THE CHURCH-TURING
THESIS

So far in our development of the theory of computation we have presented sev-

. eral models of compuiing devices. Finite automata are good models for devices
that have a small amount of memory. Pushdown automata are good madels for -
devices that have an unlirnitéd memory that is usable only in the last in, first out
manner of a stack. We have shown that some very simple tasks are beyond the
capabilities of these models. Hence they are too restricted to serve as models of
general purpose computers. '

3.] xﬁ‘&5&§§§§§ﬁﬁlﬁﬁﬁﬂﬁﬂi&l&ﬁﬁﬁ&ﬁﬁ%ﬁ

TURING MACHINES

We turn now to a much more powerful model, first proposed by Alan Turing
in 1936, called the Tiring machine. Similar to a finite automaton but with, an
unlimited and unrestricted memory, a "Turing machine is 2 much more accurate
model of a general purpose computer. A Turing machine can do everything that
areal computer can do. Nonetheless, even a Turing machine cannot solve certain
problems. In a very real sense, these problems are beyond the theoretical Emits
of compuration.

‘The Turing machine model uses an infinice tape as its unlimited memory. I
has a tape head that can read and write symbols and move around on the rape.

125

126 CHAPTER 3 / THE CHURCH-TURING THESIS

Initally the tape contains only the input string and is blank everywhere else. If
the machine needs to store information, it may write this information on the tape.
'To read the information that it has written, the machine can move its head back
over it. "The machine continues computing uatil it decides to produce an outpu,
"The outputs aceept and.reject are obtained by entering designated accepting and
rejecting states. If it doesn’t erfcer an accepting or a rejecting state, it will go on
forever, never halting. : :

control

BODDmmSS

FIGURE 3.1 ,
Schematic of a Turing machine

The following list summarizes the differences between finite automata and
Turing machines.

1. A Turing machine can both write on the tape and read from it.

2. The read-write head can move both to the left and to the right.
3. The tape is infinite. '
4. The special states for'rejecti.ng and accepting take immediate effect. .

Lets consider a Turing machine M; for testing membership in the language
B = {w#w|w € {0,1}*}. That is, we want to design M to accept if its input is
a member of B. To understand M, berter, put yourself in jts place by imagining
that you are standing on a mile-long input consisting of millions of characters,
Your goal is to determine whether the input is a member of B, that is, whether
the input comprises two identical strings separated by a # symbol. The input is
too long for you to remember it all, but you are allowed to move back and forth
over the input and make marks on it. Of course, the obvious strategyis 1o zig-zag
to the corresponding places on the two sides of the # and determine whether they
match. Use marks to keep track of which places correspond.

We design M) to work in the same way. It makes multiple passes over the
input string with the read-write head. On each pass it matches one of the char-

acters on each side of the # symbol. To keep track of which symbols have been

checked already, M3 crosses off each symbol as it is examined. Tfit crosses off all
the symbols, that means that everything matched successtully, and M; goes inro
an accept state. If it discovers a mismatch, it enters a reject state. In summary,
M;’s algorithm is as folows.

The fo

puting in

FIGURE
Snapsho

158
not give
giving fc
antomat
dg "o
never gi

big.

FORM
The he:

caunse it
machin
chine 1s

a,ané I

e, If
tape.
back
tput.
rand
‘0 on

2 and

iput is

zining

acters. |
tether-

1pe i

1 forth

ig-zag
o1 they

rer the |

> char-
e been
; off all
es into
nmal'Yg

3.1 TURING MACHINES

My = “On input string w: _

1. Scan the input to be sure that it contains a single # symbol. If
Tot, reject. ' '

2. Zig-zagacross the tape to corresponding positions on either side -
of the # symbol to check on whether these positions contain the -
same symbol. If they do not, reject. Cross off symbols as they
are checked to keep track of which symhols correspond.

When all syrnbols to the left of the # have been crossed off,check
for any remaining symbols to the right of the #. If any symbols

remain, reject; otherwise accept.”

The following figure contains several snapshots of M; 5 tape while it is com-
puting in stages 2 and 3 when started on input 0110004011000,

Y
011000#0114000

— |
x11000#011000

XilOOO#_}{-iloorO

211000#:{ 1000
'x—:qéiooom: 1000

¥
XXXXXX#XIXxx X310
‘ accept

FIGURE 3.2 _
Snapshots of Tiring machine M; computing on input 6110004011000

"This description of Turing machine M; sketches the way it functions but does
not give all its details. We can describe ‘Turing machines in complete detail by
giving formal descriptions analogous to those introduced for finite and pushdown
automata. The formal description specifies each of the parts of the formal defini-
ton of the Turing machine model to be presented shortly. In actuality we almost
never give formal descriptions of Turing machines because they tend to be very
big.

FORMAL DEFINITION OF A TURING MACHINE

The heart of the definidon of a "Turing machine is the transition function § be-
cause it tells us how the machine gets from one step to the next. For a Turing
Mmachine, § takes the form: Q x T —s Q@ x I' x {L,R}. That is, when the ma-
chine is in a certain state g and the head is over 2 tape square containing a symbol
% and if §(g, @} = (r, b, 1), the machine writes the symbol b replacing the 4, 2nd

]28 CHAPTER 3/ THE CHURCH-TURING THES!S

goes to state 7. The third component is either L or R and indicates whether the : ; I:

head moves to the left or right after wridn g- In chis case the L indicates a move
to the lefr. '

FIGURE

DEFINITION 3.1 - o A Turing

A Turing machine is a 7-tuple, (Q, T, 1, 6, g0, Gacceps; Greject), where @, T, I are al]
finite sets and -

: H owe
chine comj
2. ¥ is the input alphabet not containing the special blank symbol 1, machine ca

mally as fo.
3. I'is the tape alphabet, where {U} e Tand £ C T, Suppose

4. 0: @ xT—Q x T x {L, R} is the transition function, . Inth s
go € @ Is the start state, ' o

L. @ is the set of states,

Gaceepe € € s the accept state, and

: ; ' ; ' . ifin the trz
rejece € € is the reject state, where Greject 7 Gaccept- : Firing ma

A’Turing machine M = (Q,%.1,6, g0, Gaccept, Jreject) COmMPpuUtes as follows. Tni-)
tially M receives its input w = wyws ... w, € $* on the leftmost 7 squares of it olar, b) :
the tape, and the rest of the tape is blank (i.e., filled with blank symbols), The : Special
head starts on the leftmost square of the tape. Note that ¥ does not contain the For the le
blank symbol, so the first blank appearing on the tape marks the end of theinput. moving (b
Once M starts, the computation proceeds according to the rules described by the ' tape), end
transition function. If M ever tries to move its head to the left off the left-hand) the config .
end of the tape, the head stays in the same place for that move, even though the low the pa
transidon function indicates L. The computation continues until it enters either case as be:

the accept or reject states at which point it halts. If neither oceurs, M goes on o
forever, '

cates that
As 2 Turing machine computes, changes occur in the current state, the cur- - ' on the tap
rent tape contents, and the current head location. A, setting of these three items G In 2 reject

is called 2 configuration of the Turing machine. Configurations often are repre- o rejecung
sented in a special way. For a state g and two strings wand v over the tape alphabet P w0
I we write 4 g v for the configuration where the current state is ¢, the current tape

contents is uw, and the current head location is the first symbol of v. The tape

contains only blanks following the Tast symbol of v. For example, 1011701111 i

represents the configuration when the tape is 10110141 1, the current state is ¢, o 2. cadl

and the head is currently on the second 0. The following figure depicts a Taring 3. 6%
machine with that configuration.

The colle

TURING MACHINES 129

[i|oﬁzl.1|o|1i;Ii[ilu’u]z[%.Q.

FIGURE 3.3 -
A 'Turing machine with configuration 1011¢,01111

Here we formalize our intnitive understanding of the way that a Turing ma-
chine computes. Say that configuration C; yields configuration C» if the Turing
machine can legally go from C; to Chin a single step. We defin€ this notion for-
mally as follows. ,

- Suppose that we have a and b in T, as well as w and v in I™* and states g; and g
In that case ua g; bv and u gj acv are two configurations. Say that

uagi by yields wugjecw

if in the transition functon § (gi,b) = (g5, ¢, L). That handles the case where the
‘luring machine moves leftward. For a rightward move, say that

. uag; by yields wuacq;v

Ifé(Q'H b} = (Qjﬂ < R)'

Special cases oécur when the head is at one of the ends of the configuration.
For the left-hand end, the configuration g; bv yields q; cv if the transition is left
moving (because we prevent the machine from going off the left-hand end of the
tape), and it yields ¢ g;v for the right moving transition. For the right-hand end,
the configuration ua ¢ is equivalent to ua g L because we assume that blanks fol-
low the part of the tape represented in the configuration. Thus we can handle this
case 2s before, with the head no longer at the right-hand end.

. 'The start configurarion of M on input w is the configuration gg w, which indi-
cates that the machine is in the start state gy with its head at the leftmost positon
on the tape. In an accepting configuration the suate of the configuration is accepy.
In a rejecting configuration the state of the confguration is grejece. Accepting and
rejecting configurations are balting configurations and accordingly do not yield
further configurations. A Turing machine M gecepts inputw ifa sequence of con-
figurations Cy, Oy, ... , Gy exists where ' ' .

1. C is the start configuration of M on mput w4,
2. each C; yields C;.1, and
3. Oy is an accepting configuration.

The collection of strings that M accepts is the language of M, denoted L{M).

130 chaptER 3/ THE CHURCH-TURING THES|S

DEFINITION 3.2

Call a language Tarin g-recognizable if some Turing machine re cognizes it, !

ut, three outcormes are possible. The machine
op we mean that the machine simply does not halt,
the same steps in the same way forever as the cop-
notation of looping may suggest. Looping may entail any simple or complex be-
havior that never leads to a halting state. _
A Turing machine M can fail to accept an input by
and rejectin ishi

DEFINITION 3.3

Call 2 lan%fuagé Tiring-decidable or simpijz decidable if some Turing machine
- decides it. ' o _

Every decidable language is Tering-recognizable but certain Turing-recognizable
languages are not decidable. We now give some examples of decidable languages.
We present examples of languages that are ‘luring-recognizable but not decidable
- after we develop a technique for proving undecidability in Chapter 4.

EXAMPLES OF TURING MACHINES

As we did for finite and pushdown automata, we can give a formal description of
a particular Turing machine by specifying each of its sev
ing to that leve] of detail for Turing machines can be cutnbersome for all but the
tiniest machines. Accordingly, we won’t spend much time giving such descrip-
tons. Mostly we will give only higher level descriptions because they are precise
enough for our purposes and are much easier to understand. Nevertheless, it is
important to remember that every higher level description i actually just short-
hand for its formal counterpart. With patience and care we could describe any
of the Turing machines in this hook in complete formal deail.

1o help you make the connection between the farma) descriptions and the
higher leve] descriptions, we give state diagrams in the next tWo examples. You
may skip over them if you already feel comfortable with thig connection.

- Meis called 2 recursively enumerable language in some other texthooks.
Tt is called a recursive language in some other textbooks,

‘ gnizable‘
1ages.
dable

TURING MACHINES 131

EXAMPLE 3.4

Here we describe a TM Ms that recognizes the Janguage consisting of all strings
of 0s whose length is a power of 2. It decides the language A = {02"| n > 0}.

My = “On input string w: o
1. Sweep left to right across the tape, crossing off every other 0.
2. Ifinstage 1 the tape contained a single 0, accept.
3. Ifin stage 1 the tape contained more than a single 0 and the
number of 0s was odd, reject.- _ '
4. Return the head to the left-hand end of the tape.
5. Goto stage 1.7 ' '

Each iteration of stage 1 cuts the number of s in half. As the machine sweeps
across the tape in stage 1, it keeps track of whether the number of Gs seen is even
ot odd. Tf that number is odd and greater than 1, the original number of 0s in the
input could not have been a power of 2. Therefore the machine rejects in this
instance. However, if the number of 0s seen is 1, the original number must have
been a power of 2. So in this case the machine accepts.

Now we give the formal description of My = (@, 5,T,6,q1,

Gaccepts q;-ejact)-

= (QI: q2, 43, G4, 95, Gaceepr; q:e}ect)s
Z={0}, and

0L .
T, g0~
utthe
'SCIrip-
;rq_r': -
38, iL 3
shore-
be any

nd the

5. You

TR Fe
We describe § with 2 state diagram (see Figure 3.4).
~+ The start, accept, and reject states are gy, Gaecepr, and reject:
In the state diagram in Figure 3.4 the label 0 — 4R ap;pears on the transition

from ¢y t0 go. It signifies that, when in state ¢y with the head reading 0, the ma-
chine goes to state g, writes 1, and moves the head to the right. In other words,

“8(g1,0) = (g2,u,R). For clarity we use the shorthand 0 — R in the transition

from g3 to g4, as meaning that the machine moves to the right when reading 0 in
state g4 but doesn’t alter the tape, so §(gs,0) = (g4,0,R).

"This machine begins by writing a blank symbol over the leftmost 0 on the tape
50 that it can find the left-hand end of the tape in stage 4. Whereas we would
normally use a more suggestive symbol such as # for the left-hand end delimiter,
we use a blank here to keep the mpe alphabet, and hence the state diagram, small.
Examsple 3.6 gives another method of finding the left-hand end of the tape.

We give a sample run of this machine on inpur 6000, The starting config-
uration is ¢;0000. The sequence of configurations the machine enters appears
following Figure 3.4. Read down the columns and left to right.

FIGURE 3.4

State diagram for Turing machine M,

+*Asample run of M» on input 0000

1 acoo .
LG 000
uxgz00
I_EXOQ'40
LxO0xgsu
© wxOgs
uxgsOxu

Lgs 0%
gsux 0z
ugax0x
LGy OXI—f
LXXG3 R

LXXZXGaL

LEXFrX U

i,

LIXg5XzU
M XXX

. gslaxRy
LgoXXTxzn -
uxgz XU
UXX(}-ﬂ.l
L XX G
LXK Gaecept

NONDETERMINISTIC TURING MACHINES

A nondeterministic Turing machine is defined in the expected way. At any point
in a computationthe machine may proceed according to several possibilities, The
wansition function for a nondeterministic Taring machine has the form -

5 @xT—P(Q@x T x {L,R}).

" The compuration of a nondeterministic ‘Turing machine is 2 tres whose branches
correspond to different possibilities for the machine. If some branch of the com-
putation leads to the accept state, the machine aceepts its input. If you feel the
need to review nondeterminism, turn to Section 1.2 an page 47, Now we show
that nondeterminism does not affect the'power of the Taring machine mode),

+

THEC;.‘REM 3.10

Every nondeterministic Turing machine has an equivalent deterrninisde Turing
. machine. - : ' :

PROOF IDEA We show that we can simulate any nondeterministic TM V with
a deterministic TM D. The idea behind the simulation is to have D try all possible
branches of Vs nondeterministic computation. If D ever inds the acceptitate on
one of these branches, 1> accepts. Otherwise, D’s simulation wiff not terminate,

We view N's computadon on an input w as a tree. Each branch of the tree
represents one of the branches of the nondeterminism. Fach node of the ee is
a configuration of V. The root of the tree is the start configeration. The TM 1D
searches this tree for an accepting configuration. Conducting this search care-
fully is crucial lest I fail to visit the entire tree. A teropting, though bad, ides
is to have [explore the tree by using depth first search. The depth first search

,Strategy goes all the way down one branch before backing up to explore other

“branches. If D were to explore the tree in this manner, D could go forever down

one infinite branch and miss an accepting corifiguration on sofne other branch.
Hence we design D to explore the tree by using breadth first search instead. This
strategy explores all branches to the same depth before going or to explore any
branch to the next depth. This method guarantees that D will visit every node in
the tree until it encounters an accepting configuration.

3.2 VARIANTS OF TURING MACHINES 139
_____ PROOF The simulating deterministic TM I has three tapes. By Theorem 3.8
: this arrangement is equivalent to having a single tape. The machine D uses s
ne three tapes in a particular way, as illustrated in the following figure. Tape 1 always
contains the input string and is never altered. lape 2 maintains a copy of As tape
, -on some branch of its nondeterministic computation. Tape 3 keeps track of D%
e~ location in N's nondeterministic computation tree.
1e.
.
input tape
X XI# IO|1]xlu| .. . stmulation tape
int 1[2|3|3[2|3|1{2|1]1!3|u]...addresstape
‘he
FIGURE 3.7 &
Deterministic TM D simulating nondeterministic TM N
hes ‘ .
- * Let’s first consider the data representation on tape 3. Every node in the tree
the can have at most b children, where biis the size of the largest set of possible choices
OW given by N's ransition funcdon. To every node in the tree we assign an address
L that is a string over the alphabet ¥, = {1,2, ... ,b}. We assign the address 231
to the node we arrive at by starting at the root, going to jts 2nd child, going to
________ that node’s 8rd child, and finally going to that node’s 1st child. Fach symbol in
the string tells us which choice to make next when simulating a step in one branch
ing in N’ nondetesninistic computation. Sometimes a symbol may not corréspond
to any choice if too few choices are available for a configuration. In that case the
address is invalid and doesn’t correspond to any node. Tape 3 contains a sing
v11:h over 3. It represents the branch of Ns computatiop from the root to the node
ible addressed by that string, unless the address is invalid. The empty string'is the
=on address of the root of the tree. Now we are ready to describe D. - :
ate. 1. Tnitially tape 1 contains the input w, and tapes 2 and 3 are empty.
tree 2. Copy tape 1 to tape 2.
N ;’ 3. Use tape 2 to simulate N with input w on one branch of its nondetermin-
v istic computation. Before each step of NV consult the next symbol on tape 3
are- to determine which choice to make among those allowed by N’ transicon
idea funeton. If no more symbols remain on tape 3 or if this nondeterministic
arch choice is invalid, abort this branch by going to stage 4. Also go 1o stage 4
ther if a rejecting configuration is encountered. If an accepting configuration is
O“l? encountered, accept the input. o
%;15 4. Replace the string on tape 3 with Fhe lexicographically nextstring. Simufate
any the next branch of N's computation by going to stage 2.
B s ettt e

140 CHAPTER 3/ TRE CHURCH-TURING THESIS

COROLLARY 3,11
A language is ‘Turing-recognizable if and only if some nondeterministic Tiaring

machine recognizes it.

PROOF Ahy detezmini;slﬁc ™ is automatically o nonde;erniinjstic TM and sq
- one direction of this theotem follows tmmediately. The other direction follows

COROLLARY 3.12 -

Alanguage is decidable if and only some nondeterministic Thuing machine de-
cides it. - ,

ENUMERATORS

As we mentioned in an earlier fi
- merable language for

control

FIGURE 3.8
Schematic of an enuInerator

3.2 VARIANTS OF TURING MACHINES 141

An enumerator starts with a blank mput tape. If the enumerator doesn’t hal,
it may print an infinite list of strings. The language enumerated by E is the ¢ol-
lection of all the strings that it eventually prints out. Moreover, F may generate
the strings of the language in any order, possibly with repetitions. Now we are
ready to develop the connection between enumerartors and luring-recognizable
languages. '

THEOREM 3.13
A language is Turing-recognizable if and only if some enumerator enpumerates it.
PROOF First we show that if we have an enumerator £ that enumerates a Jan-
guage 4, 2 TMM recognizes A. The TM M works in the following way.

M = “Oninputw: o _
1. Run E. Every time that I outputs a string, compare it with .
2. Ifw ever appears in the output of E, accept.”

Clearly, M accepts those strings that appear on I list.

Nowwe do the other direction. IfTM M recognizes a language A, we can con-
strict the following enumerator E for A. Say that s, 59,83,... is 4 list of all
possible strings in $*, :

£ = “Ignore the input.
1. Repeat the following fori = 1,2, 3, ...
2. Run M for i steps on each input, s1, 89, ... , 3. ,
3. Ifany compurations accept, print out the corresponding s;.”

If M accepts a particular string s, eventually it will appear on the list generated
by E. In fact, it will appear on the list infinitely many times because M runs from
the beginning on each string for each repettion of step 1. This procedure gives
the effect of running M in parallel on all possible input strings.

EQUIVALENCE WITH OTHER MODELS

50 far we have presented several variants of the ‘Taring machine mode] and have
shown them to be equivalent in power. Many other models of general purpose
computation have been proposed. Some of these models are very much like Tuy-
ing machines, while others are quite different. All share the essential feature of
Turing machines, namely, unrestricted access to unlimited memory, distinguish-
ing them from weaker models such as finite automatg and pushdown antomarta,
Remarkably, 2l models with that feature turn out & be equivalent in power, so
long as they satisfy certain reasonable requirements.’

*For example, one requirement is the ability to perform only a finite amount of work ina
single step.

142 CHAPTER 3/ THE CHURCH-TURING THESIS

To understand this phenomenon consider the analogous situation for pro-
gramming languages. Many, such as Pascal and LISE, look quite different from
one another in style and sorucrare. Can some algorithm be programmed in one
of them and not the others? Of course not—we can compile LISP into Pascal and
Pascal into LISP, which means that the two languages describe exactly the same
class of algorithms. So do all other reasonzble programpaing langnages.- The
widespread equivalence of computational models holds for precisely the same
rezson. Any two compittational models that satisfy certain reasonabie require-
ments can simulate one another and hence are equivalent in power. |

This equivalence phenomenon hasan important philosophical corollary. Bven

though there are many different computational models, the cliss of algorithms
that they describe is unique. Whereas each individual compurational mode] has
a certain arbitrariness to its definition, the underlying class of algorithms that it
describes is natural because it is the same dlass that other models describe. “This

phenomenon also has had profound implications for mathematics, as we show in
the next section. - '

33 ﬁ%ﬁ#m-gﬁﬁﬁﬁWWE%&&_ﬁrﬁﬁéﬁmﬁrm_ﬁEﬂ§§ﬁ%

THE DEFINITION OF ALGORITHM

Informally speaking, an algoritha is & collection of simple instructions for car-
rying out some task. Commonplace in cveryday life, algorithms sometimes are
called procedures or recipes. ‘Algorithms also play an Importantrole in marhergatics,
Ancient mathematical literature contains descriptions of algorithms for 2 variety
of tasks, such as finding prime numbers and greatest comumon divisors. In cop-
temporary mathematics algorithms abound. :

Even though algorithms have had 2 long history in mathematics, the notion of
algorithm itself was not defined precisely until the twendeth century. Before that;
mathematicians had an intuitive noton of what algorithms were and relied tpon
that notion when using and describing them. But that intuitive notion was in-
sufficient for gaining a deeper understanding of algorithms. The following story
relates how the precise definition of algorithm was crucial to oneimportant math-
ematical problem. ‘

HILBERT’S PROBLEMS

In 1900, mathematician David Hilbert delivered 2 now-famotus address at the
International Congress of Mathemarticians in Paris. Ia his lecture, he identified
twenty-three mathematical problems and posed them a5 a challenge for the com-
ing century. The tenth problem on his list concerned elgorithms.

Before describing that problem, let’s briefly discuss polynomials. A polyno-
mial is a sum of terms, where each fermz is a product of certain variables and a

cC

is

it

la g B ol

pro-
TOM

same
The
;ame
gire-

Even
thms
J has
hat it

ow in.

T Car-
6§ are.
natics.

jariety . -

n con-

tion of
-e that,
1apon
was in-
g story
:math- -

; at the
entified
1€ Ccom-

polyno-

=5 and a

3.3 THE DEFINITION OF ALGORITHM

- constant called a coefficient. For example,

6-;c-$-$~y-z-z=6_:c3yz2.

1s a term with coefficient 6, and

6z yz* 4 Sy? — 2° — 10

isa pojynomjal with four terms over the variables z, y, and z. A 700t of 2 polyno-

- mial is an assignment of values to its variables so that the value of the polynomial

is 0. ‘This polynomial has a rootat z =5, y = 3, and 2 = 0. This root is an zfe—
gral root because all the variables are assigned integer values. Some polynomials
have an integral root and some do not.

Hilbert’ tenth problem was to devise an algorithm that tests whether a poly-
nomial has an integral root. He did not use the term algorithm but rather “a pro-

- cess according to which it can be determined by a finite number of operations.”*

Interestingly, in the way he phrased this problem, Hilbert explicitly asked that
an algorithm be “devised.” Thus he apparently assumed that such an algorithm
must exist—someone need only find it.

As we now know, no algorithm exists for this task; it is algorithinically unsolv-
able. For mathematicians of that period to come to this conclusion with their
intuitive concept of algorithm would have been virtually impossible, The intu-
itive concept may have been adequate for giving algorithms for certain tasks, but

it was useless for showing that no algorithm exists for a particular task. Proving

that an algorithm does not exist requires having a clear definition of algorithm.
Progress on the tenth problem had to wait for that definidon.

The definition came in the 1936 papers of Alonzo Church and Alan Turing.
Church used a notational system called the A-calculus to define algorithms. Tur-

- ing did it with his “machines.” These two definitions were shown to be equiva-

lent. This connection between the informal notion of algorithm and the precise
definition has come to be called the Church-Turing thesis.

"The Church-Turing thesis provides the definition of algorithm necessary to
resolve Hilberts tenth problem. In 1970, Yuri Matijaseviz, building on work of
Martin Davis, Hilary Putnam, and Julia Robinson, showed that no algorithm ex-
ists for.testing whether a polynomial has integral roots. Tn Chapter 4 we develop
the techniques that form the basis for proving that this and other problems are
algorithumically unsolvable.

Intuitive notion . Turing machine
of aigorithmms ¥ algorithms

FIGURE 3.9
"The Church-Turing Thesis

YTranslated from the original German.

144 CHAPTER 3/ THE CHURCH-TURING THESIS

Let’ phrase Hilbert's tenth preblem in our terminolo
introduce some themes that we explore in Chapters 4 and 5. Let

Dy = {p|pis 2 polynomial over x with an integral root}.

Hereisa Turing machine My ﬂ;at recoguizes Dy: .
My = “The input is 2 polynemial p over the variable .,
1. Evaluate p with z set successively to the values 0,1,-1,2, -2,

3,-3,... Ifat any point the polynomial evaluates to 0, accept,”

Ifphasan integral root, M, eventually will find it and accept. X p does not have
an integral root, My will run forever. For the thulavariable Case, we carl present a
similar Turing machine Af that recogrizes D. Here, M goes through all possible
settings of its variables to integral valves. :

Both M; and A are recognizers but not deciders, We can conver

t M to be
a decider for Dy because we can calculate bounds within which the

-'C1

where % is the number of terms in the polynomial, Cpiax 18 the coefficient with
largest absolute vahue, and ¢z is the coefficient of the highest order term. If,
rootis not found within these bounds, the machine rejects. Matijasevié’s theorem
shows that calculating such bounds for mulfivariable polynomials is mmpossible.

&¥- Doing so helps to

such ¢
ing 5o
firstis
sition
“The s
inwhi
its hes
wilso
use Er
Ar thi:
head.
Int

variou

“descri;

them.
We
put o
than a
easily)
of tho
sentat
the ex
severa
(O1,C
does n
late or
In«
ment ¢
volvin
thE. bll
the alg
ply w,
ofan ¢

