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Combining Abstractions
● Fail-stop 

● Crash-stop process model 
● Perfect links + Perfect failure detector (P) 

● Fail-silent 
● Crash-stop process model 
● Perfect links 

● Fail-noisy 
● Crash-stop process model 
● Perfect links + Eventually Perfect failure detector (◊P) 

● Fail-recovery 
● Crash-recovery process model 
● Stubborn links + …

(synchronous)

(asynchronous)

(partially synchronous)
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Fail-stop model
● Fail-stop 

● Crash-stop process model 
● Perfect links + Perfect failure detector (P) 

● Synchronous model 

● Local algorithms can track the set of correct processes 
● Without violating liveness properties: use 

● Techniques based request/reply 
● Waiting for acknowledgment for all correct processes

4
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Fail-silent model
● Fail-silent 

● Crash-stop process model 
● Perfect links 

● Asynchronous model 

● No access to failure detectors 
● Assumes a majority of processes are always correct 
● Often use a majority quorum techniques (next unit) 
● Local algorithm cannot wait for more than ⌈n/2⌉+1 

otherwise it might get stuck
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Fail-noisy model
● Fail-noisy 

● Crash-stop process model 
● Perfect links 
● Eventually Perfect failure detector (◊P) 

● Partially synchronous model 

● To guarantee safety properties any algorithm has to 
assume the failure detector inaccurate  

● Eventual accuracy is only used to guarantee liveness

6
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Fail-recovery model
● Fail-recovery 

● Crash-recovery process model 
● Stubborn links  or a persistent links (logs) 

● Relies often on a persistent memory to store and 
retrieve critical information 

● After recovery a process may contact other process to 
retrieve up to date state information 

● Some algorithms relax the reliability conditions on 
channels allowing message loss/duplication/reordering 

7
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Quorums
● For N crash-stop process abstractions 
● Quorum is any set of majority of processes 
● A set with at least ⎣N/2⎦ +1 processes 

● The algorithms will rely on a majority of processes will not fail 
● f < N/2 (f is the max number of faulty processes) 

● f is the resilience of the algorithm

9
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Quorums crash-stop/recovery model  
f < N/2

● Two quorums always intersect in at least 
ONE process

10

faulty

correct

quorums
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Quorums crash-stop/recovery model 
f < N/2

● There is at least ONE quorum with only 
correct processes

11

faulty

correct

quorums
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● There is at least ONE correct process in each 
quorum

12

faulty

correct

quorums

Quorums crash-stop/recovery model 
f < N/2
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Quorums
● Quorums used in Fail-Silent and Fail-Noisy 

algorithms 
● A process never waits for messages from 

more than ⎣N/2⎦ + 1 (different) processes 

13

faulty

correct quorums
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Broadcast Services
● Send a message to a group of processes

p1

p2

p3

broadcast(m)

deliver(p1,m)

p4
deliver(p1,m)

deliver(p1,m)

deliver(p1,m)
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Unreliable Broadcast

p1

p2

p3

broadcast(m)

deliver(p1,m)

p4 deliver(p1,m)

crash event
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Reliable Broadcast Abstractions
● Best-effort broadcast 

● Guarantees reliability only if sender is correct 
● Reliable broadcast 

● Guarantees reliability independent of whether sender is correct 
● Uniform reliable broadcast 

● Also considers behavior of failed nodes 
● FIFO reliable broadcast 

● Reliable broadcast with FIFO delivery order 
● Causal reliable broadcast 

● Reliable broadcast with causal delivery order
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Reliable Broadcast Abstractions

● Probabilistic reliable broadcast 
● Guarantees reliability with high probability 
● Scales to large number of nodes 

● Total order (atomic) reliable broadcast 
● Guarantees reliability and same order of delivery



Specification of  
Broadcast Abstractions
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Best-effort broadcast (beb)
● Instance beb 
● Events 
●  Request: 〈beb Broadcast | m〉 
●  Indication: 〈beb Deliver | src, m〉 

● Properties: BEB1, BEB2, BEB3
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Best-effort broadcast (beb)
● Intuitively: everything perfect unless sender crash 

● Properties 
● BEB1. Best-effort-Validity: If pi and pj are correct, then any 

broadcast by pi is eventually delivered by pj 
● BEB2. No duplication: No message delivered more than 

once 
● BEB3. No creation: No message delivered unless broadcast
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BEB Example

● Is this allowed?
p1

p2

p3

broadcast(m)

deliver(p1,m)

p4
deliver(p1,m)

No
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BEB Example (2)

● Is this allowed?
p1

p2

p3

broadcast(m)

deliver(p1,m)

p4
deliver(p1,m)

Yes
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Reliable Broadcast
● BEB gives no guarantees if sender crashes 
● Strengthen to give guarantees if sender crashes 

● Reliable Broadcast Intuition 
● Same as BEB, plus  
● If sender crashes: 
 ensure all or none of the correct nodes get msg
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Reliable Broadcast (rb)
● Instance rb 
● Events 
●  Request: 〈rb Broadcast | m〉 
●  Indication: 〈rb Deliver | src, m〉 

● Properties: RB1, RB2, RB3, RB4
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Reliable Broadcast Properties
● Properties 
● RB1 = BEB1. Validity 
● RB2 = BEB2. No duplication 
● RB3 = BEB3. No creation 

● RB4. Agreement.  
● If a correct process delivers m, then every correct 

process delivers m
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Refining correctness
● Can weaken RB1 without any effect

RB1 = BEB1 Validity 
❑ If pi and pj are correct, then any 

broadcast by pi is eventually 
delivered by pj 

RB2 = BEB2. No duplication 

RB3 = BEB3. No creation 

RB4. Agreement.  
❑ If a correct node delivers m, then 

every correct node delivers m 

RB1 Validity. 
❑ If correct pi broadcasts m, pi itself 

eventually delivers m 

RB2 = BEB2. No duplication 

RB3 = BEB3. No creation 

RB4. Agreement.  
❑ If a correct node delivers m, then 

every correct process delivers m 

Old Validity          ←equivalent with→       New Validity
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RB Example

● Is this allowed?
p1

p2

p3

broadcast(m)

p4

Yes
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RB Example

● Is this allowed?
p1

p2

p3

broadcast(m)

p4

Yes

deliver(p1,m)
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RB Example

● Is this allowed?
p1

p2

p3

broadcast(m)

p4

No

deliver(p1,m)
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RB Example

● Is this allowed?
p1

p2

p3

broadcast(m)

deliver(p1,m)

p4
deliver(p1,m)

Yes
deliver(p1,m)
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Uniform Reliable Broadcast
● Assume sender broadcasts message 

● Sender fails 
● No correct process delivers message 
● Some failed processes deliver 

message 
● Assume the broadcast enforces 

● Printing a message on paper 
● Withdrawing money from account 

● Uniform reliable broadcast intuition 
● If a failed node delivers, everyone must 

deliver… 
 At least correct nodes, we cannot revive 

the dead…

Is it ok
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Uniform broadcast (urb)
● Events 

●  Request: 〈urb Broadcast | m〉 
●  Indication: 〈urb Deliver | src, m〉 

● Properties:  
● URB1 
● URB2 
● URB3 
● URB4
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Uniform Broadcast Properties
● Properties 

● URB1 = RB1.  
● URB2 = RB2.  
● URB3 = RB3. 
● URB4. Uniform Agreement: For any message m, 

if a process delivers m, then every correct 
process delivers m

Wanted: Dead & 
Alive!
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Implementation of  
Broadcast Abstractions
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Implementing BEB
● Use Perfect channel abstraction 

● Upon 〈beb Broadcast | m〉 send message m to all 
processes (for-loop) 

● Correctness 
● If sender doesn’t crash, every other correct process 

receives message by perfect channels (Validity) 
● No creation & No duplication already guaranteed by 

perfect channels



Fail-Stop 
Lazy Reliable Broadcast
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Fail-Stop: Lazy Reliable Broadcast
● Requires perfect failure detector (P) 

● To broadcast m:  
● best-effort broadcast m 
● When get beb Deliver 

● Save message, and 
● rb Deliver message 

● If sender s crash, detect & relay msgs from s to all 
● case 1: get m from s, detect crash s, redistribute m 
● case 2: detect crash s, get m from s, redistribute m 

● Filter duplicate messages before delivery
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Fail-Stop: Lazy Reliable Broadcast

● If sender s crash, detect & relay msgs from s to all 
● case 1: get m from s, detect crash s, redistribute m 
● case 2: detect crash s, get m from s, redistribute m 

● Why case 2? [d]
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Lazy Reliable Broadcast

p1

p2

p3

broadcast(m)

deliver(p1,m)

deliver(p2,[p1,m])

crash(p1)
broadcast([p1,m])

Case 2
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Fail-stop Lazy Reliable Broadcast

rb

beb P

broadcast(m)

broadcast(m)

deliver(pi,m)

crash(pj)deliver(pi,m)
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Lazy Reliable Broadcast
● Implements:  ReliableBroadcast (rb) 
● Uses:  

● BestEffortBroadcast (beb)  
● PerfectFailureDetector (P) 

● upon event 〈Init〉 do  
●  delivered := ∅  
●  correct := Π 
●  forall pi ∈ Π do from[pi] := ∅ 

● upon event 〈rb Broadcast | m〉 do  
● trigger 〈beb Broadcast | (DATA, self, m)〉

for filtering 
duplicates

storage for saved 
messages
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Lazy Reliable Broadcast (2)
● upon event 〈crash | pi〉 do  

● correct := correct \ {pi} 
● forall (sm,m) ∈ from[pi] do 
  trigger 〈beb Broadcast | (DATA, sm ,m)〉 

● upon event 〈beb Deliver | pi, (DATA, sm , m)〉 do  
● if m ∉ delivered then  
●  delivered := delivered ∪ {m} 
●  from[pi] := from[pi] ∪ { (sm, m)} 
●  trigger 〈rb Deliver | sm , m〉 
●  if pi ∉ correct then 
   trigger 〈beb Broadcast |(DATA, sm, m) 〉

Avoid duplicates

Store for future

Case 1: redistribute 
anything  we have 
from failed node

Case 2: redistribute
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RB Example

● Which case? Case 1

p1

p2

p3

broadcast(m)

deliver(p1,m)

deliver(p2,[p1,m])

crash(p1) broadcast([p1,m])



S. Haridi, KTHx ID2203.1x 46

Correctness of Lazy RB
● RB1-RB3 satisfied by BEB 
● Need to prove RB4 

● If a correct node delivers m, then every correct node delivers 
m 

● Assume Correct pk delivers message bcast by pi 

● If pi is correct, BEB ensures correct delivery 
● If pi crashes,  

● pk detects this (completeness) 
● pk uses BEB to ensure (BEB1) every correct node gets it



Measuring 
Performance
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Message Complexity
● The number of messages required to terminate an operation 

of an abstraction 

● Lazy reliable broadcast  
● The number of messages initiated by broadcast(m) 
● Until a deliver(src, m) event is issued at each process  

● Bit complexity 
● Number of bits sent, if messages can vary in size

48



S. Haridi, KTHx ID2203.1x 

Time  Complexity
● One time unit in an Execution E is the longest message delay in 

E 
● Time Complexity is Maximum time taken by any execution of the 

algorithm under the assumptions 
● A process can execute any finite number of actions (events) in 

zero time 
● The time between send(m)i,j and deliver(m)i,j is at most one 

time unit 
● In most algorithms we study we assume all communication steps 

takes one time unit
49
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Best effort broadcast
● Takes one time unit from broadcast(m)p to last deliver(p,m) 
● We also call it one communication step

p1

p2

p3

bcast(m)

p4

d(p1,m)bebd(p1,m)pls(p1,m) s(p2,m) s(p2,m)

d(p1,m)bebd(p1,m)pl

d(p1,m)bebd(p1,m)pl

d(p1,m)bebd(p1,m)pl

s(p2,m)
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Complexity of lazy reliable broadcast
● Assume N processes 
● Message complexity 
● Best case: O(N) messages 
● Worst case: O(N2) messages  

● Time complexity  
● Best case: 1 time unit 
● Worst case: 2 time units

51



Fail-Silent  
Eager Reliable Broadcast
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Eager Reliable Broadcast
● What happens if we replace P with ◊P? [d] 
● Only affects performance 
● Only affects correctness 
● No effect  
● Affects performance  and correctness
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Eager Reliable Broadcast

● Can we modify Lazy RB to not use P? [d] 
● Just assume all processes failed 
● BEB Broadcast as soon as you get a msg
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Eager Reliable Broadcast
● Uses: BestEffortBroadcast (beb)  

● upon event 〈Init〉 do  
●  delivered := ∅  

● upon event 〈rb Broadcast | m〉 do  
● delivered := delivered ∪ {m} 
● trigger 〈rb Deliver | self , m〉 
● trigger 〈beb Broadcast | (DATA, self, m)〉 

● upon event 〈beb Deliver |pi, (DATA, sm , m)〉 do  
● if m ∉ delivered then  
●  delivered := delivered ∪ {m} 
●  trigger 〈rb Deliver | sm , m〉 
●  trigger 〈beb Broadcast | (DATA, sm, m)〉

Immediately deliver
Immediately BEB 

broadcast

Immediately deliver
Immediately BEB 

broadcast
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Correctness of Eager RB
● RB1-RB3 satisfied by BEB 
● Need to prove RB4 

● If a correct process delivers m, then every correct node 
delivers m 

● Assume correct pk delivers message bcast by pi 

● pk uses BEB to ensure (BEB1) every correct process gets it



Uniform Reliable 
Broadcast
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Uniformity

● Is the proposed algorithm also uniform? [d] 

● Uniformity necessitates   
● If a failed process delivers a message m 
 then every correct node delivers m



S. Haridi, KTHx ID2203.1x 59

Uniformity
● No.  

● Sender p immediately RB delivers and crashes  
● Only p delivered message 

● upon event 〈rb Broadcast | m〉 do  
● delivered := delivered ∪ {m} 
● trigger 〈rb Deliver | self , m〉 
● trigger 〈beb Broadcast | (DATA, self, m)〉
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Uniform Eager RB
● Necessary condition for uniform RB delivery 

● All correct processes will get the msg 
● How do we know the correct processes got msg? [d] 

● Messages are pending until all correct processes get it 
● Collect acks from processes that got msg 

● Deliver once all correct processes acked 
● Use perfect FD 
● function canDeliver(m):  

● return correct ⊆ ack[m]

Use vector ack[m] at pi: the 
set of processes that acked m
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Uniform Eager RB implementation
● upon event 〈urb Broadcast | m〉 do  

● pending := pending ∪ {(self, m)} 
● trigger 〈beb Broadcast | (DATA, self, m)〉 

● upon event 〈beb Deliver | pi, (DATA, sm, m)〉 do  
● ack[m] := ack[m] ∪ {pi} 
● if (sm , m) ∉ pending then 

● pending := pending ∪ (sm, m) 
● trigger 〈beb Broadcast | (DATA, sm , m)〉 

● Upon exists  (sm,m)∈pending s.t.     
● canDeliver(m) and m ∉ delivered do 

● delivered := delivered ∪ {m} 
● trigger 〈urb Deliver | sm, m〉

remember sent messages

pi obviously got m

avoid resending

deliver when all correct 
nodes have acked
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URB Eager Algorithm Example

p1

p2

p3

urb-cast(m)

beb-d(p1,(p1,m))

beb-d(p2,(p1,m)) urb-d(p1,m)beb-d(p3,(p1,m))beb-d(p1,(p1,m))

beb-d(p2,(p1,m)) beb-d(p3,(p1,m)) urb-d(p1,m)

beb-d(p2,(p1,m)) beb-d(p3,(p1,m)) beb-d(p1,(p1,m)) urb-d(p1,m)
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Correctness of Uniform RB
● No creation from BEB 
● No duplication by using delivered set 
● Lemma 

● If a correct process pi bebDelivers m, then pi eventually 
urbDelivers m 

● Proof 
● Correct process pi bebBroadcasts m as soon as it gets m 

● By BEB1 every correct process gets m and bebBroadcasts m 
● pi gets bebDeliver(m) from every correct process by BEB1 
● By completeness of P, it will not wait for dead nodes forever 
▪ canDeliver(m) becomes true and pi delivers m
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Correctness of Uniform RB

● Validity 
● If sender s is correct, it’ll by validity (BEB1) bebDeliver m 
● By the lemma, it will eventually urbDeliver(m)
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Correctness of Uniform RB
● Uniform agreement 

● Assume some process (possibly failed) URB delivers m 
● Then canDeliver(m) was true,  
 by accuracy of P every correct process has BEB delivered m 

● By lemma each of the nodes that BEB delivered m will URB 
deliver m



Uniform Broadcast 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How useful is the uniform algorithm?
● Strong failure detectors necessary for URB? 
● No, we’ll provide RB for fail-silent model 

● Assume a majority of correct nodes 
● Majority = ⎣n/2⎦+1, i.e. 6 of 11, 7 of 12… 

● Every node eagerly BEB broadcast m 
● URB deliver m when received m from a majority
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Majority-ACK Uniform RB
● Same algorithm as uniform eager RB 

● Replace one function 
● function canDeliver(m) 

● return |ack[m]|>n/2 
● Agreement (main idea) 

● If a process URB delivers, it got ack from majority 
● In that majority, one node, p, must be correct 
● p will ensure all correct processes BEB deliver m 

● The correct processes (majority) will ack and URB deliver

majority has 
acknowledged m
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Majority-ACK Uniform RB

● Validity 
● If correct sender sends m 

● All correct nodes BEB deliver m 
● All correct nodes BEB broadcast 
● Sender receives a majority of acks 
● Sender URB delivers m
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Resilience 

● The maximum number of faulty processes an 
algorithm can handle 

● The Fail-Silence algorithm 
● Has resilience less than N/2 

● The Fail-Stop algorithm 
● Has resilience = N − 1

70


