
 
Consensus

Seif Haridi

S. Haridi, KTHx ID2203.1x

Consensus
● In consensus, the processes propose values

● they all have to agree on one of these values
● Solving consensus is key to solving many problems in

distributed computing
● Total order broadcast (aka Atomic broadcast)
● Atomic commit (databases)
● Terminating reliable broadcast
● Dynamic group membership
● Stronger shared store models

2

S. Haridi, KTHx ID2203.1x

Single Value Consensus Properties
● C1. Validity

● Any value decided is a value proposed
● C2. Agreement

● No two correct nodes decide differently
● C3. Termination

● Every correct node eventually decides
● C4. Integrity

● A node decides at most once

3

S. Haridi, KTHx ID2203.1x

p1

p2

p3

propose(0)

decide(1)propose(1)

propose(0) decide(0)

crash

decide(0)

Sample Execution

Does it satisfy consensus? yes

4

S. Haridi, KTHx ID2203.1x

Uniform Consensus Properties
● C1. Validity

● Any value decided is a value proposed

● C2’. Uniform Agreement
● No two nodes decide differently

● C3. Termination
● Every correct node eventually decides

● C4. Integrity
● No node decides twice

5

S. Haridi, KTHx ID2203.1x

propose(0)
p1

p2

p3

decide(1)propose(1)

propose(0) decide(0)

crash

decide(0)

Sample Execution

Does it satisfy uniform consensus? no
6

 
(Regular) Consensus  

Fail-stop model

S. Haridi, KTHx ID2203.1x

Consensus Interface
● Events
● Request: 〈c Propose | v〉
● Indication: 〈c Decide | v〉

● Properties:
● C1, C2, C3, C4

8

S. Haridi, KTHx ID2203.1x

Hierarchical Consensus
● Use perfect fd (P) and best-effort bcast (BEB)
● Each process stores its proposal in proposal

● Possible to adopt another proposal by changing proposal
● Store identity of last adopted proposer in lastprop

● Loop through rounds 1 to N
● In round i

● process i is leader and
▪ broadcasts proposal v, and decides proposal v

● other processes
▪ adopt i’s proposal v and remember lastprop i or
▪ detect crash of i

9

S. Haridi, KTHx ID2203.1x

Hierarchical Consensus Idea

● Basic idea of hierarchical consensus
● There must be a first correct leader p,

● p decides its value v and beb-casts v
● BEB ensures all correct process get v

▪ Every correct process adopts v
▪ Future rounds will only propose v

10

S. Haridi, KTHx ID2203.1x

Only adopt from node i if i > lastProp?

p1

p2

p3

propose(a) decide(a)

propose(b)

propose(c)

decide(b)

decide(a)

round 1 round 2 round 3

proposal:=a
lastprop:=0

proposal:=b
lastprop:=0

Problem with orphan messages…

proposal:=c
lastprop:=0

proposal:=b
lastprop:=2

a
a b

b a
a

proposal:=a
lastprop:=1

11

S. Haridi, KTHx ID2203.1x

18/08/16 12

Invariant to avoid orphans

● Leader in round r might crash,
● but much later affect some node in round > r

● Rank: p1 < p2 < p3 < ...
● Invariant
● adopt if proposer p is ranked higher than lastprop
● otherwise p has crashed and should be ignored

12

S. Haridi, KTHx ID2203.1x

p1

p2

p3

propose(a) decide(a)

propose(b)

propose(c)

decide(a)

decide(a)

round 1 round 2 round 3

proposal:=a
lastprop:=0

proposal:=a
lastprop:=1

Execution without failure…

proposal:=c
lastprop:=0

proposal:=a
lastprop:=1

proposal:=a
lastprop:=2

aa a

a a
a

proposal:=b
lastprop:=0

13

Implementation and
correctness

S. Haridi, KTHx ID2203.1x

Hierarchical Consensus Impl. (1)
● Implements: Consensus (c)
● Uses:

● BestEffortBroadcast (beb)
● PerfectFailureDetector (P)

● upon event 〈Init〉 do
● detected := ∅; round := 1;
● proposal := ⊥; lastprop := 0
● for i = 1 to N do

● broadcast[i] := delivered[i] := false
● upon event 〈crash | pi〉 do

● detected := detected ∪ { rank(pi) }
● upon event 〈cPropose | v〉 do

● if proposal = ⊥ then
● proposal := v

last adopted proposal and
last adopted proposer id

Set process’s initial proposal,
unless it has already adopted

another node’s

15

S. Haridi, KTHx ID2203.1x

Hierarchical Consensus Impl. (2)
● upon round = rank(self) and
 broadcast[round] = false and
 proposal ≠ ⊥ do

● broadcast[round] := true
● trigger 〈cDecide | proposal〉
● trigger 〈bebBroadcast | (DECIDED, round, proposal)〉

● upon event 〈bebDeliver | pi, (DECIDED, r, v)〉 do
● if r > lastprop then
● proposal := v; lastprop := r
● delivered[r] := true

● Upon delivered[round] or round ∈ detected do
● round := round + 1

if I am leader
trigger once per round

trigger if I have proposal

permanently decide

Invariant: only adopt “newer”
than what you have

next round if deliver or crash
16

S. Haridi, KTHx ID2203.1x

Correctness
● Validity

● Always decide own proposal or adopted value
● Integrity

● Rounds increase monotonically
● A node only decide once in the round it is leader

● Termination
● Every correct node makes it to the round it is leader:

● If some leader fails, completeness of P ensures progress
● If leader correct, validity of BEB ensures delivery

17

S. Haridi, KTHx ID2203.1x

Correctness (2)
● Agreement

● No two correct nodes decide differently

● Take correct leader with minimum id i
● By termination it will decide v
● It will BEB v

▪ Every correct node gets v and adopts it
▪ No older proposals can override the adoption
▪ All future proposals and decisions will be v

● How many failures can it tolerate? [d]
● N-1

18

How about uniform
consensus?

S. Haridi, KTHx ID2203.1x

Formalism and notation important…

● Control-oriented vs. event-based notation
● collect<> from r: is false iff FD detects pr as failed

● NB: the control-oriented code ensures proposals are adopted in
monotonically increasing order!

xi := proposal
for r:=1 to N do
 if r=i then
 forall j in 1..N do send <val, xi, r> to pj;
 decide xi
 if collect<val, x´, r> from r then
 xi := x´;
end

pi

20

S. Haridi, KTHx ID2203.1x

Uniform Consensus with P

● Move decision to the end
xi := input
for r:=1 to N do
 if r=i then
 forall j in 1..N do send <val, xi, r> to Pj;
 decide xi
 if collect<val, x´, r> from r then
 xi := x´;
end
decide xi

21

S. Haridi, KTHx ID2203.1x

p1

p2

p3

propose(a) decide(a)

propose(b)

propose(c)

decide(b)

decide(a)

round 1 round 2 round 3

proposal:=a
lastprop:=0

proposal:=b
lastprop:=2

Execution with inaccurate FD 
p2 suspects p1, p3 suspects p2 (regular consensus)

proposal:=c
lastprop:=0

proposal:=a
lastprop:=1 proposal:=a

lastprop:=1

aa b

b a
a

proposal:=b
lastprop:=0

22

S. Haridi, KTHx ID2203.1x

p1

p2

p3

propose(a) decide(b)

propose(b)

propose(c)

decide(a)

decide(a)

round 1 round 2 round 3

proposal:=a
lastprop:=0

proposal:=b
lastprop:=2

Execution with inaccurate FD 
p2 susp p1, p3 susp p2, p1 susp p3 (uniform consensus)

proposal:=c
lastprop:=0

proposal:=a
lastprop:=1 proposal:=a

lastprop:=3

aa b

b a
a

proposal:=b
lastprop:=0

proposal:=a
lastprop:=1

proposal:=b
lastprop:=2

proposal:=a
lastprop:=1

proposal:=a
lastprop:=3

proposal:=b
lastprop:=2

23

Possible with weaker FD
than P?

S. Haridi, KTHx ID2203.1x

Same algorithm, just use S!
● Recall, Strong Detector (S)

● Strong Completeness
● Eventually every failure is detected

● Weak Accuracy
● There exists a correct process which is never

suspected by any other node

● Roughly, like P, but accuracy with respect to one
process

25

S. Haridi, KTHx ID2203.1x

Correctness
● Validity

● Always decide own proposal or adopted value
● Integrity

● Rounds increase monotonically
● A node only decides once in the end

● Termination
● Every correct node makes it to the last round

● If some leader fails, completeness of S ensures progress
● If leader correct, validity of BEB ensures delivery

26

S. Haridi, KTHx ID2203.1x

Correctness (2)
● Uniform Agreement

● No two processes decide differently
● Take an “accurate” correct leader with id i

● By weak accuracy (S) & termination such a process exists
● It will BEB v

▪ Every correct process gets v and sets xi=v
▪ xi is v in subsequent rounds, final decision is v by all

● NB: the control-oriented code ensures proposals are
adopted in monotonically increasing order!

27

Possible with weaker FD
than P?

Tolerance of Eventuality

S. Haridi, KTHx ID2203.1x

Tolerance of Eventuality (1/3)
● Eventually perfect detector, cannot solve

consensus with resilience t ≥ n/2
● Proof by contradiction (specific case):

● Assume it is possible, and assume N=10 and t=5
● The ◊P detector initially tolerates any behavior

0 0 0 0 0
 Green nodes correct
 Blue nodes crashed
 Detectors behave perfectly
 Consensus is 0 at time t0

29

S. Haridi, KTHx ID2203.1x

Tolerance of Eventuality (2/3)
● Eventually perfect detector, cannot solve

consensus with resilience t ≥ n/2
● Proof by contradiction:
● Assume it is possible, and assume N=10 and t=5
● The ◊P detector initially tolerates any behavior

1 1 1 1 1

 Blue nodes correct
 Green nodes crashed
 Detectors behave perfectly
 Consensus is 1 at time t1

30

S. Haridi, KTHx ID2203.1x

Tolerance of Eventuality (3/3)

1 1 1 1 1

0 0 0 0 0
 For t1 time, blue nodes
 suspect green are dead
 Blue nodes decide 1
 Thereafter detectors
 behave perfectly

 For t0 time, green nodes
 suspect blue are dead
 Green nodes decide 0
 Thereafter detectors
 behave perfectly

31

blue suspected by green

t0 green 0

green suspected by blue

t1 blue 1

E1

E2

S. Haridi, KTHx ID2203.1x

Tolerance of Eventuality (3/3)

1 1 1 1 1

0 0 0 0 0

32

blue suspected by green
t0 green 0

green suspected by blue

t1 blue 1
E3

● E3 is an execution that combines E1 and
E2

● The view of each green process is the
same as E1

● The view of each blue process is the same
as E1

● But they decide different values

S. Haridi, KTHx ID2203.1x

Proof technique
● Referred to as partitioning argument
● How to formalize it? [d]
● Time doesn’t exist
● Reason on prefix of executions

● Traces only contains events of green nodes… (E1)
● Traces only contains events of blue nodes… (E2)
● Combine the two traces (E3)
● View of each process is the same as before

33

S. Haridi, KTHx ID2203.1x

Consensus possible with weaker FD?

● Yes, we’ll solve it for ◊S
● Weaker than ◊P
● We’ll show binary consensus

● Recall, Eventually Strong Detector (◊S)

● Strong Completeness
● Eventually every failure is detected

● Eventual Weak Accuracy
● Eventually there exists a correct node which is never suspected by any other node

● Roughly, like ◊P, but accuracy w.r.t. one node

34

S. Haridi, KTHx ID2203.1x

Rotating Coordinator for ◊S

● For the eventually strong detector
● The trivial rotating coordinator will not work
● Why?

● “Eventually” might be after the first N rounds

● Basic idea (rotating coordinator for ◊S)
● Rotate forever
● Eventually all nodes correct w.r.t. 1 coordinator

● Everyone adopts coordinators value

● Problem
● How do we know when to decide?

35

S. Haridi, KTHx ID2203.1x

Idea for termination

● Bound the number of failures
● Less than a third can fail (f<n/3)

● Similar to rotating coordinator for S:
● 1) Everyone send vote to coordinator C
● 2) C picks majority vote V, and broadcasts V
● 3) Every node that gets broadcast, change own vote to V
● 4) Change coordinator C and goto 1)

36

S. Haridi, KTHx ID2203.1x

Consensus: Rotating Coordinator for ◊Sx
i
 := input r=0

while true do
begin
 r:=r+1 c:=(r mod N)+1 { rotate to coordinator c }
 send <value, x

i
, r> to p

c
{ all send value to coord }

37

S. Haridi, KTHx ID2203.1x

Consensus: Rotating Coordinator for Sxi := input r=0
while true do
begin
 r:=r+1 c:=(r mod N)+1 { rotate to coordinator c }
 send <value, xi, r> to pc { all send value to coord }

 if i==c then { coord only }
 begin
 msgs[0]:=0; msgs[1]:=0; { reset 0 and 1 counter }
 for x:=1 to N-f do
 begin
 receive <value, V, R> from q { receive N-f msgs }
 msgs[V]++; { increase relevant counter }
 end
 if msgs[0]>msgs[1] then v:=0 else v:=1 end { choose majority value }
 forall j do send <outcome, v, r> to pj { send v to all }
 end

38

S. Haridi, KTHx ID2203.1x

Consensus: Rotating Coordinator for Sx
i
 := input r=0

while true do
begin
 r:=r+1 c:=(r mod N)+1 { rotate to coordinator c }
 send <value, x

i
, r> to p

c
{ all send value to coord }

 if i==c then { coord only }
 begin
 msgs[0]:=0; msgs[1]:=0; { reset 0 and 1 counter }
 for x:=1 to N-f do
 begin
 receive <value, V, R> from q { receive N-f msgs }
 msgs[V]++; { increase relevant counter }
 end
 if msgs[0]>msgs[1] then v:=0 else v:=1 end { choose majority value }
 forall j do send <outcome, v, r> to p

j
{ send v to all }

 end

 if collect<outcome, v, r> from p
c
 then { collect value from coord }

 begin
 x

i
 := v { adopt v }

 end
end

39

S. Haridi, KTHx ID2203.1x

Majority Claim

● Majority Claim
● If at least N-f nodes have (vote) v at start of round r:

● At least N-f nodes have v at the end of round r,
● Every leader will see a majority for v in all future rounds > r

● Proof
● Each node that suspects a leader keeps previous value
● A node change a value by receiving a message from leader
● The leader takes a majority of N-f values received
● At most f values received are different from v

● N-2f values received are v
● N-2f is a majority, i.e. > (N-f)/2 if N > 3f

● Leader broadcasts v, and at least N-f nodes have v
40

S. Haridi, KTHx ID2203.1x

Enforcing Decision

● Coordinator checks if all N-f voted same
● Broadcast that information

● If coordinator says all N-f voted same
● Decide for that value!

41

S. Haridi, KTHx ID2203.1x

Consensus: Rotating Coordinator for Sx
i
 := input r=0 i:=1

while true do
begin
 r:=r+1 c:=(r mod N)+1 { rotate to coordinator c }
 send <value, x

i
, r> to p

c
{ all send value to coord }

 if i==c then { coord only }
 begin
 msgs[0]:=0; msgs[1]:=0; { reset 0 and 1 counter }
 for x:=1 to N-f do
 begin
 receive <value, V, R> from q { receive N-f msgs }
 msgs[V]++; { increase relevant counter }
 end
 if msgs[0]>msgs[1] then v:=0 else v:=1 end { choose majority value }
 if msgs[0]==0 or msgs[1]==0 then d:=1 else d:=0 end { all N-f same? }
 forall j do send <outcome, d, v, r> to p

j
{ send v to all }

 end

 if collect<outcome, d, v, r> from p
c
 then { collect value from coord }

 begin
 x

i
 := v { change input to v }

 if d and i then begin decide(v); i:=0; end { decide if d is true }
 end
end

42

S. Haridi, KTHx ID2203.1x

Correctness

● Termination:
● Eventually some q will not be falsely detected

● Eventually q is coordinator
● Everyone sends vote to server (majority)
● Everyone collects q’s vote (completeness)
● Everyone adopts V
● From now all alive nodes will vote V
● Next time q is coordinator, d=1
● Everyone decides

● So all alive nodes will vote the same
● Why did we have the complex majority claim? [d]
● To rule out situation where N-f vote 0, and f vote 1, but later everyone adopts 1

43

S. Haridi, KTHx ID2203.1x

Correctness

q (coordinator)
not suspected

at least N-f nodes have the same V

q decides

rounds

At least N-2f nodes have the same V
But varies in diff. rounds

44

S. Haridi, KTHx ID2203.1x

Correctness (2)

● Agreement:
● Decide V happens after majority of N-f vote V
● Majority claim ensures all leaders will see majority for V
● Only V can be proposed from then on
● Only V can be decided

● Integrity & Validity by design…
45

S. Haridi, KTHx ID2203.1x

Consensus in fail-silent?

● We solved consensus for
● Synchrony using P
● Partial synchrony using ◊S

● How about consensus in asynchronous setting?
● No, it’s impossible
● Famous FLP impossibility

46

The End of This
Lecture…

S. Haridi, KTHx ID2203.1x

Hardness of TRB (3)

● Accuracy
● TRB guarantees:

● if src is correct, then all correct nodes will deliver m (validity and
agreement)

● Contrapositive
● If any correct node doesn’t deliver m, src has crashed
● <SF> delivery implies src is dead

● Completeness
● If source crashes, eventually <SF> will be delivered (integrity)

48

TRB requires
synchrony!

