
Algorithms and Complexity
2019

Mästarprov1: Algorithms

Mästarprov 1 should be solved individually in written form and pre-
sented orally. No collaboration is allowed.

Written solutions should be handed in latest on Thursday, February 21th
23.00, on Canvas.

Mästarprov 1 is a mandatory and rated part of the course. The test consists of
four tasks. The test is roughly graded as follows: Two task correctly solved give
an E. Three tasks correctly solved give a C and all tasks correctly solved give
an A. You can read more about the grading criteria and the final grade on the
course web page. The report should be written in English.

In all problems you should give an analysis of the time complexity of your
algorithm and you should be able to argue for its correctness.

1. You are given an undirected graph G with n nodes. The graph is repre-
sented with adjacency lists. Is the graph a tree or not? You want to decide it
algorithmically in time O(n).

Observe that this can easily be done in time O(|E|), but you are asked to do
better than this. Also observe that you know n from the start but you don’t
know |E| explicitely. (Can be computed though.)

Describe an O(n)-algorithm that solves the problem.

2. We will now look at a variant of the max-flow problem. Assume that we
have a network of n computers connected in the graph G. One computer s is
a sender and a set R of computers are receivers. Then, of course, there are
other computers. To state it formally, R ⊂ V (G), s /∈ R. We assume that all
computers in R are connected to s in the network. We are now going to send
information from s to all nodes in R. We will think of this information sent as
a flow and the value of the flow as a transmission rate. For each node v ∈ R
we have a demand that the node should get a flow dv. We can assume that
s can send an unlimited amount of information. The communication protocol
we use works so that each computer in the network processes the information
a certain time before sending it forward. This means that for each node in
v ∈ V (G)−R−{s} there is a number αv such that the flow trough v cannot be
greater that αv. (So observe that the capacities are on the nodes instead of the
edges). Your task is now to construct an efficient algorithm that decides if it is
possible to get a flow of this type, i.e., a flow from s to the nodes in R such that
each v ∈ R gets at least dv. Analyse the complexity of your algorithm carefully.

1

3. In this problem we have a set S of n objects a1, a2, ..., an. The objects could
be any type of objects, but we assume that they can be classified into different
kinds. The classification can be described by a function eq(ai, aj) that returns
1 if the objects are of the same kind and 0 otherwise. We assume that eq is
an O(1)-algorithm (constant time). The set S has a dominant kind if there is a
kind such that a majority of the elements are of this kind. How can we decide
efficiently if S has a dominant kind or not? There are some obvious methods
that have time complexity O(n2).

Your task is to find a divide-and-conquer approach that gives an algorithm that
solves the problem in O(n log n) time.

4. A family plans to make a road trip. On the road they will travel, which we can
think of as a line, there are cities in positions x1, x2,, xn where the xi:s are
numbers and i < j ⇒ xi < xj . The family wants to stay one day each in certain
cities. They estimate their enjoyment of a stay in city i to pi where pi is a real
number > 0. They must choose which cities to stay in. Their enjoyment sum is
the sum of the pi:s for the cities they choose. But they have one restriction. They
want the distance between any two chosen cities to be at least K where K s a
fixed number. Give an efficient algorithm that decides the maximum enjoyment
sum the family can get.

2

