THE BIG QUESTION

[t follows from the definition that P SND.

B N=Np? [D= NP ¥

Since (971 thig is the most famous open problem in computer science.

Most people believe that the answer is no. Then there must be
problems in NP - D. SAT would be a plausible candidate.

[t seems ag if hard NP-Problems can be reduced to each other. This
observation leads us to the following definition.

NP-Completeness: A problem Q is NP-Complete if

[. Qisin NP.
2. For each Ain ND, there is a reduction from A to Q, i.e. all NP
problemg can be reduced to Q.

Are there any ND-Complete probleme? Well, there are:

Cook’s Theorem: SAT is NP-Complete

Other NP-Complete problems

[t is ease to see that reductions are transitive, i.e.

A<B and BSC = ALC

We know that SAT S INDEPENDENT SET. We also know that for each A in NP we
have A < SAT. But this means that for all A in NP we have A < INDEPENDENT
SET

So INDEPENDENT SET is an NP-Complete problem.

We realize that the NP-Complete problems must be the hardest
problemg in NP_ [f any NP-Complete problem can be solved efficiently
then all can!

So we wouldn't expect to be able to find efficient solutions to NP-Complete
problems.

The best way to “show" that a problem is impossible to solve
efficiently is to show that it is NP-Complete.

Thig is the core of applied Complexity Theory.

But how do we show that a problem is NP-Complete?

Proving NP-Completeness

In order to show that A is NP-Complete it is
enough to show that A € NP and SAT <p A.
Why: If X € we know that X < SAT'. If we
also have SAT < A we know that X < Al
This shows that A is NP-Complete.

Another approach: We can form i directed
graph such that A — B means A < B.

SAT - A—B—C — ..tellsusthat A, B,C, ...
are NP-Complete.

To show that A is NP-Complete we can try to
find a known NP-Complete problem B such
that B < A.

NP-problems continued

Since SAT and INDEPENDENT SET can be reduced to each other we might think
that there would be some similarities between the two problems. In fact, there is one
such similarity.

[n SAT we want to know if something exists. We are looking for aset of values for to
coordinate such that the formula is true. lt is hard to find such a set of values but if we
have found it, it is easy to check if it makes the formula true.

[n INDEPENDENT SET we are looking for a set of nodes of size K such that the get
forme an independent get. lig hard to find the set but if we have found it, it is eagy to
check if it really is an independent set.

Both the problems have a so called yes-certificate, something that tells us that the
answer to the problem is yes. For SAT, the certificate is the values for the

variables. For INDEPENDENT SET, the certificate i the K-get.

[nformally, the class NP is the set of decision problems such that if the

answer to the problem with input x is yes, then ig a certificate y, at most
polynomial in the size of x such that it can be checked in polynomial time
(in the size of x) that y is a yes- certificate.

We will give a more formal definition of this. The definition identify problems with
something we will call languages. Then we will deseribe the property of being an NP-
problems ag a property for languages.

A formal definition of NP

A verifies the instance x of the problem L if
there is a certificate y such that |y| € O(|z|%)
and

A(x,y) =Yes <& zxz€L

This means that A decides the language
L={zec{0,1}* : Iy {0,1}* : A(z,y) = Ja}

NP = {L : 3A that verifies L in polynomial time}

ND
P C since all problem that can be decided in
polynomial time also can be verified in poly-
nomial time.

A second definition of NP:

A non-deterministic algorithm is an algorithm
that makes random choices. The output is
stochastic. We say that A decides a language
L if:

x € L = A(x) = Yes with probabilty > 0
x ¢ L = A(x) = No with probability 1

NP = {L : dpolynomial time non-deterministic
algorithm that decides L}

Reductions: Case studies

We have already seen that INDEPENDENT SET is NP-Complete by reducing
3-CNF-SAT to IS.

It can be shown that HAMILTONIAN CYCLE is NP-C by reducing 3-CNF-SAT
to HC. This reduction is rather complicated and we don't give it here.

If we now know that HC is NP-C, we can show that some other problems X

are NP-C by explicitly describing reductions HC < X. We will do this for the
problems TSP and SUBGRAPH ISOMORPHISM.

When you prove that a problem is NP-C you must remember that it is not
enough to give a reduction. You also have to show that the problem is in NP.
This essentially means that you have to show that solutions (certificates) can
be verified in polynomial times. In most cases this is quite simple.

HAMILTONIAN CYCLE < TSP

TSP

Input: A weighted complete graph G and a
number K.

Goal: Is there a Hamiltonian cycle of length
at most < K in G7¢

HAMILTONIAN CYCLE

Input: A graph G.
Goal : Is there a Hamiltonian cycle in G?

Let £ = G be input to HC. We construct a
complete graph G’ with w(e) =0 if e € G and
w(e) =1 ifeé G. Then set K = 0. This will
be the input to the TSP.

Subgraph isomorphism is NP-Complete

Given two graphs G; and Go, Is G7 a
subgraph of G»7?

The problem obviously belongs to NP.

We reduce from Hamilton Cycle.

A graph G = (V, E) contains a Hamiltonian
cycle if and only if it contains a subgraph that

is a cycle C with |V| nodes. SO we can set
G1=C and Go = G. som G.

Other NP-Complete problems

Exact Cover

Given a set of subsets of a set M, is it possible
to find a selection of the subsets such that
each element in M is in exactly one of the
subsets?

Subset Sum

Given a set P of positive integers and an
integer K, is there a subset of the numbers
in P with sum K7

Integer Programming

Given an m x n-matrix A, an m-vektor b, an
n-vektor ¢ and a number K, is there an n-
vektor x with integer coefficients such that
Ar<bandc-x > K7

If we relax the condition that the coefficients
x should be integers we get a special case of
Linear Programming.

Some more advanced reductions

We will look at some reductions that are more complicated. We will show
that 3-COLORABILITY, EXACT COVER and SUBSET SUM are NP-C.

3-COLORABILITY

This is the problem of deciding if a given graph G can be colored with 3
colors or not. We will reduce 3-CNF-SAT to this problem. This means that
given a general instance of 3-CNF-SAT, we will construct a very special
instance of 3-COLORABILITY such that the formula is satisfiable if and only
if the graph is 3-colorable.

We present one possible solution, take from the literature.

Let B be a Boolean formula in CNF. We will construct a graph G that is
3-colorable iff B is satisfiable.

There will be three special vertices called R, B, and G, which will be
connected in a triangle. In any 3-coloring, they will have to be colored with
different colors, so we assume without loss of generality that they are colored
red, blue, and green, respectively.

R G

B

We include a vertex for each literal, and connect each literal to its complement
and to the vertex B as shown.

T T

B

In any 3-coloring, the vertices corresponding to the literals z and Z will have
to be colored either red or green, and not both red or both green. Intuitively,
a legal 3-coloring will represent a satisfying truth assignment in which the
green literals are true and the red literals are false.

To complete the graph, we add a subgraph like the one shown below for
each clause in B. The one shown below would be added for the clause (zVyV
ZVu V7V w). The vertices in the picture labeled G are all the same vertex,
namely the vertex G.

T Y Z U v w
Ge — G
This subgraph has the property that a coloring of the vertices on the top
row with either red or green can be extended to a 3-coloring of the whole
subgraph iff at least one of them is colored green. If all vertices on the top
row are colored red, then all the vertices on the middle row adjacent to vertices

on the top row must be colored blue. Starting from the left, the vertices aloné
the bottom row must be colored alternately red and green. This will lead t0

a conflict with the last vertex in the bottom row. (If the number of literals in
the clause is odd instead of even as pictured, then the rightmost vertex in the
bottom row is R instead of G.)

Conversely, suppose one of the vertices on the top row is colored green.
Pick one such vertex. Color the vertex directly below it in the middle row red
and the vertex directly below that on the bottom row blue. Color all other
vertices on the middle row blue. Starting from the left and right ends, color
the vertices along the bottom row as forced, either red or green. The coloring
can always be completed.

Thus if there is a legal 3-coloring, then the subgraph corresponding to each
clause must have at least one green literal, and truth values can be assigned so
that the green literals are true. This gives a satisfying assignment. Conversely,
if there is a satisfying assignment, color the true variables green and the false
ones red. Then there is a green literal in each clause, so the coloring can be
extended to a 3-coloring of the whole graph.

From this it follows that B is satisfiable iff G is 3-colorable, and the graph G
can be constructed in polynomial time. Therefore CNFSat <P, 3-colorability.

One can trivially reduce 3-colorability to k-colorability for k > 3 by ap-
pending a k — 3 clique and edges from every vertex of the k — 3 clique to every

nther vertex.

3-COLORABILITY g« EXACT COVER

Proof. Suppose we are given an undirected graph G = (V, E). We show
how to produce an instance (X, S) of the exact cover problem for which an
exact cover exists iff G has a 3-coloring.

Let C = {red, blue, green}. For each u € V, let N(u) be the set of
neighbors of u in G. Since G is undirected, u € N(v) iff v € N(u).

For each u € V, we include u in X along with 3(|N(u)| + 1) additional
elements of X. These 3(|N(u)| + 1) additional elements are arranged in three
disjoint sets of |N(u)| + 1 elements each, one set corresponding to each color.
Call these three sets Sred, Sblue Gereen Eor each color ¢ € C, pick a special
element p¢ from S¢ and associate the remaining |N(u)| elements of Sy with
the elements of N(u) in a one-to-one fashion. Let g¢, denote the element of
S¢ associated with v € N(u).

The set S will contain all two element sets of the form

{u,p5} (31)

foru € V and ¢ € C, as well as all the sets S for u € V and ¢ € C. Here is a
picture of what we have so far for a vertex u of degree 5 with v € N (u). The
ovals represent the three sets S and the lines represent the three two-element

sets (31).

To complete S, we include all two element sets of the form

{50, 50} (32)

for all (u,v) € E and ¢, € C with ¢ # ¢/. Here is a picture showing & part
of the construction for two vertices u and v of degrees 5 and 3 respectively;
where (u,v) in E. The six lines in the center represent the two-element sets

(32).

We now argue that the instance (X, S) of Exact Cover just constructed is
a “yes” instance, i.e. an exact cover ' C S of X exists, iff the graph G has
a 3-coloring. Suppose first that G has a 3-coloring x : V — C. We construct
an exact cover 8 C S as follows. For each vertex u, let S’ contain the sets
{u,pX®} and S¢ for ¢ # x(u). This covers everything except points of the
form ¢X(), where (u,v) € E. For each edge (u,v), let S" also contain the set
{gX(¥), gX(")}. This set is in S since x(u) # x(v). This covers all the remaining
points, and each point is covered by exactly one set in 5

Conversely, suppose S’ is an exact cover. Each u is covered by exactly one
set in ', and it must be of the form {u,pS} for some c. Let x(u) be that c;
we claim that x is a valid coloring, i.e. that if (u,v) € E then x(u) # x(v).
For each u, since {u,pX} € ', we cannot cover p for ¢ # x(u) by any set
of the form (31), since u is already covered; therefore they must be covered
by the sets S¢, which are the only other sets containing the points pg. The

sets {u,pX®} and S¢, ¢ # x(u) cover all points except those of the form
¢X¥), (u,v) € E. The only way S’ can cover these remaining points is by the

sets (32). By construction of S, these sets are of the form {gX{", g} for

uv)

(u,v) € E and x(u) # x(v). .

Both Subset Sum and Partition reduce to Knapsack. To reduce Partition
to Knapsack, take b =w and W = B = JX.

We show that these three problems are as hard as Exact Cover by reducing
Exact Cover to Subset Sum. Assume that X = {0,1,...,m — 1} in the given
instance (X, S) of Exact Cover. For z € X, define

#zr = |{A€S|ze€ A},

the number of elements of S containing z. Let p be a number exceeding all
#z,0<z<m—1. Encode A € S as the number

w(A) =) p°
z€A
and take
m—1 m
p™ -1
B = P = :
z§=:o Pl

In p-ary notation, w(A) looks like a string of 0’s and 1’s with a 1 in position
x for each z € A and 0 elsewhere. The number B in p-ary notation looks like
a string of 1’s of length m. Adding the numbers w(A) simulates the union of
the sets A. The number p was chosen big enough so that we do not get into
trouble with carries. Asking whether there is a subset sum that gives B is the
same as asking for an exact cover of X.

PARTITIONING < KNAPSACK

Let {a1,a5,...,an} be an instance of PARTI-
TIONING. In KNAPSACK we have pairs of
numbers {(u;, w;)}, U, W and we want to know
if there is a selection of pairssuch that > u; > U
and Y w; < W. Given our instance of PAR-
TITIONING we can set A = > a; and give
{(a;,a;)},A/2, A/2 as an instance to KNAPSACK.
This KNAPSACK-problem has a solution if and
only if there is a partitioning.

We already know that SUBSET SUM < PAR-
TITIONING. This shows that SUBSET SUM
< KNAPSACK by transitivity. It is easy to give
a direct proof this, similar to the proof abo-
ve. We have shown that all three problems are
NP-Complete.

0/1-programming is NP-Complete

Given an m x n-matris A and an m-vektor b.
Is there an n-vektor x with coefficients
€ {0,1} such that Ax < b?

The problem is in NP since, given z, we can
check in time O(n?) if Az <b.

We reduce from 3-CNF-SAT:
Let ®& be an instance of 3-CNF-SAT With
n variables. To each x; in & we define a
corresponding variable y; € {0,1} and let 1
Mean True and O mean False.

FOr each clause ¢; =11 Vio Vi3 we define an
inequality

T(l) +T(2) +T(3) 2 1
where T(a:z) = y,; and T(—ILIZZ) = (1 — yz)

And that's it!

We have now showed that a set of NP problems are NP-Complete by chains
of reductions.

TSP

/

HAMILTONIAN CYCLE

X

CNF-SAT -—Ay-CNF-SAT — 3-COLORABILITY

EXACT COVER

0/1-PROGRAMMING
INDEPENDENT SET

l SUBSET SUM
VERTEX COVER X
j PARTITIONING

l

SUBGRAPH ISOMORPHISM KNAPSACK

