
Algorithms and Complexity. Exercise session 3+4

Dynamic Programming

Longest Common Substring The string ALGORITHM and the string PLÅGORIS have the common
substring GORI. The longest common substring of these strings has thus length 4. The letters
in a substring must form a coherent sequence.

Construct an e�cient algorithm that given two strings a1a2 . . . am and b1b2 . . . bn calculates
the length of the longest common substring. The algorithm uses dynamic programming and
runs in time O(nm).

Sequences You are given two sequences of positive integers a1, a2, . . . , an and b1, b2, . . . , bn, where
all numbers are less than n2, and a positive integer B, such that B ≤ n3. The problem is to
determine if there is a sequence c1, c2, . . . , cn such that

∑n
i=1 ci = B and ci = ai or ci = bi

for 1 ≤ i ≤ n.

Describe and analyze an algorithm that solves the problem using dynamic programming.
Moreover, describe how to extend the algorithm to construct the solution, where ci = ai or
ci = bi for 1 ≤ i ≤ n.

Protein Folding A protein is a long chain of aminoacids. The protein chain is not straight but
it is folded in a way that minimizes the potential energy. Our goal is to calculate how the
protein will fold itself. In this exercise we will therefore consider a simple model of protein
folding in which aminoacids are either hydrophobic or hydrophilic. Hydrophobic aminoacids
tend to clump together.

For simplicity, we can see the protein as a binary string in which ones correspond to hy-
drophobic aminoacids and zeros hydrophilic aminoacids. The string (protein) should then be
folded into a two-dimensional square grid. The goal is to make the hydrophobic aminoacids
stick together, i.e., to get as many ones as possible to be close to each other. Hence we have
an optimization problem where the objective function is the number of pairs of ones that are
next to each other in the grid (vertically or horizontally) without being next to each other
in the string.

You should design an algorithm using dynamic programming to construct an optimal accor-
dion fold of a given protein string of length n. An accordion fold is a fold where the �rst
string goes straight down, then goes straight up, then goes straight down, and so on. In such
a fold, it can be observed that the vertical pairs of adjacent ones will always result in the
string, so it's only horizontal pair of ones that contribute to the objective function.

The following �gure shows the string 00110001001100001001000001 of accordion fold in such
a way that the objective function is 4.

1



Problem de�nition Protein accordion fold:
Input A binary string of n characters.
Problem: Find the accordion fold of input string that provides the greatest value
to the objective function, ie the largest number of pairs of ones located next to
each other, but not consecutive to each other in the string.

Construct and analyze the time complexity of an algorithm that solves protein accordion
folding problem with dynamic programming.

Use the following algorithm which calculates the number of pairs of ones in a row (ie between
two lines) lying next to each other (but not next to each other in the string). Suppose the
protein is stored in an array p[1..n]. The parameters a and b indicate the index in the
array for the �rst trait endpoints. The parameter c indicates the index for the second trait
endpoint as dipicted in the �gure below on the right.

profit(a,b,c) =

shortest←min(b-a,c-(b+1));

s←0;

for i←1 to shortest do

if p[b-i]=1 and p[b+1+i]=1 then

s←s+1;

return s;

Note: Protein folding is an important algorithmic problem studied in bioinformatics. Similar
problems are studied in the Algoritmisk bioinformatik course.

Analyzer for context-free grammars A context-free grammar is usually used to describe the
syntax of a particular programming language. A context-free grammar in Chomsky Normal

Form is described by

• a set of �nal symbols T (usually written in small letters),

• a set of non-�nal symbols N (usually written in capital letters),

• the initial symbol S (a non-�nal symbol in N),

• a set of rewrite rules of type A→ BC or A→ a, for A,B,C ∈ N and a ∈ T .

If A ∈ N we de�ne L(A) as

L(A) = {bc : b ∈ L(B) and c ∈ L(C) whereA→ BC} ∪ {a : A→ a}.

The language generated by the grammar is then de�ned as L(S), ie. the set of all strings of
the �nal symbols that can be formed by a rewriting chain from symbol S.

2



Example: Consider the grammar T = {a, b}, N = {S,A,B,R}, start symbol S and rules
S → AR, S → AB, A→ a, B → b, R→ SB. We can see that string aabb is in the language
generated by the grammar using the following chain of rewritings:

S → AR→ aR→ aSB → aSb→ aABb→ aaBb→ aabb.

In fact, one can show that the language generated by the grammar is the set of all strings
consisting of k symbols a followed by k symbols b, where k is a positive integer.

Your task is to design and analyze an e�cient algorithm that determines if a string is in the
language generated by a given grammar. The input is a context-free grammar in Chomsky
Normal Form, and a string of �nal symbols. The output is true or false depending on whether
the string can be generated by the grammar or not. Calculate the time complexity of your
algorithm in terms of number of rules m of the grammar and length n of the string.

You can read more on grammars in the course Arti�ciella språk och syntaxanalys.

3


