Numerical methods for matrix functions
SF2524 - Matrix Computations for Large-scale Systems

Lecture 15: Krylov methods for matrix functions
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Problem
In this lecture we wish to compute

where A € R"*" is a given large sparse matrix.

v

* Derive on Black board *

Cauchy integral definition leads to

f(A)b = (;Téf(z)(A —zh7t dz> b= _17{f(z)(A —z)"tbhdz

2im
How do we compute?
(A—zl)"'b (%)

Note: (%) is a shifted linear system of equations:
(A—zl)x = b.

We will solve the shifted linear system using an Arnoldi method.
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The rest of this lecture
1. Arnoldi’'s method for shifted systems

2. GMRES-variant (FOM) for shifted systems
3. Use Cauchy definition = Krylov method for matrix functions

4. Application to exponential integrators
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Shift invariance of Krylov subspaces

Kn(A, b) = Kn(A — o, b)

Proof idea: Find a non-singular R such that
[b,...,A""1b|R = [b,(A—cl)b,...,(A—cl)"b]

Recall: W = VR and R non-singular and wj, ..., wp, linear independent
= span(wi, ..., Wm) = span(vi, ..., Vp)
What happens with the Arnoldi factorization? *On black board*
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Arnoldi factorization for a shifted matrix
Suppose we have an Arnoldi factorization

AQm - Qm—i—lﬂm (*)

Lemma

Suppose Qm € C™™, H, € Clmt)Xm js an Arnoldi factorization (x)
associated with IKCr,(A, b). Then, for any o € C, Qn € C™™ and
H,, — 0lmt1,m is an Arnoldi factorization associated with ICp,(A — ol, b),

(A — UI)Qm = Qm—l—l(ﬂm - O'Im—l—l,m)- (**)
where
1
Im+1 m — S R(m—l—l)xm.
7 1
0 --- 0
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FOM - almost GMRES for linear system

We now wish to solve linear systems:
Cx=b

(where we later set C = A—ol.)

Derive on blackboard

Full Orthogonalization Method (FOM)
@ Compute an Arnoldi factorization AQ, = Qn+1H,,
o Compute z=H(1:n,1:n)\el & z = H, e

e Compute approximation X = Q,z||b||

Only slight difference in GMRES z=H(1:n+1,1:n)\el.
Convergence very similar to GMRES.

Relationship with GMRES

o GMRES corresponds to (AQ,)" (A% — b) = 0 (lecture 8)
e FOM corresponds to Q] (A% — b) =0
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Now consider shifted system:

(A—ol)x=b

FOM for shifted systems
Compute an Arnoldi factorization AQ, = Qn+1H,

Compute z=(H(1:n,1:n)-0/)\el & z = (H, — zI) " le

Compute approximation X = Qz||b||

Note: Step 1 is independent of o and the Step 2-3 can be done for many
o without carrying out Arnoldi method:

x~Xx = QnH,— 0'/)_161||b||.
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On black board

Cauchy integral definition and use FOM-approximation:

f(A)b = 2”1T f(z)(A—zl)1bdz

2mjff(z)on  — 21) ey ||b|| dz

_ Qnmﬁf(z)(H,,—zl)_ dz e1 b
= Qnf(Hp)e1| bl

Q

Krylov approximation of matrix functions
f(A)b =~ f, = Quf(Hn)e1||b]] J
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Error analysis of Krylov approximation

*On black board*
Theorem

Suppose A € C"*" js a normal matrix and suppose Q2 C C is a convex

compact set such that A\(A) C Q. Let f,, be the Krylov approximation of
f(A)b. Then,

IF(AYb — Foll < 2] _min max|£(z) — p(2)].

Favorable situations (fast convergence):
@ f(z) can be well approximated with low-order polynomials

@ A\(A) and A\(Hy) are clustered such that Q can be chosen small.
(Note. Not relative clustering)

* Examples *
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Application to exponential integrators
PDF lecture notes 4.4.3
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We already know that the initial value problem

yY'(t) = Ay(t), y(0) = yo
has the solution
y(t) = exp(tA)yo.
What about more general ODEs?

Problem

We wish to numerically solve the initial value problem using matrix
functions:

y'(t) = g(y(1), y(0) =o.
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Lemma (Explicit solution linear inhomogeneous ODE)

The linear inhomogeneous ODE with right-hand side
gly) =gi(y) == Ay + b and

y'(t) = Ay(t) + b= gi(y(t)), y(0)= yo, (1)

has a solution explicitly given by

y(t) = yo + to(tA)g1(vo)- (2)

The matrix function ¢ is called a ¢-function

ef—1

z

¢(z) =

* plot phi-function 4+ matlab demo *

Numerical methods for matrix functions 12 /15



Substitute in the nonlinear problem and repeat reasoning:

Definition (Forward Euler exponential integrator)

Let 0 =ty < t1 < --- < ty. The forward Euler exponential integrator
generate the approximations yx ~ y(tx), k =, ..., N defined as

Yi+1 = Yk + hieo(heAk)g (yi) (3)

where hy = tyy1 — ty and Ax = g'(yk).

Properties:

e Exact for the linear inhomogeneous case (1), and one step can be
proven to be second order in h in the general case.

@ Requires the computation of ¢(hA)g(yk) in every step. Suitable to be
used with matrix functions.

Numerical methods for matrix functions 13 /15



Step-length trade-off

We want

Trade-off of time-step h

@ small h = small Krylov error;
@ small h = small time-stepping error; but
@ large h, because to reach a specific time-point quicker.

In practice: Try to balance Krylov error and time-step error with error
estimates and increase to specific tolerance.

More elaborate example in Lecture notes PDF.
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It's been a pleasure to teach this course. Thanks!

Exam preparation information

@ “Sometimes you need to work harder not smarter”
= Solve many problems as preparation:

> old exams

> selected wiki problems 2016

» selected wiki problems 2017 (will come soon)
» Lanczos quiz

@ Read problem formulation carefully:
e.g. "Show” means “prove” (not matlab code)

@ Correction more strict than wiki correction

@ No calculator, notes, phones, books, etc allowed

Good luck on the exam

Please fill out the course evaluation (later)
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