# An example of an approximation algorithm

This is a simplyfied version of the problem in 11.1 in the course book.

Let us assume that we have n tasks with times  $t_1, t_2, ..., t_n$  to complete. Let us say that we have two workers  $W_1$  and  $W_2$  and we want to distribute the task on them. Let  $T_i$  be the sum of the times of the tasks given to  $W_i$ . We want to distribute the workload evenly. The best would be if  $T_1 = T_2$ , but that might not be possible. So what we do is that we try to minimize  $T^* = max(T_1, T_2)$ .

The crux is that if we could solve this problem efficiently, we can solve the NP-complete problem PARTITIONING efficiently, and we believe this is impossible. What we can do is that we can try to find an efficient way of getting an approximation of  $T^*$ .

We try to solve the problem by using a simple, greedy strategy. We give  $t_1$  to  $W_1$  and  $t_2$  to  $W_2$  and then continue giving each  $t_i$  to the  $W_j$  with least workload at that stage. Let us assume that  $T_{app}$  is the largest workload when all  $t_i$ :s have been distributed. This value is our approximation.

Obviously,  $T_{app} \geq T^*$ . Can we estimate how much larger  $T_{app}$  can be?

We can easily prove:

a. 
$$\frac{1}{2} \sum_{i} t_{i} \leq T^{*}$$
.

b. 
$$t_i \leq T^*$$
 for all  $i$ .

Let us assume that  $T_1$  is the largest load when the algorithm terminates and that  $t_m$  is the last load added to  $W_1$ . Then we know that  $T_1 - t_m \le \frac{1}{2}(T_1 + T_2) \le T^*$  and  $t_m \le T^*$ . This gives us  $T_{app} = (T_1 - t_m) + t_m \le 2T^*$ .

$$T^* \le T_{app} \le 2T^*$$
.

This estimate seems a bit pessimistic. If we first sort the  $t_i$ :s in decreasing order, we can get a tighter bound. If  $n \geq 3$  and  $m \geq 3$  it is then easy to prove that  $t_m \leq \frac{1}{2}T^*$ . If we use this in our previous estimate we get  $(T_1-t_m)+t_m \leq T^*+\frac{1}{2}T^*$ . This gives us

$$T^* \le T_{app} \le \frac{3}{2}T^*$$
.

## **Approximation Algorithms**

Many of the NP-Complete problems are most naturally expressed as optimization problems: TSP, Graph Coloring, Vertex Cover etc.

It is widely believed That  $P \neq NP$  so that it is impossible to solve the problems in polymomial time.

An approximation algorithm for solving an optimization problem corresponding to a decision problem in NP is an algorithm which in polynomial time finds an approximative solution which is guaranteed to be close to the optimal solution.

#### **Approximation of Vertex Cover**

ApproxVertexCover(G = (V, E))

- (1)  $C \leftarrow \emptyset$
- (2) while  $E \neq \emptyset$
- (3) Chose an arbitrary edge  $(u,v) \in E$
- $(4) C \leftarrow C \cup \{u\} \cup \{v\}$
- (5) Remove all edges in E which contains u or v
- (6) return C

The algorithm always returns a vertex cover. When an edge is removed both of its vertices are added to C.

Now consider the edge (u, v). At least one of the vertices u and v must be in an optimal vertex cover.

⇒ The vertex cover returned by the algorithm cannot be more than twice the size of an optimal vertex cover.

Time-complexity: O(|E|)

### To measure approximability

The Approximation Quotient for an algorithm is

$$\max \frac{approx}{opt}$$
 for minimization problems

$$\max \frac{opt}{approx}$$
 for maximization problems

This means that the quotient is always  $\geq 1$  with equality if the algorithm always returns the optimal solution.

In all other cases the quotient is a measure of how far from the optimal solution we can get in the worst case.

The algorithm for finding minimal vertex covers has approximation quotient 2 since it returns a vertex cover at most twice as large as the minimal one.

### Degrees of approximability

There is a difference between the NP-Complete problems regarding how hard they are to approximate:

• For some problems you can, for every  $\epsilon > 0$ , find a polynomial algorithm with approximation quotient  $1 + \epsilon$ .

Ex.: The Knapsack Problem

• Other problems can be approximated within a constant > 1 but not arbitrarily close to  $1 P \neq NP$ .

Ex.: Vertex Cover

 Then the are problems that cannot be approximated within any constant if P ≠
NP.

Ex.: Maximal Clique

#### **Approximation of TSP**

We show that TSP∉ APX, i.e. TSP cannot be approximated. Assume, to reach a contradiction, that TSP can be approximated within a factor B.

Reduction from Hamiltonian Cycle:

Hamiltoncykel(G)

- $(1) \quad n \leftarrow |V|$
- (2) foreach  $(v_i, v_j) \in E$
- $(3) w(p_i, p_j) \leftarrow 1$
- (4) foreach  $(v_i, v_j) \notin E$
- $(5) w(p_i, p_j) \leftarrow |V|B$
- (6) if TSAPPROX $(p_i,t) \leq |V|B$
- (7) **return** TRUE
- (8) return FALSE

If TSAPPROX can approximate TSP within factor B, then the algorithm decides in polynomial time if there is a Hamiltonian Cycle in G or not. That is impossible!

# Approximation of TSP with the triangle inequality

This is a special case of TSP which can be approximated.

The triangle inequality:  $w(i,j) \leq w(i,k) + w(k,j)$  for all nodes i,j,k.

The triangle inequality shows that if  $i, j, k_1, k_2, ..., k_s$  form a cycle in the graph, we have  $w(i, j) \leq w(i, k_s) + w(k_s, k_{s-1}) + ... w(k_1, j)$ .

TSP with the triangle inequality is called  $\Delta$  TSP.

**Theorem:**  $\triangle$  TSP is NP- Complete.

Assume that we have a minimal spanning tree T in the graph. If we go back and forth along the edges in T we get a walk of length 2w(T) where w(T) is the weight sum of the edges in T. This walk of course is no solution to the TSP-problem since it is not a cycle. Now, let C be an optimal cycle.

w(C) = OPT. Since C is a spanning tree + an edge, we get  $w(T) \leq w(C)$ .

$$2 \cdot w(T) \leq 2 \cdot w(C) \leq 2 \cdot OPT$$

We can rearrange the walk along the tree T to a cycle  $C_1$  by visiting the nodes in the order that is given by the *inorder* ordering of the nodes in the tree.

Claim:  $w(C_1) \leq 2 \cdot w(T)$ 

This can be shown by repeated use of the triangle inequality.

We now get:

$$w(C) \leq w(C_1) \leq 2 \cdot w(T) \leq 2 \cdot w(C)$$

we set  $APP = w(C_1)$ . We the get:

$$OPT \le APP \le 2 \cdot OPT$$

We can compute APP in polynomial time. The approximation quotient is B=2.

There are more advanced algorithms for approximation of  $\Delta$  TSP One is *Christofides algoritm*. It uses the same ideas as our algorithm but has an approximation quotient  $\frac{3}{2}$ .