
An example of an approximation
algorithm

This is a simplyfied version of the problem in
11.1 in the course book.

Let us assume that we have n tasks with ti-

mes t1, t2, ..., tn to complete. Let us say that

we have two workers W1 and W2 and we want

to distribute the task on them. Let Ti be the

sum of the times of the tasks given to Wi. We

want to distribute the workload evenly. The

best would be if T1 = T2, but that might not

be possible. So what we do is that we try to

minimize T ⇤ = max(T1, T2).

The crux is that if we could solve this problem

efficiently, we can solve the NP-complete pro-

blem PARTITIONING efficiently, and we beli-

eve this is impossible. What we can do is that

we can try to find an efficient way of getting

an approximation of T ⇤.

We try to solve the problem by using a simple,

greedy strategy. We give t1 to W1 and t2 to

W2 and then continue giving each ti to the

Wj with least workload at that stage. Let us

assume that Tapp is the largest workload when

all ti:s have been distributed. This value is our

approximation.

Obviously, Tapp � T ⇤. Can we estimate how

much larger Tapp can be?

We can easily prove:

a.
1
2
P

i ti  T ⇤.

b. ti  T ⇤ for all i.

Let us assume that T1 is the largest load when

the algorithm terminates and that tm is the

last load added to W1. Then we know that

T1 � tm  1
2(T1 + T2)  T ⇤ and tm  T ⇤. This

gives us Tapp = (T1 � tm) + tm  2T ⇤.

T ⇤  Tapp  2T ⇤.

This estimate seems a bit pessimistic. If we

first sort the ti:s in decreasing order, we can

get a tighter bound. If n � 3 and m � 3 it is

then easy to prove that tm  1
2T

⇤. If we use this

in our previous estimate we get (T1�tm)+tm 
T ⇤ + 1

2T
⇤. This gives us

T ⇤  Tapp  3
2T

⇤.

Approximation Algorithms

Many of the NP-Complete problems are most
naturally expressed as optimization problems:
TSP, Graph Coloring, Vertex Cover etc.

It is widely believed That P 6= NP so that it
is impossible to solve the problems in poly-
momial time.

An approximation algorithm for solving an
optimization problem corresponding to a de-
cision problem in NP is an algorithm which in
polynomial time finds an approximative solu-
tion which is guaranteed to be close to the
optimal solution.

Page 1

Approximation of Vertex Cover
ApproxVertexCover(G = (V,E))
(1) C ;
(2) while E 6= ;
(3) Chose an arbitrary edge

(u, v) 2 E

(4) C C [{u} [{v}
(5) Remove all edges in E which

contains u or v

(6) return C

The algorithm always returns a vertex cover.
When an edge is removed both of its vertices
are added to C.

Now consider the edge (u, v). At least one of
the vertices u and v must be in an optimal
vertex cover.
) The vertex cover returned by the algo-
rithm cannot be more than twice the size of
an optimal vertex cover.

Time-complexity: O(|E|)

Page 2

To measure approximability

The Approximation Quotient for an algorithm
is

max
approx

opt
for minimization problems

max
opt

approx
for maximization problems

This means that the quotient is always � 1
with equality if the algorithm always returns
the optimal solution.

In all other cases the quotient is a measure
of how far from the optimal solution we can
get in the worst case.

The algorithm for finding minimal vertex co-
vers has approximation quotient 2 since it
returns a vertex cover at most twice as large
as the minimal one.

Page 3

Degrees of approximability

There is a difference between the NP-Complete
problems regarding how hard they are to ap-
proximate:

• For some problems you can, for every
✏ > 0, find a polynomial algorithm with
approximation quotient 1+ ✏.
Ex.: The Knapsack Problem

• Other problems can be approximated wit-
hin a constant > 1 but not arbitrarily clo-
se to 1 P 6= NP.
Ex.: Vertex Cover

• Then the are problems that cannot be
approximated within any constant if P 6=
NP.
Ex.: Maximal Clique

Page 4

Approximation of TSP

We show that TSP/2 APX , i.e. TSP cannot
be approximated. Assume, to reach a contra-
diction, that TSP can be approximated wit-
hin a factor B.

Reduction from Hamiltonian Cycle:

Hamiltoncykel(G)
(1) n |V |
(2) foreach (vi, vj) 2 E

(3) w(pi, pj) 1
(4) foreach (vi, vj) /2 E

(5) w(pi, pj) |V |B
(6) if TSAPPROX(pi,t)  |V |B
(7) return TRUE
(8) return FALSE

If TSAPPROX can approximate TSP within
factor B, then the algorithm decides in po-
lynomial time if there is a Hamiltonian Cycle
in G or not. That is impossible!

Page 5

Approximation of TSP with the triangle
inequality

This is a special case of TSP which can be
approximated.

The triangle inequality: w(i, j)  w(i, k) +
w(k, j) for all nodes i, j, k.

The triangle inequality shows that if i, j, k1, k2, ..., ks
form a cycle in the graph, we have w(i, j) 
w(i, ks) + w(ks, ks�1) + ...w(k1, j).

TSP with the triangle inequality is called �
TSP.

Theorem: � TSP is NP- Complete.

Page 6

Assume that we have a minimal spanning tree
T in the graph. If we go back and forth along
the edges in T we get a walk of length 2w(T)
where w(T) is the weight sum of the edges in
T . This walk of course is no solution to the
TSP-problem since it is not a cycle. Now, let
C be an optimal cycle.

w(C) = OPT . Since C is a spanning tree +
an edge, we get w(T)  w(C).

2 · w(T)  2 · w(C)  2 ·OPT

We can rearrange the walk along the tree T

to a cycle C1 by visiting the nodes in the
order that is given by the inorder ordering of
the nodes in the tree.

Claim: w(C1)  2 · w(T)

Page 7

This can be shown by repeated use of the
triangle inequality.

We now get:

w(C)  w(C1)  2 · w(T)  2 · w(C)

we set APP = w(C1). We the get:

OPT  APP  2 ·OPT

We can compute APP in polynomial time.
The approximation quotient is B = 2.

There are more advanced algorithms for ap-
proximation of � TSP One is Christofides
algoritm. It uses the same ideas as our al-
gorithm but has an approximation quotient
3
2.

Page 8

