
 
Reliable Broadcast

Seif Haridi
haridi@kth.se

S. Haridi, KTHx ID2203.1x

Designing Algorithms

2

S. Haridi, KTHx ID2203.1x

Combining Abstractions
● Fail-stop

● Crash-stop process model
● Perfect links + Perfect failure detector (P)

● Fail-silent
● Crash-stop process model
● Perfect links

● Fail-noisy
● Crash-stop process model
● Perfect links + Eventually Perfect failure detector (◊P)

● Fail-recovery
● Crash-recovery process model
● Stubborn links + …

(synchronous)

(asynchronous)

(partially synchronous)

3

S. Haridi, KTHx ID2203.1x

Fail-stop model
● Fail-stop

● Crash-stop process model
● Perfect links + Perfect failure detector (P)

● Synchronous model

● Local algorithms can track the set of correct processes
● Without violating liveness properties: use

● Techniques based request/reply
● Waiting for acknowledgment for all correct processes

4

S. Haridi, KTHx ID2203.1x

Fail-silent model
● Fail-silent

● Crash-stop process model
● Perfect links

● Asynchronous model

● No access to failure detectors
● Assumes a majority of processes are always correct
● Often use a majority quorum techniques (next unit)
● Local algorithm cannot wait for more than ⌈n/2⌉+1

otherwise it might get stuck

5

S. Haridi, KTHx ID2203.1x

Fail-noisy model
● Fail-noisy

● Crash-stop process model
● Perfect links
● Eventually Perfect failure detector (◊P)

● Partially synchronous model

● To guarantee safety properties any algorithm has to
assume the failure detector inaccurate

● Eventual accuracy is only used to guarantee liveness

6

S. Haridi, KTHx ID2203.1x

Fail-recovery model
● Fail-recovery

● Crash-recovery process model
● Stubborn links or a persistent links (logs)

● Relies often on a persistent memory to store and
retrieve critical information

● After recovery a process may contact other process to
retrieve up to date state information

● Some algorithms relax the reliability conditions on
channels allowing message loss/duplication/reordering

7

Quorums in crash-stop
process model

S. Haridi, KTHx ID2203.1x

Quorums
● For N crash-stop process abstractions
● Quorum is any set of majority of processes
● A set with at least ⎣N/2⎦ +1 processes

● The algorithms will rely on a majority of processes will not fail
● f < N/2 (f is the max number of faulty processes)

● f is the resilience of the algorithm

9

S. Haridi, KTHx ID2203.1x

Quorums crash-stop/recovery model  
f < N/2

● Two quorums always intersect in at least
ONE process

10

faulty

correct

quorums

S. Haridi, KTHx ID2203.1x

Quorums crash-stop/recovery model 
f < N/2

● There is at least ONE quorum with only
correct processes

11

faulty

correct

quorums

S. Haridi, KTHx ID2203.1x

● There is at least ONE correct process in each
quorum

12

faulty

correct

quorums

Quorums crash-stop/recovery model 
f < N/2

S. Haridi, KTHx ID2203.1x

Quorums
● Quorums used in Fail-Silent and Fail-Noisy

algorithms
● A process never waits for messages from

more than ⎣N/2⎦ + 1 (different) processes

13

faulty

correct quorums

 Broadcast Abstractions

S. Haridi, KTHx ID2203.1x 15

Broadcast Services
● Send a message to a group of processes

p1

p2

p3

broadcast(m)

deliver(p1,m)

p4
deliver(p1,m)

deliver(p1,m)

deliver(p1,m)

S. Haridi, KTHx ID2203.1x 16

Unreliable Broadcast

p1

p2

p3

broadcast(m)

deliver(p1,m)

p4 deliver(p1,m)

crash event

S. Haridi, KTHx ID2203.1x 17

Reliable Broadcast Abstractions
● Best-effort broadcast

● Guarantees reliability only if sender is correct
● Reliable broadcast

● Guarantees reliability independent of whether sender is correct
● Uniform reliable broadcast

● Also considers behavior of failed nodes
● FIFO reliable broadcast

● Reliable broadcast with FIFO delivery order
● Causal reliable broadcast

● Reliable broadcast with causal delivery order

S. Haridi, KTHx ID2203.1x 18

Reliable Broadcast Abstractions

● Probabilistic reliable broadcast
● Guarantees reliability with high probability
● Scales to large number of nodes

● Total order (atomic) reliable broadcast
● Guarantees reliability and same order of delivery

Specification of
Broadcast Abstractions

S. Haridi, KTHx ID2203.1x 20

Best-effort broadcast (beb)
● Instance beb
● Events
● Request: 〈beb Broadcast | m〉
● Indication: 〈beb Deliver | src, m〉

● Properties: BEB1, BEB2, BEB3

S. Haridi, KTHx ID2203.1x 21

Best-effort broadcast (beb)
● Intuitively: everything perfect unless sender crash

● Properties
● BEB1. Best-effort-Validity: If pi and pj are correct, then any

broadcast by pi is eventually delivered by pj
● BEB2. No duplication: No message delivered more than

once
● BEB3. No creation: No message delivered unless broadcast

S. Haridi, KTHx ID2203.1x 22

BEB Example

● Is this allowed?
p1

p2

p3

broadcast(m)

deliver(p1,m)

p4
deliver(p1,m)

No

S. Haridi, KTHx ID2203.1x 23

BEB Example (2)

● Is this allowed?
p1

p2

p3

broadcast(m)

deliver(p1,m)

p4
deliver(p1,m)

Yes

S. Haridi, KTHx ID2203.1x 24

Reliable Broadcast
● BEB gives no guarantees if sender crashes
● Strengthen to give guarantees if sender crashes

● Reliable Broadcast Intuition
● Same as BEB, plus
● If sender crashes:
 ensure all or none of the correct nodes get msg

S. Haridi, KTHx ID2203.1x 25

Reliable Broadcast (rb)
● Instance rb
● Events
● Request: 〈rb Broadcast | m〉
● Indication: 〈rb Deliver | src, m〉

● Properties: RB1, RB2, RB3, RB4

S. Haridi, KTHx ID2203.1x 26

Reliable Broadcast Properties
● Properties
● RB1 = BEB1. Validity
● RB2 = BEB2. No duplication
● RB3 = BEB3. No creation

● RB4. Agreement.
● If a correct process delivers m, then every correct

process delivers m

S. Haridi, KTHx ID2203.1x 27

Refining correctness
● Can weaken RB1 without any effect

RB1 = BEB1 Validity
❑ If pi and pj are correct, then any

broadcast by pi is eventually
delivered by pj

RB2 = BEB2. No duplication

RB3 = BEB3. No creation

RB4. Agreement.
❑ If a correct node delivers m, then

every correct node delivers m

RB1 Validity.
❑ If correct pi broadcasts m, pi itself

eventually delivers m

RB2 = BEB2. No duplication

RB3 = BEB3. No creation

RB4. Agreement.
❑ If a correct node delivers m, then

every correct process delivers m

Old Validity ←equivalent with→ New Validity

S. Haridi, KTHx ID2203.1x 28

RB Example

● Is this allowed?
p1

p2

p3

broadcast(m)

p4

Yes

S. Haridi, KTHx ID2203.1x 29

RB Example

● Is this allowed?
p1

p2

p3

broadcast(m)

p4

Yes

deliver(p1,m)

S. Haridi, KTHx ID2203.1x 30

RB Example

● Is this allowed?
p1

p2

p3

broadcast(m)

p4

No

deliver(p1,m)

S. Haridi, KTHx ID2203.1x 31

RB Example

● Is this allowed?
p1

p2

p3

broadcast(m)

deliver(p1,m)

p4
deliver(p1,m)

Yes
deliver(p1,m)

S. Haridi, KTHx ID2203.1x 32

Uniform Reliable Broadcast
● Assume sender broadcasts message

● Sender fails
● No correct process delivers message
● Some failed processes deliver

message
● Assume the broadcast enforces

● Printing a message on paper
● Withdrawing money from account

● Uniform reliable broadcast intuition
● If a failed node delivers, everyone must

deliver…
 At least correct nodes, we cannot revive

the dead…

Is it ok

S. Haridi, KTHx ID2203.1x 33

Uniform broadcast (urb)
● Events

● Request: 〈urb Broadcast | m〉
● Indication: 〈urb Deliver | src, m〉

● Properties:
● URB1
● URB2
● URB3
● URB4

S. Haridi, KTHx ID2203.1x 34

Uniform Broadcast Properties
● Properties

● URB1 = RB1.
● URB2 = RB2.
● URB3 = RB3.
● URB4. Uniform Agreement: For any message m,

if a process delivers m, then every correct
process delivers m

Wanted: Dead &
Alive!

 Broadcast Abstractions

Implementation of
Broadcast Abstractions

S. Haridi, KTHx ID2203.1x 37

Implementing BEB
● Use Perfect channel abstraction

● Upon 〈beb Broadcast | m〉 send message m to all
processes (for-loop)

● Correctness
● If sender doesn’t crash, every other correct process

receives message by perfect channels (Validity)
● No creation & No duplication already guaranteed by

perfect channels

Fail-Stop 
Lazy Reliable Broadcast

S. Haridi, KTHx ID2203.1x 39

Fail-Stop: Lazy Reliable Broadcast
● Requires perfect failure detector (P)

● To broadcast m:
● best-effort broadcast m
● When get beb Deliver

● Save message, and
● rb Deliver message

● If sender s crash, detect & relay msgs from s to all
● case 1: get m from s, detect crash s, redistribute m
● case 2: detect crash s, get m from s, redistribute m

● Filter duplicate messages before delivery

S. Haridi, KTHx ID2203.1x 40

Fail-Stop: Lazy Reliable Broadcast

● If sender s crash, detect & relay msgs from s to all
● case 1: get m from s, detect crash s, redistribute m
● case 2: detect crash s, get m from s, redistribute m

● Why case 2? [d]

S. Haridi, KTHx ID2203.1x 41

Lazy Reliable Broadcast

p1

p2

p3

broadcast(m)

deliver(p1,m)

deliver(p2,[p1,m])

crash(p1)
broadcast([p1,m])

Case 2

S. Haridi, KTHx ID2203.1x 42

Fail-stop Lazy Reliable Broadcast

rb

beb P

broadcast(m)

broadcast(m)

deliver(pi,m)

crash(pj)deliver(pi,m)

S. Haridi, KTHx ID2203.1x 43

Lazy Reliable Broadcast
● Implements: ReliableBroadcast (rb)
● Uses:

● BestEffortBroadcast (beb)
● PerfectFailureDetector (P)

● upon event 〈Init〉 do
● delivered := ∅
● correct := Π
● forall pi ∈ Π do from[pi] := ∅

● upon event 〈rb Broadcast | m〉 do
● trigger 〈beb Broadcast | (DATA, self, m)〉

for filtering
duplicates

storage for saved
messages

S. Haridi, KTHx ID2203.1x 44

Lazy Reliable Broadcast (2)
● upon event 〈crash | pi〉 do

● correct := correct \ {pi}
● forall (sm,m) ∈ from[pi] do
 trigger 〈beb Broadcast | (DATA, sm ,m)〉

● upon event 〈beb Deliver | pi, (DATA, sm , m)〉 do
● if m ∉ delivered then
● delivered := delivered ∪ {m}
● from[pi] := from[pi] ∪ { (sm, m)}
● trigger 〈rb Deliver | sm , m〉
● if pi ∉ correct then
 trigger 〈beb Broadcast |(DATA, sm, m) 〉

Avoid duplicates

Store for future

Case 1: redistribute
anything we have
from failed node

Case 2: redistribute

S. Haridi, KTHx ID2203.1x 45

RB Example

● Which case? Case 1

p1

p2

p3

broadcast(m)

deliver(p1,m)

deliver(p2,[p1,m])

crash(p1) broadcast([p1,m])

S. Haridi, KTHx ID2203.1x 46

Correctness of Lazy RB
● RB1-RB3 satisfied by BEB
● Need to prove RB4

● If a correct node delivers m, then every correct node delivers
m

● Assume Correct pk delivers message bcast by pi

● If pi is correct, BEB ensures correct delivery
● If pi crashes,

● pk detects this (completeness)
● pk uses BEB to ensure (BEB1) every correct node gets it

Measuring
Performance

S. Haridi, KTHx ID2203.1x

Message Complexity
● The number of messages required to terminate an operation

of an abstraction

● Lazy reliable broadcast
● The number of messages initiated by broadcast(m)
● Until a deliver(src, m) event is issued at each process

● Bit complexity
● Number of bits sent, if messages can vary in size

48

S. Haridi, KTHx ID2203.1x

Time Complexity
● One time unit in an Execution E is the longest message delay in

E
● Time Complexity is Maximum time taken by any execution of the

algorithm under the assumptions
● A process can execute any finite number of actions (events) in

zero time
● The time between send(m)i,j and deliver(m)i,j is at most one

time unit
● In most algorithms we study we assume all communication steps

takes one time unit
49

S. Haridi, KTHx ID2203.1x 50

Best effort broadcast
● Takes one time unit from broadcast(m)p to last deliver(p,m)
● We also call it one communication step

p1

p2

p3

bcast(m)

p4

d(p1,m)bebd(p1,m)pls(p1,m) s(p2,m) s(p2,m)

d(p1,m)bebd(p1,m)pl

d(p1,m)bebd(p1,m)pl

d(p1,m)bebd(p1,m)pl

s(p2,m)

S. Haridi, KTHx ID2203.1x

Complexity of lazy reliable broadcast
● Assume N processes
● Message complexity
● Best case: O(N) messages
● Worst case: O(N2) messages

● Time complexity
● Best case: 1 time unit
● Worst case: 2 time units

51

Fail-Silent  
Eager Reliable Broadcast

S. Haridi, KTHx ID2203.1x 53

Eager Reliable Broadcast
● What happens if we replace P with ◊P? [d]
● Only affects performance
● Only affects correctness
● No effect
● Affects performance and correctness

S. Haridi, KTHx ID2203.1x 54

Eager Reliable Broadcast

● Can we modify Lazy RB to not use P? [d]
● Just assume all processes failed
● BEB Broadcast as soon as you get a msg

S. Haridi, KTHx ID2203.1x 55

Eager Reliable Broadcast
● Uses: BestEffortBroadcast (beb)

● upon event 〈Init〉 do
● delivered := ∅

● upon event 〈rb Broadcast | m〉 do
● delivered := delivered ∪ {m}
● trigger 〈rb Deliver | self , m〉
● trigger 〈beb Broadcast | (DATA, self, m)〉

● upon event 〈beb Deliver |pi, (DATA, sm , m)〉 do
● if m ∉ delivered then
● delivered := delivered ∪ {m}
● trigger 〈rb Deliver | sm , m〉
● trigger 〈beb Broadcast | (DATA, sm, m)〉

Immediately deliver
Immediately BEB

broadcast

Immediately deliver
Immediately BEB

broadcast

S. Haridi, KTHx ID2203.1x 56

Correctness of Eager RB
● RB1-RB3 satisfied by BEB
● Need to prove RB4

● If a correct process delivers m, then every correct node
delivers m

● Assume correct pk delivers message bcast by pi

● pk uses BEB to ensure (BEB1) every correct process gets it

Uniform Reliable
Broadcast

S. Haridi, KTHx ID2203.1x 58

Uniformity

● Is the proposed algorithm also uniform? [d]

● Uniformity necessitates
● If a failed process delivers a message m
 then every correct node delivers m

S. Haridi, KTHx ID2203.1x 59

Uniformity
● No.

● Sender p immediately RB delivers and crashes
● Only p delivered message

● upon event 〈rb Broadcast | m〉 do
● delivered := delivered ∪ {m}
● trigger 〈rb Deliver | self , m〉
● trigger 〈beb Broadcast | (DATA, self, m)〉

S. Haridi, KTHx ID2203.1x 60

Uniform Eager RB
● Necessary condition for uniform RB delivery

● All correct processes will get the msg
● How do we know the correct processes got msg? [d]

● Messages are pending until all correct processes get it
● Collect acks from processes that got msg

● Deliver once all correct processes acked
● Use perfect FD
● function canDeliver(m):

● return correct ⊆ ack[m]

Use vector ack[m] at pi: the
set of processes that acked m

S. Haridi, KTHx ID2203.1x 61

Uniform Eager RB implementation
● upon event 〈urb Broadcast | m〉 do

● pending := pending ∪ {(self, m)}
● trigger 〈beb Broadcast | (DATA, self, m)〉

● upon event 〈beb Deliver | pi, (DATA, sm, m)〉 do
● ack[m] := ack[m] ∪ {pi}
● if (sm , m) ∉ pending then

● pending := pending ∪ (sm, m)
● trigger 〈beb Broadcast | (DATA, sm , m)〉

● Upon exists (sm,m)∈pending s.t.
● canDeliver(m) and m ∉ delivered do

● delivered := delivered ∪ {m}
● trigger 〈urb Deliver | sm, m〉

remember sent messages

pi obviously got m

avoid resending

deliver when all correct
nodes have acked

S. Haridi, KTHx ID2203.1x 62

URB Eager Algorithm Example

p1

p2

p3

urb-cast(m)

beb-d(p1,(p1,m))

beb-d(p2,(p1,m)) urb-d(p1,m)beb-d(p3,(p1,m))beb-d(p1,(p1,m))

beb-d(p2,(p1,m)) beb-d(p3,(p1,m)) urb-d(p1,m)

beb-d(p2,(p1,m)) beb-d(p3,(p1,m)) beb-d(p1,(p1,m)) urb-d(p1,m)

S. Haridi, KTHx ID2203.1x 63

Correctness of Uniform RB
● No creation from BEB
● No duplication by using delivered set
● Lemma

● If a correct process pi bebDelivers m, then pi eventually
urbDelivers m

● Proof
● Correct process pi bebBroadcasts m as soon as it gets m

● By BEB1 every correct process gets m and bebBroadcasts m
● pi gets bebDeliver(m) from every correct process by BEB1
● By completeness of P, it will not wait for dead nodes forever
▪ canDeliver(m) becomes true and pi delivers m

S. Haridi, KTHx ID2203.1x 64

Correctness of Uniform RB

● Validity
● If sender s is correct, it’ll by validity (BEB1) bebDeliver m
● By the lemma, it will eventually urbDeliver(m)

S. Haridi, KTHx ID2203.1x 65

Correctness of Uniform RB
● Uniform agreement

● Assume some process (possibly failed) URB delivers m
● Then canDeliver(m) was true,
 by accuracy of P every correct process has BEB delivered m

● By lemma each of the nodes that BEB delivered m will URB
deliver m

Uniform Broadcast 
Fail-Silent

S. Haridi, KTHx ID2203.1x 67

How useful is the uniform algorithm?
● Strong failure detectors necessary for URB?
● No, we’ll provide RB for fail-silent model

● Assume a majority of correct nodes
● Majority = ⎣n/2⎦+1, i.e. 6 of 11, 7 of 12…

● Every node eagerly BEB broadcast m
● URB deliver m when received m from a majority

S. Haridi, KTHx ID2203.1x 68

Majority-ACK Uniform RB
● Same algorithm as uniform eager RB

● Replace one function
● function canDeliver(m)

● return |ack[m]|>n/2
● Agreement (main idea)

● If a process URB delivers, it got ack from majority
● In that majority, one node, p, must be correct
● p will ensure all correct processes BEB deliver m

● The correct processes (majority) will ack and URB deliver

majority has
acknowledged m

S. Haridi, KTHx ID2203.1x 69

Majority-ACK Uniform RB

● Validity
● If correct sender sends m

● All correct nodes BEB deliver m
● All correct nodes BEB broadcast
● Sender receives a majority of acks
● Sender URB delivers m

S. Haridi, KTHx ID2203.1x

Resilience

● The maximum number of faulty processes an
algorithm can handle

● The Fail-Silence algorithm
● Has resilience less than N/2

● The Fail-Stop algorithm
● Has resilience = N − 1

70

