termination
» Every correct node eventually decides

C4. Integrity
« No node decides twice

S. Haridi, KTHx 1D2203.1x

&l Sample Execution

propose(0) decide(0)
oF - -
propose(1) decide(1) crash
P & o e 3
propose(0) decide(0)
p3]]

Does it satisfy uniform consensus? o

S. Haridi, KTHx 1D2203.1x

(Regular) Consensus
Fail-stop model

Consensus Interface

e Events
- Request: (c Propose | v)
- Indication: (c Decide | v)

 Properties:
- C1,C2 C3, C4

S. Haridi, KTHx 1D2203.1x

@] Hierarchical Consensus

o Use perfect fd (P) and best-effort bcast (BEB)

» Each process stores its proposal in proposal
* Possible to adopt another proposal by changing proposal
» Store identity of last adopted proposer in lastprop

e Loop through rounds 1to N

* Inroundi
process i is leader and
broadcasts proposal v, and decides proposal v
other processes

adopt i’'s proposal v and remember lastprop i or
detect crash of |

S. Haridi, KTHx 1D2203.1x

Hierarchical Consensus ldea

e Basic idea of hierarchical consensus

» There must be a first correct leader p,
p decides its value v and beb-casts v

BEB ensures all correct process get v
= Every correct process adopts v
= Future rounds will only propose v

S. Haridi, KTHx 1D2203.1x 10

Problem with orphan messages...

propose(a) decide(a)

p1 proposal:=a :
lastprop:=0
propose(b) \ _/e\mde(b) / .

P2 proposal:=b

lastprop:=0 a
a
propose(c) ; ecide(a) R
P3 proposal:=c jproposal:=b proposal:=a :
lastprop:=0 lastprop:=2 lastprop:=1 :
: round 1 : round 2 : round 3

Only adopt from node i if i > lastProp?

S. Haridi, KTHx 1D2203.1x 11

Invariant to avoid orphans

e Leader in round r might crash,
* but much later affect some node in round > r

e Rank:p1<p2<p3<...
e |nvariant

» adopt if proposer p is ranked higher than lastprop
» otherwise p has crashed and should be ignored

S. Haridi, KTHx 1D2203.1x 12
18/08/16 12

1

P2

Ps3

Execution without failure...

propose(a) decide(a)

proposal:=a
lastprop:=0 :
I P a
propose(b) : : /decide(a)
proposal:=b roposal:=a :
lastprop:=0 lastprop:=1 a
propose(c) .
proposal:=c proposal:=a : proposal:=a
lastprop:=0 lastprop:=1 : lastprop:=2
: round 1 : round 2 round 3

S. Haridi, KTHx 1D2203.1x

13

Implementation and
correctness

) Hierarchical Consensus Impl. (1)

Implements: Consensus (C)

Uses:
BestEffortBroadcast (beb)
PerfectFailureDetector (P)

upon event (Init) do
» detected := J; round = 1;
o proposal := 1; lastprop := 0 <

- fori=1toNdo
broadcast][i] := delivered]i] := false

upon event (crash | p,) do
- detected := detected U { rank(p,) }
upon event (cPropose | v) do

last adopted proposal and
last adopted proposer id

Set process’s initial proposal,
unless it has already adopted

« if proposal = 1 then
. proposal :=v

S. Haridi, KTHx 1D2203.1x

another node’s

15

Hierarchical Consensus Impl. (2)

e upon round = rank(self) and <« if | am leader
broadcast[round] = false and < trigger once per round
proposal # L do “ trigger if | have proposal

» broadcast[round] := true
- trigger (cDecide | proposal) < permanently decide

- trigger (bebBroadcast | (DECIDED, round, proposal))

« upon event (bebDeliver | pi, (DECIDED, r, v)) do
- ifr > lastprop then Invariant: only adopt “newer”
o proposal := v; lastprop :=r than what you have
* delivered]r] := true

» Upon delivered[round] or round € detected do

° = + . .
round :=round + 1) next round if deliver or crash

S. Haridi, KTHx 1D2203.1x 16

Correctness
e Validity

» Always decide own proposal or adopted value
o Integrity

* Rounds increase monotonically

* A node only decide once in the round it is leader
e Termination

* Every correct node makes it to the round it is leader:
If some leader fails, completeness of P ensures progress
If leader correct, validity of BEB ensures delivery

S. Haridi, KTHx 1D2203.1x 17

1l Correctness (2)

e Agreement
* No two correct nodes decide differently

» Take correct leader with minimum id i
By termination it will decide v

It will BEB v

= Every correct node gets v and adopts it
= No older proposals can override the adoption
= All future proposals and decisions will be v

 How many failures can it tolerate? [d]
 N-1

S. Haridi, KTHx 1D2203.1x

18

How about uniform
consensus?

Formalism and notation important...

X; := proposal
forr=1to N do

if r=i then
forall jin 1..N do send <val, x;, r> to Py
i decide x.
if collect<val, x’, r> from r then
X 1= X;

end

e Control-oriented vs. event-based notation
- collect<> from r: is false iff FD detects p, as failed

e NB: the control-oriented code ensures proposals are adopted in

monotonically increasing order!
S. Haridi, KTHx ID2203.1x 20

Uniform Consensus with P

e Move decision to the end

X ;= input
forr:=1to N do
if r=i then
forall jin 1..N do send <val, x;, r> to Pj;
decide X,
if collect<val, x’, r> from r then
X =X
end
decide x;

S. Haridi, KTHx 1D2203.1x

21

1

P2

Ps3

Execution with inaccurate FD

P2 suspects p1, p3 suspects p2 (regular consensus)

propose(a) demde(a)

proposal:=a
lastprop:=0 E
i a
propose(b) : demde(b)

proposal:=b proposal:=b

lastprop:=0 : : lastprop:=2

propose(c) —~decide(a)
proposal:=c proposal:=a : —
lastprop:=0 lastprop:=1 : I;;r;p;cgs!.ﬂa

round 1 round 2 : round 3

S. Haridi, KTHx 1D2203.1x

22

Execution with inaccurate FD

P2 susp p1 p3 susp p2, p1 susp p3 (unlform consensus)

: proposal:=b
propose(a) : _ : lastprop:=2decide(h)
1 proposal:=a : proposal:=a proposal:=b : -
lastprop:=0 : astprop:=1 : —
P g b lastprop:=2 :
: : : proposal:=a -
propose(b) : lastprop'=3 /tfeymdg(a)»
P2 proposal:=b proposal:i=b i
lastprop:=0 b lastprop:=2
: : a
o propose(c) : : = decidela) |
3 proposa.l:_=c proposa.l:_=a§ proposal:=a proposal:=a
lastprop:=0 : lastprop:=1 : lastprop:=1 lastprop:=3
round 1 : round 2 round 3

S. Haridi, KTHx 1D2203.1x

23

Possible with weaker FD
than P?

Same algorithm, just use S!

e Recall, Strong Detector (S)

» Strong Completeness
Eventually every failure is detected

* Weak Accuracy

There exists a correct process which is never
suspected by any other node

* Roughly, like P, but accuracy with respect to one
process

S. Haridi, KTHx 1D2203.1x 25

Correctness

o Validity

» Always decide own proposal or adopted value
e Integrity

» Rounds increase monotonically

» A node only decides once in the end
e Termination

» Every correct node makes it to the last round

If some leader fails, completeness of S ensures progress
If leader correct, validity of BEB ensures delivery

S. Haridi, KTHx 1D2203.1x

26

Correctness (2)

e Uniform Agreement
» No two processes decide differently

« Take an "accurate” correct leader with id i
By weak accuracy (S) & termination such a process exists

It will BEB v
Every correct process gets v and sets x;=v

X; is v in subsequent rounds, final decision is v by all

* NB: the control-oriented code ensures proposals are
adopted in monotonically increasing order!

S. Haridi, KTHx 1D2203.1x

27

Possible with weaker FD
than P?

Tolerance of Eventuality

Tolerance of Eventuality (1/3)

o Eventually perfect detector, cannot solve
consensus with resilience t 2 n/2

e Proof by contradiction (specific case):
» Assume it is possible, and assume N=10 and t=5
» The (P detector initially tolerates any behavior

Green nodes correct
Blue nodes crashed

@ @& & & @&
Detectors behave perfectly “ “ “ “ ~
Consensus is 0 at time t,

S. Haridi, KTHx 1D2203.1x 29

Tolerance of Eventuality (2/3)

e Eventually perfect detector, cannot solve

consensus with resilience t = n/2

e Proof by contradiction:

e Assume it is possible, and assume N=10 and t=5
« The (P detector initially tolerates any behavior

2B 2 I I

S. Haridi, KTHx 1D2203.1x

Blue nodes correct

Green nodes crashed
Detectors behave perfectly
Consensus is 1 at time t,

30

t, green 0

\

Tolerance of Eventuality (3/3)

J

|

blue suspected by green

—_— Y

E, |

t, blue 1

J

green suspected by blue

For t, time, green nodes

suspect blue are dead
Green nodes decide 0
Thereafter detectors
behave perfectly

|

@ @& & &
® & & @

S. Haridi, KTHx 1D2203.1x

For t, time, blue nodes

suspect green are dead
Blue nodes decide 1
Thereafter detectors

behave perfectly
31

Tolerance of Eventuality (3/3)

blue suspected by green
A t, green 0 t, blue 1

\ J
1

green suspected by blue

E3 is an execution that combines E1 and @ & & & &
® & & & &

E2

The view of each green process is the
same as E1

The view of each blue process is the same
as E1

But they decide different values

S. Haridi, KTHx 1D2203.1x

32

Proof technique

* Referred to as partitioning argument

 How to formalize it? [d]
 Time doesn’t exist

» Reason on prefix of executions
Traces only contains events of green nodes... (E1)
Traces only contains events of blue nodes... (E2)
Combine the two traces (E3)
View of each process is the same as before

S. Haridi, KTHx 1D2203.1x 33

Consensus possible with weaker FD?

« Yes, we'll solve it for (S
- Weaker than (P
* We’ll show binary consensus

« Recall, Eventually Strong Detector ({S)

» Strong Completeness
Eventually every failure is detected

« Eventual Weak Accuracy
Eventually there exists a correct node which is never suspected by any other node

» Roughly, like {P, but accuracy w.r.t. one node

S. Haridi, KTHx 1D2203.1x 34

Rotating Coordinator for ()S

e For the eventually strong detector
e The trivial rotating coordinator will not work
* Why?
“Eventually” might be after the first N rounds

« Basic idea (rotating coordinator for ()S)

* Rotate forever

* Eventually all nodes correct w.r.t. 1 coordinator
Everyone adopts coordinators value

e Problem
* How do we know when to decide?

S. Haridi, KTHx 1D2203.1x

35

Idea for termination

e Bound the number of failures
Less than a third can fail (f<n/3)

e Similar to rotating coordinator for S:

1) Everyone send vote to coordinator C
2) C picks maijority vote V, and broadcasts V
3) Every node that gets broadcast, change own vote to V

4) Change coordinator C and goto 1)

S. Haridi, KTHx 1D2203.1x

36

vvvvvvv

begin

r:=r+l c:=(r mod N)+1

send <value, x,
1

r> to p
C

{ rotate to coordinator c }
{ all send value to coord }

S. Haridi, KTHx 1D2203.1x

;onsensus: Rotating Coordinator for (S

37

vvvvvvv

onsensus: Rotating Coordinator for S

while true

begin
r:=r+1 c:=(r mod N)+1 { rotate to coordinator c }
send <value, x,, r> to P. { all send wvalue to coord }
if i==c then { coord only }
begin
msgs[0] :=0; msgs[1]:=0; { reset 0 and 1 counter }
for x:=1 to N-f do
begin
receive <value, V, R> from g { receive N-f msgs }
msgs [V]++; { increase relevant counter }
end
if msgs[0]>msgs[l] then v:=0 else v:=1 end { choose majority value }
forall j do send <outcome, v, r> to P, { send v to all }
end

S. Haridi, KTHx 1D2203.1x 38

LT,

£KTHY
g e &

e

w
begin
r:=r+1 c:=(r mod N)+1 { rotate to coordinator c }
send <value, x , r> to p { all send value to coord }
if i==c then { coord only }
begin
msgs[0] :=0; msgs[1]:=0; { reset 0 and 1 counter }
for x:=1 to N-f do
begin
receive <value, V, R> from g { receive N-f msgs }
msgs [V]++; { increase relevant counter }
end
if msgs[0]>msgs[l] then v:=0 else v:=1 end { choose majority value }
forall j do send <outcome, v, r> to P, { send v to all }
enda
if collect<outcome, v, r> from P then { collect value from coord }
begin
X, 1=V { adopt v }
end
end

S. Haridi, KTHx 1D2203.1x

onsensus: Rotating Coordinator for S

39

Majority Claim

e Majority Claim

If at least N-f nodes have (vote) v at start of round r:
At least N-f nodes have v at the end of round r,
Every leader will see a majority for v in all future rounds >r

e Proof

Each node that suspects a leader keeps previous value
A node change a value by receiving a message from leader
The leader takes a majority of N-f values received

At most f values received are different from v
N-2f values received are v
N-2f is a majority, i.e. > (N-f)/2 if N > 3f
Leader broadcasts v, and at least N-f nodes have v

S. Haridi, KTHx 1D2203.1x

40

Enforcing Decision

e Coordinator checks if all N-f voted same
 Broadcast that information

e If coordinator says all N-f voted same
* Decide for that value!

S. Haridi, KTHx 1D2203.1x

41

ZKTHY

% verinsar
W SonRoner g

S ol

e

onsensus: Rotating Coordinator for S

{ rotate to coordinator c }
{ all send value to coord }

{ coord only }

{ reset 0 and 1 counter }

{ receive N-f msgs }
{ increase relevant counter }

{ choose majority value }
if msgs[0]==0 or msgs[l]==0 then d:=1 else d:=0 end { all N-f same? }
{ send v to all }

{ collect value from coord }

{ change input to v }
if d and i then begin decide(v); 1:=0; end { decide if d is true }

S. Haridi, KTHx 1D2203.1x 42

Correctness

e Termination:
« Eventually some g will not be falsely detected

Eventually q is coordinator
Everyone sends vote to server (majority)
Everyone collects g’s vote (completeness)
Everyone adopts V
From now all alive nodes will vote V
Next time q is coordinator, d=1
Everyone decides

e So all alive nodes will vote the same
« Why did we have the complex majority claim? [d]
* To rule out situation where N-f vote 0, and f vote 1, but later everyone adopts 1

S. Haridi, KTHx 1D2203.1x 43

Correctness

g (coordinator) _
not suspected g decides

! |

| 1)

At least N-2f nodes have the same V at least N-f nodes have the same V

But varies in diff. rounds

S. Haridi, KTHx 1D2203.1x

rounds

44

Correctness (2)

e Agreement:
» Decide V happens after majority of N-f vote V
» Majority claim ensures all leaders will see majority for V
» Only V can be proposed from then on
» Only V can be decided

 Integrity & Validity by design...

S. Haridi, KTHx 1D2203.1x 45

Consensus in fail-silent?

 We solved consensus for
» Synchrony using P
- Partial synchrony using (S

 How about consensus in asynchronous setting?
» No, it's impossible
« Famous FLP impossibility

S. Haridi, KTHx 1D2203.1x 46

The End of This
Lecture...

Hardness of TRB (3)

e Accuracy

- TRB guarantees:

if src is correct, then all correct nodes will deliver m (validity and
agreement)

» Contrapositive
If any correct node doesn’t deliver m, src has crashed
<SF> delivery implies src is dead

« Completeness
« If source crashes, eventually <SF> will be delivered (integrity)

S. Haridi, KTHx 1D2203.1x

48

TRB requires
synchrony!

