
Johan Karlander, KTH, CSC

Teoritenta i Algoritmer (datastrukturer) och komplexitet
för KTH DD1352–2352 2015-06-01, klockan 14.00–17.00

Solutions

No aids are allowed. 12 points are required for grade E, 15 points for grade D and 18 points
for grade C.

If you have done the labs you can get up to 4 bonus points. If you have got bonus points,
please indicate it in your solutions.

In all solutions you can assume that P 6= NP .

1. (8 p)

Are these statements true or false? For each sub-task a correct answer gives 1 point and
an answer with convincing justification gives 2 points.

a. There are known efficient algorithms fore deciding if a graph is 2-colorable.

TRUE. For instance, it can be shown that a graph is 2-colorable if and only if it is
bipartite. There is a modified version of BFS decides in polynomial time if a graph
is bipartite or not.

b. It is possible to find the product of two n-degree polynomials in time O(n log n).

TRUE. You can use FFT. Transform the two polynomials, multiply their transforms
and make an inverse transformation. Can be done in time O(n log n).

c. Let us assume that Divide and Conquer-algorithm has a time complexity T (n)
given by the equation

T (n) = 3T (
n

2
) + Θ(n)

Then the time complexity is smaller than Θ(n2).

TRUE. We can use the master theorem with a = 3 and b = 2. We get 1 < k < 2.
That gives us T (n) ∈ Θ(nk).

d. Every problem in PSPACE is also a problem in P.

FALSE. It can be shown that NP ⊆ PSPACE. If all problems in PSPACE would
belong to P we would have P = NP. (And we assume it is not.)

2. (3 p)

Describe in detail how the Depth First Search algorithm works. A graph can be repre-
sented in different ways. Show what the difference in time complexity is when you run

1

the algorithm with a graph represented with an adjacency matrix and with a graph
represented with adjacency lists.

Solution: For a description of DFS, see lecture notes or the course book. If we use
adjacency list we see that the time complexity is O(|E|). If we use an adjacency matrix,
we find that the time complexity is proportional to the number of times we have to check
for neighbors to nodes. This number is O(|V |2). When we have sparse graphs, we see
that adjacency lists work better.

3. (3 p)

Let G be a directed graph with no directed cycles (i.e. a DAG). Let us assume that we
have a topological numbering of the nodes. We have a weight wi for each node i. If there
is a path from node i to node j (this path is then unique) we say that the node-weight
of the path is the sum of the weights of all nodes in the path, including node i and
node j. Describe a Dynamical Programming algorithm for finding the node-weight of
the path between node i and node j (if there is any). Give the time-complexity for your
algorithm.

Solution: There are several possible solutions. One is to define d[a, b] = node-weight of
the path from a to b. If there is no such path we set da, b. We can compute these values
recursivelly. We initialize d[a, b] = ∞ for all a, b. Then set d[a, a] = wa for all a. Then,
for all a < b we check for a ≤ k < b such that d[a, k] <∞ and there is an edge (k, b) in
G. If there is such a k we set d[a, b] = d[a, k] + wb. In the simplest implementation this
algorithm has time-complexity O(n3).

4. (3p)

In the graph bellow the nodes are problems. An array like A→ B indicates that there is
a polynomial time reduction fram A to B. Observe that there could be more reductions
than those given. Let us assume that A is NP-Complete. Answer these questions:

a. Which problems must be NP-Complete?

b. Which problems could be outside NP?

c. Given P 6= NP, which problems could then be in P?

2

Solution:

We use the facts:

1. If U → V and V is in NP, then U is in NP.

2. If U is NP-Hard, then V is NP-Hard.

3. I V is in P, then U is in P.

a. In NP: A, B, C.

b. Possibly outside NP: D, E, F, H.

c. Possibly in P: D, G.

5. (3 p)

The two problems VERTEX COVER and INDEPENDENT SET are related in the sense
that A ⊆ V (G) is a vertex cover if and only if V (G)−A is an independent set. We know
that VERTEX COVER can be approximated. The question here is if INDEPENDENT
SET also can be approximated.

a. Describe the approximation algorithm for VERTEX COVER (i.e. the one given in
the course).

This algorithm has an approximation quotient B = 2. Now let A′ be a vertex cover
given by the algorithm. Let C ′ = V (G)−A′. Then we will take C ′ as an approximative
solution to INDEPENDENT SET.

b. Can you find an upper bound for OPTIS
|C′| , that is, can you find an approximation

quotient for the suggested algorithm?

Solution: In fact, there is no approximation quotient. To see this, take any integer
n > 2. Form a graph G with nodes {0, 1, 2, ..., 2n}. Let there be edges
{(0, 1), (0, 2), ..., (0, 2n), (1, 2), (3, 4), ..., (2n − 1, 2n)}. It can then be seen that one pos-
sible solution given by the vertex cover algorithm is the set {1, 2, 3, 4, ..., 2n}. This gives
the one node 0 as an approximation for a maximal independent set. But we can easily
see that the size of a maximal independent set is n. So we get a quotient n. Since n can
be chosen arbitrarily large, there is no approximation quotient.

3

