Chapter 7
Linear programming and
reductions

Many of the problems for which we want algorithms are optimization tasks: the
shortest path, the cheapest spanning tree, the longest increasing subsequence, and
so on. In such cases, we seek a solution that (1) satisfies certain constraints (for
instance, the path must use edges of the graph and lead from s to t, the tree must
touch all nodes, the subsequence must be increasing); and (2) is the hest possible, .
with respect to some well-defined criterion, among all solutions that satisfy these

constrainis. 4

Linear programming describes a broad class of optimization tasks in which both

the constraints and the optimization criterion are linear functions: It turns out an
enormous nummber of problems can be expressed in this way.

Given the vastness of its topic, this chapter is divided into several parts, Wthh can
be read separately subject to the following dependencies,

: Flows and |
/ matchings
Introduction to =~ |
linear programming Duality Games
and reductions \
' Simplex

7.1 An introduction to linear progiamming

In a linear programming problem we are given a set of variables, and we want to
assign real values to them so as to (1) satisfy a set of linear equations and/or linear
inequaiities involving these variables and (2} maximize or minimize a given linear
objective function.

188

Chapter 7

Algorithms 189

7.1.1 Example: profit maximization

A boutique chocolatier has two producis: its flagship assortment of triangular choco-
lates, called Pyrarnide, and the more decadent and deluxe Pyramide Nuit. How much
of each should it produce to maximize profits? Let’s say it makes x; boxes of Pyra-
mide per day, at a profit of $1 each, and x, boxes 0f N uit, at a more substantial profit
of $6 apiece; x; and x, are unknown values that we wish to determine, But this is

-not all; there are also some constraints on Xy and x; that must be accommodated
(besides the obvious one, x), x, > 0). First, the daily demand for these exclusjve
chacolates is limited to at most 200 boxes of Pyramide and 300 boxes of Nuit. Also,
the current workforce can produce a total of at most 400 boxes of chocolate per day,
What are the optimal levels of production?

We represent the situation by a linear program, as follows,

Objective function max x; + 6x,
Constraints X < 200
X << 300
X1+ % <400
X15,x >0

A linear equation in x; and x, defines a line in the two-dimensional (2D) plane,
and a linear inequality designates a half-space, the region on one side of the line.

- . Thus the set of all feasible solutions of this linear program, that is, the points {x;, x,)

which satisfy all constraints, is the intersection of five half-spaces. It is a convex
polygon, shown in Figure 7.1.

We want to find the point in this polygon at which the objective function—the
profit—is maximized. The points with a profit of ¢ dollars lie on the lipe X +6x =c,
which has a slope of ~1/6 and is shown in Figure 7.1 for selected values of ¢. As ¢
increases, this “profit line” moves parallel to itself, up and to the right. Since the goal
Figure 7.1 (a) The feasible region for a linear program. (b} Contour lines of the
objective function: x; + 6x; = ¢ for different values of the profit c.

(@) P : : CYI

400

400

Optimum point

/ Profif = §1900

190

7.1 An introduction. to linear programming

is to maximize ¢, we must move the line as far up as possible, while still touching
the feasible region. The optimurm solution will be the very last feasible point that
the profit line sees and must therefore be a vertex of the polygon, as shown in
the figure. If the slope of the profit line were different, then its last contact with the
polygon could be an entire edge rather than a single vertex. In this case, the optimum
solution would not be unique, but there would eertainly be an optimum vertex,

Itisa géneral rule of linear progréms that the optimum is achjeved at a vertex ‘of
the feasible region. The only exceptions are cases in which there is no optimum;
this can happen in two ways:

1. The linear program is infeasible; that is, the constraints are so tight that it is
impossible to satisfy all of them. For instance,

x<1, x=2.

2. The constraints are so loose that the feasible region is unbounded, and it is
possible to achieve arbitrarily high objective values. For instance,

max x; 4+ xy
X, %= 0.

Solving linear programs

Linear programs (LPs) can be solved by the simplex method, devised by George
Dantzig in 1947, We shall explain it in more detail in Section 7.6, but briefly, this
algorithm starts at a vertex, in our case perhaps (0, 0), and repeatedly looks for an
adjacent vertex (connected by an edge of the feasible region) of better objective
value. In this way it does hill-climbing on the vertices of the polygon, walking from

neighbor to neighbor so as to steadily increase profit along the way. Here’'s a possible
trajectory. ' ‘

Profit $ 1900

300

200 $1400

$0 $200
0

[¢] 103_ 20

Upon reaching a vertex that has no better neighbor, simplex declares it to be optimal
and halts. Why does this local test imply global optimality? By simple geometry—
think of the profit line passing through this vertex. Since all the vertey's neighbors
lie below the line, the rest of the feasible poiygon must alsc lie below this line,

Chapter 7

Algorithms 191

More products :

Encouraged by consumer demand, the chocolatier decides to introduce a third and
even more exclusive line of chocolates, called Pyramide Luxe. One box of these will
bring in a profit of $13. Let x,, %3, x; denote the number of boxes of each chocolate

produced daily, with x3 referring to Luxe. The old constraints on x; and x; persist,

although the labor restriction now extends to x3 as well: the sum of all three variables
can be at most 400. What's more, it turns out that Nuit and Luxe require the same
packaging machinery, except that Luxe uses it three times as much, which imposes
another constraint x; + 3x; < 600. What are the best possible levels of production?

Here is the updated linear program.

max x; + 6x3 + 13x;
X1 < 200
X < 300
X -+ Xz 4+ x5 < 400
X3 4+ 3% < 600
X1, %, X > 0

Figure 7.2 The feasible polyhedron for a three-variable linear program.

o))

Optiraurm

I

T3

The space of solutions is now three-dimensionai. Each linear equation defines a 3D
plane, and each inequality a hali-space on one side of the plane. The feasihle region
is an intersection of seven half-spaces, a polyhedron {Figure 7.2). Lo cking at the fig-
ure, can you decipher which inequality corresponds to each face of the polyhedron?

A profit of ¢ corresponds to the plane x; + 6x -+ 13x3 = ¢. As cincreases, this profit-
plane moves parallel to itself, further and further into the positive orthant until it no
longer touches the feasible region. The point of final contact-is the optimal vertex;
(6, 300, 100}, with total profit $3100. !

- How would the simplex algorithm behave on this modified problem? As before, it

would move from vertex to vertex, along edges of the polyhedron, increasing profit
steadily. A possible trajectory is shown in Figure 7.2, corresponding to the following
sequence of vertices and profits:

(0,0,0) . {200,0,0) . {200, 200, 0) . (200, 0, 200) . {8, 300,100) -
$0 $200 - %1400 $2800 © $3100

Finally, upon reaching a vertex with no belter neighbor, it would stop and declare
this to be the optimal point. Once again by basic geometry, if all the vertex’s neigh-
bors lie on one side of the profit-plane, then so must the entire polyvhedron.

What if we add a fourth line of chocolates, or hundreds more of them? Then the
problem: becomes high-dimensional, and hard to visualize. Simplex continues to
work in this general setting, although we can no longer rely upon simple geometric
Intuitions for its description and justification. We will study the full-fledged simpiex
algorithm in Section 7.6.

In the meantime, we can rest assured in the knowledge that there are many pro-
fessional, industrial-strength packages that implement simplex and take care of all
the tricky details like numeric¢ precisicn. In a typical application, the main task is
therefore to correctly express the problem as a linear program. The package then
takes care of the rest.

192 7.1 An introduction ro linear programumning

Chap-rer 7

Algorithms 197

7.1.4 Variants of linear programming

As evidenced in our examples, a general linear program has many degrees of
freedom.

L. It can be either a maximization or a minimization problerm.
2. Its constraints can be equations and/or inequalities.

3. The variables are often restricted to be nonnegative, but they can also be
unrestricted in sign. '

We will now show that these various LP options can all he reduced to one another
via simple transformations. Here’s how.

1. 'To turn a maximization problem into 2 minimization {or vice versa), just
multiply the coefficients of the objective function by -1,
2a. To turn an inequality constraint like o1 G < b into an equation, intrp-
duce a new variable s and use

ia;xf +s=b
i=1

5> 0.

This s is called the slack variable for the inequality. As justification, obsefve
that a vector (x, ..., x,) satisfies the original inequality constraint jf and
only if there is some s > 0 for which it satisfies the new equality constraint,

2b. To change an equality constraint into inequalities is €asy: rewrite gx = p ag
the equivalent pair of constraints ax <bandax > b,

3. Finally, to deal with a variable x that is unrestricted in sign, do the following;
* Inlroduce two nonnegative variables, x+ LXT =0,

¢ Replace x, wherever it occurs in the constrainis or the objective func-
tion, by xt — x~.
This way, x can take on any real value by appropriately adjusting the new
variables. More precisely, any feasible solution to the original Lp involving
x can be mapped to a feasible solution of the new LP involving x+, x~, and

vice versa. A

By applying these transformations we can reduce any LP {maximization or min-
imization, with both inequalities and equations, and with both nonnegative and °
unrestricted variables) into an LP of a much more constrained kind that we ¢all the
standard form, in which the variables are al] nonnegative, the constraints are all
equations, and the objective function is to be minimized.

7.4 Duality

We have seen that in networks, flows are smaller than cuts, but the maximum
flow and minimum cut exactly coincide and each ‘is therefore a certificate of the
other’s optimality. Remarkable as this phenomenor is, we now generalize it from
maximum flow to any problem that can be solved by linear programming! It turns
out that every linear maximization problem has a dual minimization problem, and
they relate ta each other in much the same way as flows and cuts.

To understand what duality is about, recall our introductory LP with the two types
of chocolate: '

max x; -+ 6x
X < 200
) X < 300
x1 -+ X% < 400
X1, 6 >0.

Simplex declares the optimum solution to be (x;, x2) = (100, 300}, with objective
value 1900. Can this apswer be checked somehow? Let’s see: suppose we take the
first inequality and add it to six times the second ineguality. We get

X +6x < 2000.

This is interesting, because it tells us that it is impossible to achieve a profit of more
than 2000. Can we add together some other combination of the LP constraints and
bring this upper bound even closer to 19002 After a little experimentation, we find
that multiplying the three inequalities by 0, 5, and 1, respectively, and adding them
up vieids

X+ 6x; < 1900.

So 1900’ must indeed be the best possible value! The‘mu}tipliers (0,5, 1) magically
constitute a certificate of optimality!. 1t is remarkablé that such a certificate exists
for this LP—and even if we knew there were one, how would we systematically go
about finding it? '

Chapter 7

Algorithms 207

Let’s investigate the issue by describing what we expect of these three multipliers,
call them yy, ¥a, ¥s. ‘

Mutltiplier Inequality .
5] X < 200
¥ X = 300
Vs xn 4o o< 400

To start with, these y;’s must be nonnegative, for otherwise they are unqualified to
multiply inequalities (multiplying an inequality by a negative number would flip
the < to =). After the multiplication and addition steps, we get the bound:

On w3+ 0a 4 ysd < 200y -+ 300y, -+ 400y,

We want the left-hand side to look like our objective function X + 6 so that the
right-hand side is an upper bound on the optimum solution. For this we need Y+ v
to be 1 and y; + y; to be 6. Come to think of it, it would be fine if Vi + y; were
larger than 1—the resulting certificate would be all the more convincing. Thus, we
get an upper bound

V. Yo ¥z = 0
Y+ 6x < 200y +300y; +400y; if |

at+py =6

We can easily find y’s that satisfy the inequalities on the right by simply making them
large-enough, for example (y1, v, 33} = (5,3, 6). But these particular multipliers
would tell us that the optimum solution of the LP is at most 200-54+300-3 + 400
-6 = 4300, a bound that is far too loose to be of interest. What we waxnt is a bound
that is as tight as possible, so we should minimize 200y, + 300y, + 400y, subject
to the preceding inequalities. And this is a new linear program!

Therefore, finding the set of multipliers that gives the best upper bound on our
original LP is tantamount to solving a new LP:

min 200y, + 300y, 4 400y;
n+y=l
ity =6
Y1, V2. ¥ = 0

By d'esign, any feasible value of this dual LP is an upper bound on the original

. primal LP. 50 if we somehow find a pair of primal and dual feasible values that are

equal, then they must both be optimal. Here is just such a pair:
Primal : (x,%,) = (100,300); Buai: (y, ys,) = (0, 5, 1),

They both have value 1900, and therefore they certify each other’s optimality
(Fi_gure 7.9},

Amazingly, this is not just a lucky example, but a general phenomenen, To start
with, the preceding construction——creating a multiplier for each primal constraint;

208

Figure 7.9 By design, dual feasible values > primal feasible values. The duality
theorem tells us that moreover their optima coincide.

Primat Dual)
- Primal feasible opt opt Dual feasible . Objecm:ve
’ value
b

This duality gap is zero

writing a constraint in the dual for every variable of the primal, in which the sum is
required to be above the objective coefficient of the corresponding primal variable;
and optimizing the sum of the multipliers weighted by the primal right-hand sides—
can be carried out for any LP, as shown in Figure 7.10, and in even greater generality
in Figure 7.11. The second figure has one noteworthy addition: if the primal has an
equality constraint, then the corresponding multiplier (or dual variable) need not
be nonnegative, because the validity of equations is preserved when multiplied by
negative numbers. So, the multipliers of equations are unrestricted variables. Notice
also the simple symmetry between the two LPs, in that the matrix A = (g;} defines
one primal constraint with each of its rows, and one dual constraint with each of
its columns. ' '

By construction, any feasible solution of the dual is an upper bound on any feasible
solution of the primal. But moreover, their optima coincide!

Duality theorem: I[fa linear progmni has a bounded optimum, then :so does its
dual, and the two optimum values coincide.

When the primal is the LP that expresses the max-flow problem, it is possible to
assign interpretations to the dual variables that show the dual to be none other than
the minimum-cut problem (Exercise 7.25). The relation between flows and cuts is
therefore just a specific instance of the duality theorem. And in fact, the proof of this
theorem falls out of the simplex algorithm, in much the same way as the max-flow
min-cut theorem fell out of the analysis of the max-flow algorithm.

Figure 7.10 A generic primal LP in matrix-vector form, and its dual.

Primal LP: ' Dual LP:

max ¢’ x - min y' b
Ax<b yTA > T
x20 | y =0

7.4 Duality

7.6 The simplex algorithm

The extraordinary power and expressiveness of inear pregrams would be little con-
solation if we did not have a way to solve them efficiently. This is the role of the
simplex algorithm.

At a high level, the simplex algorithm takes a set of Hnear inequalities and a Hinear
objective function and finds the optimal feasible point by the following straiegy:

let v be any vertex of the feasible region)
while there is a neighbor v of v with better objective vaiue:
set v=vo ’

In 'our 2D and 3D examples (Figure 7.1 and Figure 7.2), this was simple to visﬁa}ize
and made intuitive sense. But what if there are n variables, x, . .., x,? h

+ Any setling of the x;’s can be represented by an n-tuple of real numbers and piotted
in n-dimensional space. A linear equation involving the x;’s defines a hyperplane in
this same space R7, and the cerresponding linear inequality defines a half-space, all
points that are either precisely on the hyperplane orlie on ene particular side of it. Fi<
nally, the feasible region of the linear program is specified by a set of inequalities and
is therefore the intersection of the corresponding half-spaces, a convex polyhedror.

But what do the concepts of vertex and neighbor mean in this general context?

Figure 7.12 A polyhedron defined by seven Inequalities.

max 21+ 6wy + 132y

z1 < 200

g < 300

Ty +za-tzs <400

Zg + 3..";3 < 600
120
L E 22 >0
z3 > 0

e

BERCRCECRCECNE)

2i4 . 7.6 The simplex algorithin

7.6.1 Vertices and neighbors in #-dimensional space

Figure 7.12 recalls an earlier example. Looking at it closely, we see that each vertex is
the unigue point at which some subset of hyperplanes meet. Vertex A, for instance, is
the sole point at which constraints @), (), and () are satisfied with equality. On the
other hand, the hyperplanes corresponding to inequalities () and (&) do not define
a veriex, because their intersection is not just a single point but an entire line.

Let’s make this definition precise.

Pick a subset of the inequalities. If there is a unique point that satisfies them
with equality; and this point happens to be feasible, then it is a vertex.

How many equations are needed to uniguely identify a point? When there are n
variables, we need at least n linear equations if we want a unique solution. On the
other hand, having more than n equations is redundant: at least one of them can
be rewritten as a linear combination of the others and can therefore be disregarded.

In short,
Each vertex is specified by a set of n inequalities.?
A notion of neighbor now follows naturally.
| Two vertices are neighbors if they have n— 1 defining inequalities in commeon.

In Figure 7.12, for instance, vertices A and C share the two defining inequalities
{®, @) and are thus neighbors.

7.6.2 The algorithm
On each ieration, siroplex has two fasks:

1. Check whether the current vertex is optimal (and if so, halt).
2. Determine where to move next.

As we will see, both tasks are easy if the vertex happens to be at the origin. And if the
vertex is elsewhere, we will transform the coordinate system to move it to the origin!

First let’s see why the origin is so convenient. Suppose we have some geneﬁc LP
‘max ¢'x '
Ax <b
x>0
where x is the vector of variables, x = (xi, ..., X,). Suppose the origin is feasible.

Then it is certainly a vertex, since it is the unique point at which the n inequalities
{x, = 0,..., x, > O} are tight. Now let’s solve our two tasks. Task 1:

The origin is optimal if and only if all ¢; < 0.

3There is one tricky issue here. it is pessible that the same vertex might be generated by different
subsets of inequalities. In Figure 7.12, vertex B is generated by {(@), @, @)}, but alse by {2, @, G).
Such vertices are called degenerate and require special consideration. Let’s assume for the time being
that they don’t exist, and we’ll return to them later.

Chapter 7

Algon'thms 215

If all ¢; <0, then considering the constraints x > 0, we can’t hope for a better
objective value. Conversely, il some ¢; = 0, then the origin is not optimal, since we
can increase the objective function by raising x;.

Thus, for task 2, we can move by increasing some x; for which ¢; > 0. How much
can we increase it? Until we hit sorme other constraint. That is, we release the tight
comstraint x; > O and increase x; until some other inequality, previously loose, now
becomes tight. At that point, we again have exactly n tight inequalities, so we are
at 3 new vertex. ‘

For instance, suppose we’re dealing with the following linear prograin.

max le + 5x;

2y —x < 4 6]
xn+2% <9 @
—ttx €3 @
x1 = 0 ®
X = 0 ®

Simplex can be started at the origin, which is specified by constraints (i) and &. To
move, we release the tight constraint x; > 0. As x3 is gradually increased, the first .
constraint it runs into is —x; + % < 3, and thus it has to stop at x; =3, at which

. point this new inequality is tight. The new vertex is thus given by &) and ©.

S0 we know what to do if we are at the origin. But what if our current vertex u
is elsewhere? The trick is to transform u into the origin, by shifting the coordinate
system from the usual (xi,..., x,) to the “local view” from u. These local coor-
dinates consist of (appropriately scaled) distances y;, ..., ¥ 1o the n hyperplanes
{inequalities) that define and enclose u:

u

Ya /
W
pe

SpecHically, if one of these enclosing inequalities is a;- x < by, then the distance
from a point x to that particular “wall” is i '

yixbl-—al--x.

The n equations of this type, one per wall, define the v;’s as linear fanctions of the
x;’s, and this relationship can be inverted to express the x;°s as a linear function ofthe
¥i’s. Thus we can rewrite the entire LP in terms of the ¥’s. This doesn’t fundamen-
tally change it (for instance, the optimal value stays the same), but expresses it in a
different coordinate frame, The revised “local” LP has the following three properties:

216 7.6 The simplex algorithm

LIt inbludes the inegualities v > 0, whick are simply the transformed versions
of the inequalities defining u.

2. witself is the origin in y-space.

3. The cost function becomes max cy + tly, where ¢y 15 the value of the objec-
tive function at u and & is a transformed cost vector.

In short, we are back to the sitﬁ?ation we know how to handle! Figure 7.13 shows
this algorithm in action, continuing with our earlier example. o

The simplex algorithm is now fully defined. It moves from vertex to neighboring
vertex, stopping when the objective function is locally optimal, that is, when the
coordinates of the local cost vector are all zero or negative. As we've just seen, a
vertex with this property must also be globally optimal. On the other hand, if the
current vertex is not locally optimal, then its local coordinate system includes some
dimension along which the objective function can be improved, so we move along
this direction—along this edge of the polyhedron—until we reach a neighboring
vertex. By the nondegeneracy assuwmption (see footnote 3 in Section 7.6.1), this
edge has nenzero length, and so we strictly improve the objective value. Thus the
process must eventually halt.

7.6.3 Loose ends

There are several important issues in the simplex algorithm that we haven’t vet
_ mentioped.

- The starting vertex .
How do we find a vertex at which 1o start simplex? In our 2D and 3D examples we
always started at the origin, which worked because the linear programs happened
to have inequalities with positive right-hand sides. In a general LP we won’t always
be so fortunate. However, it turns out that finding a starting vertex can be reduced
to an LP and solved by simplex! :

To see how this is done, start with any linear program in standard form {recall
Section 7.1.4), since we know LPs can always be rewritten this way.
min ¢"x such that Ax="b and x > 0.

We first make sure that the right-hand sides of the equations are all nonnegative: if
b; < 0, just multiply both sides of the ith equation by —1.

Then we create a new LP as follows:
e Create m new artificial variables z,, ..., zm > 0, where m is the number of
egquations.
¢ Add z to the left-hand side of the ith equation.
* Let the objective, to be minimized, be z; -2z, +- . . + Zm.
For this new LP, it's easy to come up with a starting vertex, namely, the one with

z; =b; for all i and all other variables zerc. Therefore we can solve it by simplex,
to obtain the optimum solution.

218 7.6 The simplex algorithm

There are two cases, If the optimum value of z; + - + 7 is zero, then al] z's
obtained by simplex are zere, and hence from the optimum vertex of the new LP
We get a starting feasible vertex of the original LP, just by ignoring the z’s. We can
at last start simplex!

But what if the optimum objective turns out to be positive? Let us think. We tried
o minimize the sum of the z;’s, but simpiex decided that it cannot be zero. But this
means that the original linear prograni is infeasible: it needs some nonzerg z'sto
become feasible. This is how simplex discovers and reports that an 1P is infeastbie.

Degeneracy :
In the polyhedron of Figure 7,12 vertex B is degenerate. Geometrically, this means_

thatit-is the intersection of more thati 1 = 3 faces of the polyhedron (in this case,
@, ®, ®.®). Algebraically, it means that if we choose any one of four sets of
three inequalities ({®, ®, @), (@, ®, ®}, 1. @, ®}, and {®, ®, ®}) and solve
the corresponding system of three linear equations in three unknowns, we’ll get
the same solution in all four cases: (0, 300, 100). This is a serious problem: simplex
May return a suboptimal degenerate vertex sirply because all its neighbors “are
identicat to it and thus have no better objective. And if we modify simplex so0 that it
detects degeneracy and continues to hop from vertex to vertex despite lack of any
improvement in the cost, it may end up looping forever.

One way to fix this is by a perturbation: change each b; by a tiny random amount
to b; & ¢;. This doesn’t change the essence of the LP since the €'s are tiny, but it
has the effect of differentiating between the solutions of the linear systems. To see
why geometrically, imagine that the four places @, @, @, G were jolted a Tittle,
Wouldn’t vertex B split into two vertices, very close to one another?

Unboundedness : -
In some cases an LP is unbounded, in that its objective function can be made ar-
bitrarily large (or small, if it’s a minimization problem). If this is the case, simplex
will discover it: iy exploring the neighborhood of a vertex, it will notice that taking
out an inequality and adding another leads to an underdetermined system of equa-
tions that has an infinity of solutions. And in fact (this'is an easy test) the space of
solutions contains a whole line across which the objective can become larger and
larger, all the way to oo. In this case simplex halts and complains.

7.6.4 The running time of simplex
What is the running time of simplex, for a generic linear program

-max ¢’x such that Ax <0 andx > D,

where there are n variables and A contains m inequality constraints? Since it is an
iterative algorithm that proceeds from vertex to vertex, let’s start by computing the
time taken for a single iteration. Suppose the current vertex is u. By definition, it
is the unique point at which, n inequality constraints are satisfied with equality.
Each of its neighbors shares n — 1 of these inequalities, so u can have at most . m
neighbors: choose which inequality to drop and which new one 1o adq.

A naive way to perform an iteration would be to check each potential neighbor
to see whether it really is a vertex of the polyhedron and to determine its cost.

.

e

2290 7.6 The simplex algorit

Finding the cost is quick, just a dot product, but checking whether it is a true vertex
involves solving a system of n eguations in 7 unknowas {that is, satisfying the n
chosen inequalities exactly) and checking whether the result is feasible. By Gaussian
elimination (see the following box) this takes O{rn*} time, giving an unappetizing
runaing time of O (mn*) per iteration.

Fortunately, there is a much better way, and this mn? factor can be improved to mn,
making simplex a practical algorithm. Recall our earlier discussion {Section 7.6.2)
about the local view from:vertex u. It turns out that the per-iteration overhead of
rewriting the LP in terms of the current local coordinates is just O ((m+ r)n); this
exploits the fact that the local view changes only slightly between iterations, in just
one of its defining inequalities. '

Next, to select the best neighbor, we recall that the (local view of) the objective

function is of the form “max ¢, 4 € - V" where ¢, is the value of the objective

function at u. This immediately identifies a promising direction to move: we pick
any & > 0 (if there is none, then the current vertex is optimal and simplex halts).
Since the rest of the LP has now been rewritten in terms of the y-coordinates, it is
easy to determine how much y; can be increased before some other ineguality is
violated. (And if we can increase y; indefinitely, we know the LP is unbounded.)

It foltows that the running time per iteration of simplex is just O(mm). But how

many iterations could there be? Naturally, there can’t be rere than (™), which
is an upper bound on the number of vertices. Bu this upper bound is exponential
In 7. And in fact, there are examples of LPs for which simplex does indeed take
an exponential number of iterations. In other words, stmplex is an exponential-time
algorithim. However, such exponential examples do not oceur in practice, and it is
this fact that makes simplex so valuable and so widely used.

:l—gllz:méfd &fggﬁrfﬂm, one thi is v rydifferent fromsunpicx ‘extre e
~(but sophisticated irvits proof) arid yer oh"f:_ﬂ:"i:ét_t solves -gﬁ'y’_ﬁ't}car' proggan in polyno. ial
‘ -Iﬁsic_'ad of Cha;{;i'ng the solution from oﬁ;_g@fﬁéf of the polyhedron o the next, tht_lﬁyans .
. algorithin’ confines it to smaller and smaller ellipsoids (skewed hlgh'-dlmcnsmnal bails).
- When this algorithm was dnnoiiziced, it becdme aind of “mathematical Spunik;” a'spliishy
" achieverient that had the U.S. establishment worried, in the height of the Cold War, about
 the possible scientific superiority of the Soviet Union. The ellipsoid algoritim turned our
to be an important theorerical advance, but did not compete well with simplex 'ii_i_girac;i(:e,;
The paradox of linear programming deepened: A problem with two algorithms, one that js
efficient in theory, and one thar is efficient in pracrice! . T

emely simple in ifs concept

