
                        
Divide and Conquer algorithms               

Another general method for constructing algorithms is given by the Divide and Conquer 
strategy.  We assume that we have a problem with input that can be split into parts in a 
natural way.                

Let T(n) be the time-complexity for solving a problem of size n ( using our 
algorithm). Then we have  T(n) = T(n/2) + T(n/2) + f(n)  
where f(n) is the time for "making the split" and "putting the parts together.     
This will be useful only if f(n) is sufficiently small.         
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Extra: Sorting in linear time

Sorting algorithms that only uses compari-
sons between elements can never be faster
than ⇥(n logn). But there are algorithms which
use extra information about the elements.
For instance, if we want to sort integers we
might know upper and lower bounds for the
integers. Then it is possible to sort in linear
time.

Page 28



Counting sort

Assume that we have n objects A[1..n] with
keys which are integers in [1, k]. The following
algorithm sorts in time O(n+ k):

CountingSort(A,B, k)
(1) for i = 1 to k

(2) C[i] 0

(3) for i = 1 to n

(4) C[A[i]] C[A[i]] + 1

(5) for i = 2 to k

(6) C[i] C[i� 1] + C[i]

(7) for j = 1 to n
(8) B[C[A[j]]] A[j]

(9) C[A[j]] C[A[j]]� 1

When the algorithm ends, the array B is A in
sorted order.

Page 29



             Mergesort         

A famous example is Mergesort. Here we split a list of numbers into two parts, 
sort them separately, and merge the two lists.         

How do we merge?         

The question is how we merge two already sorted lists and what the complexity f(n) is?         

We can use the following algorithm:         

The complexity is O(n).         

Merge[a[1, ..., p], b[1,...,q]] 
 If a = ∅ 
  Return b 
 End if 
 If b = ∅ 
  Return a 
 End if 
 If a[1] ≤ b[1] 
  Return a[1] . Merge[a[2,...,p],b[1,...,q]] 
 End if 
 Return b[1] . Merge[a[1,...,p],b[2,...,q]]         
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MergeSort

MergeSort(v[i..j])

(1) if i < j

(2) m 
j
i+j
2

k

(3) MergeSort(v[i..m])

(4) MergeSort(v[m+1..j])

(5) v[i..j] = Merge(v[i..m], v[m+1..j])

Let T (N) be the time it takes to sort N num-

bers. then

T (N) =

8
<

:
O(1) N = 1

T
⇣j

N
2

k⌘
+ T

⇣l
N
2

m⌘
+⇥(N) else

since Merge ⇥(N) when input is arrays of

length N .

             
The main Mergesort algorithm is:                   
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Quick sort

QuickSort(v[i..j])
(1) if i < j

(2) m Partition(v[i..j], i, j)
(3) QuickSort(v[i..m])
(4) QuickSort(v[m+1..j])

The complexity analysis is more complicated
than it is for Merge sort. It can nevertheless
be shown that the complexity is O(n logn) in

the mean.

O(n)

T(n) = 2 T(n/2) + O(n)  "in the mean". There are some diffuculties in making the 
analysis of this formula strictly correct.
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Master Theorem

Theorem If a � 1, b > 1 and d > 0 the

equation

T (1) = d

T (n) = aT (n/b) + f(n)

has the solution

• T (n) = ⇥(nlogb a) if f(n) = O(nlogb a�✏
)

for some ✏ > 0

• T (n) = ⇥(nlogb a logn) if f(n) = ⇥(nlogb a)

• T (n) = O(f(n)) if f(n) = ⌦(nlogb a+✏
) for

some ✏ > 0 and af(n/b)  cf(n) for some

c < 1 for n large enough.

When applied on Mergesort this theorem gi-

ves ⇥(N logN).

              
But how do we decide the complexity? We are given a recursion 
equation. The following theorem often gives the solution:                     
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If we assume that f(n) = Θ (n    ) for some integer d, we get a simpler formula. Let 
us first set  k =  log   a. 

Θ(n   )                     k  >   d 
 
Θ(n    log  n)         k = d 
 
Θ(n    )                    k  <  d 

It can be interesting to look at the special case  a = b  ( k = 1) 

Θ(n )                      1   >  d 
 
Θ(n  log  n)          1 =  d 
 
Θ(n    )                  1   <  d 

And we can also look at  a = 1,  b = 2  ( k = 0) 

Θ(  log  n)              0 = d 
 
Θ(n    )                    0 <  d 

T(n) = 

T(n) = 

T(n) = 

A special case of MT 
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Multiplication of large numbers

We want to compute x ·y for binary numbers

x och y

x = xn�1 · · ·xn/2| {z }
a

xn/2�1 · · ·x1x0| {z }
b

= 2

n/2a+ b

y = yn�1 · · · yn/2| {z }
c

yn/2�1 · · · y1y0| {z }
d

= 2

n/2c+ d

For n = 2

k
we can split the product:

Mult(x, y)

(1) if length(x) = 1

(2) return x · y
(3) else

(4) [a, b] x

(5) [c, d] y

(6) prod 2

nMult(a, c) +Mult(b, d)

+2

n/2
(Mult(a, d) +Mult(b, c))

(7) return prod

Time-complexity: T (n) = 4T (n/2) + ⇥(n),

T (1) = ⇥(1) which gives us T (n) = ⇥(n2).

          
Let's look at some more advanced examples.                          
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Karatsuba’s algorithm

We use (a+ b)(c+ d) = ac+ bd+ (ad+ bc).

We can remove one of the four products:

Mult(x, y)

(1) if length(x) = 1

(2) return x · y
(3) else

(4) [a, b] x

(5) [c, d] y

(6) ac Mult(a, c)

(7) bd Mult(b, d)

(8) abcd Mult(a+ b, c+ d)

(9) return 2

n · ac+ bd+

2

n/2
(abcd� ac� bd)

We get T (n) = 3T (n/2) + ⇥(n), T (1) =

⇥(1) with the solution T (n) = ⇥(nlog2 3) 2
O(n1.59). .

     
Here is a way of doing it that really uses D and C:                    
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Matrix multiplication

When we multiply n⇥n-matrices we can use

matrix blocks:

 
A
11

A
12

A
21

A
22

! 
B
11

B
12

B
21

B
22

!

=

 
C
11

C
12

C
21

C
22

!

by using the formulas

C
11

= A
11

B
11

+A
12

B
21

C
12

= A
11

B
12

+A
12

B
22

C
21

= A
21

B
11

+A
22

B
21

C
22

= A
21

B
12

+A
22

B
22

we get 8 products and

T (n) =

8
<

:
⇥(1) n = 1

8T (n/2) +⇥(n2) n > 1

which gives us T (n) = ⇥(n3).

     Here is an algorithm that fails to use D and C in a creative way.               
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Strassen’s algorithm

If we instead use the more complicated for-

mulas

M
1

= (A
12

�A
22

)(B
21

+B
22

)

M
2

= (A
11

+A
22

)(B
11

+B
22

)

M
3

= (A
11

�A
21

)(B
11

+B
12

)

M
4

= (A
11

+A
12

)B
22

M
5

= A
11

(B
12

�B
22

)

M
6

= A
22

(B
21

�B
11

)

M
7

= (A
21

+A
22

)B
11

C
11

= M
1

+M
2

�M
4

+M
6

C
12

= M
4

+M
5

C
21

= M
6

+M
7

C
22

= M
2

�M
3

+M
5

�M
7

we reduce the number of products to 7 which

gives us T (n) = ⇥(nlog2 7) = O(n2.81).

   But this is D and C: 
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Discrete Fourier Transform

We transform a polynomial A(x) =

Pn�1

j=0

ajx
j
.

Essentially we do it by computing it’s values

for the complex unity roots !0

n,!
1

n, . . . ,!
n�1

n

where !n = e2⇡i/n.

DFTn(ha
0

, . . . , an�1

i) = hy
0

, . . . , yn�1

i

where

yk = A(!k
n) =

n�1X

j=0

aje
2⇡ijk/n.

The n coefficients gives us n “frequencies”.

Compare with the continuous transform

ˆf(t) =

Z 1

�1
f(x)e�itxdx

     An advanced application of D and C is the Fast Fourier Transform   (FFT). We 
start by describing what the Discrete Fourier Transform  (DFT) is:                   

This simplest way of computing this transform has complexity O(n²). 
The FFT is a more efficient way of doing it.                  
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FFT: An efficient way of computing

DFT

We have yk = A(!k
n) =

n�1X

j=0

aje
2⇡ijk/n

. We

separate odd and even degrees in A:

For k < n/2 We have

A[0]

(!2k
n ) =

n/2�1X

j=0

a
2je

4⇡ijk/n

=

n/2�1X

j=0

a
2j!

jk
n/2

= DFTn/2(ha0, a2, . . . , an�2

i)k
where DFTn(ha

0

, . . . , an�1

i)k is the k:th ele-

ment of the transform.
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In the same way, for k < n/2,

A[1]

(!2k
n ) = DFTn/2(ha1, a3, . . . , an�1

i)k

For k � n/2 we can easily see that

A[0]

(!2k
n ) = DFTn/2(ha0, a2, . . . , an�2

i)k�n/2

A[1]

(!2k
n ) = DFTn/2(ha1, a3, . . . , an�1

i)k�n/2

!k
n = �!

k�n/2
n

In order to decide DFTn(ha
0

, . . . , an�1

i) we

use DFTn/2(ha0, a2, . . . , an�2

i) and DFTn/2(ha1, a3, . . . , an�1

i)
and combine values.

FFT is a Divide Conquer algorithm — the

base case is DFT
1

(ha
0

i) = ha
0

i.

   

Page 13



Algorithm for computing FFT

We assume that n is a power of 2.

DFTn(ha
0

, a
1

, . . . an�1i)
(1) if n = 1

(2) return ha
0

i
(3) !n  e2⇡i/n

(4) !  1

(5) y[0]  DFTn/2(ha0, a2, . . . , an�2i)
(6) y[1]  DFTn/2(ha1, a3, . . . , an�1i)
(7) for k = 0 to n/2� 1

(8) yk  y
[0]

k + !y
[1]

k

(9) yk+n/2  y
[0]

k � !y
[1]

k
(10) !  ! · !n

(11) return hy
0

, y
1

, . . . , yn�1i

The time-complexity T (n) is given by

T (n) =

8
<

:
O(1) n = 1

2T (n/2) +⇥(n) n > 1

with solution T (n) = ⇥(n logn).

   

Page 14



Inverse to DFT

The relation y = DFTn(a) can be written in

matrix form

0

BB@

y
0

y
1

.

.

.

yn�1

1

CCA =

0

BB@

!0

n !0

n · · · !0

n

!0

n !1

n · · · !n�1

n
.

.

.

.

.

.

.

.

.

.

.

.

!0

n !n�1

n · · · !(n�1)(n�1)

n

1

CCA

0

BB@

a
0

a
1

.

.

.

an�1

1

CCA

To get the inverse transformation a = DFT�1

n (y)

we invert the matrix It can be shown that

DFT�1

n (hy
0

, y
1

, . . . , yn�1

i) = ha
0

, a
1

, . . . , an�1

i

aj =
1

n

n�1X

k=0

yk!
�jk
n

so the FFT-algorithm can also be used to

compute DFT�1

.
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Polynomial multiplication using FFT

We want to compute C(x) =

P
2n�2
j=0

cix
i
=

A(x)B(x) when A(x) and B(x) are polynomi-

als of degree n � 1. Since C(x) has 2n � 1

coefficients we will look at A(x) and B(x) as

polynomials of degree 2n� 1 as well.

Algorithm:

hy
0

, . . . y
2n�1i  DFT

2n(ha0, . . . , an�1,0, . . . ,0i)
hz

0

, . . . z
2n�1i  DFT

2n(hb0, . . . , bn�1,0, . . . ,0i)
hc

0

, . . . c
2n�1i  DFT�1

2n (hy
0

z
0

, . . . , y
2n�1z2n�1i)

(We assume that n is a power of two.)

We have to do compute three DFT vectors

of size 2n and compute 2n products in the

transform plane. That gives us the complex-

ity ⇥(n logn).
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