Video material in the course
Julia intro: https://play.kth.se/media/0_cg2dbl0v
Block 1: Iterative methods for large and sparse eigenvalue problems
- Rayleigh quotient:
- 104 Rayleigh quotient definition and accuracy: https://play.kth.se/media/t/0_j5jfpeol
- 105 Minimization interpretation https://play.kth.se/media/t/0_fwvwpvxb
- Power method:
- 110 Definition & Introduction: https://play.kth.se/media/t/0_fikp6zrx
- Proof of power method convergence:
- 111 To which eigenvalue: https://play.kth.se/media/t/0_elronlef
- 112 Convergence speed: https://play.kth.se/media/t/0_dn4klwwu
- 120 Inverse iteration: https://play.kth.se/media/t/0_kodgxz18
- 130 Rayleigh quotient iteration: https://play.kth.se/media/t/0_q6evbded
- 140 Rayleigh-Ritz method derivation: https://play.kth.se/media/t/0_pgq7n2nt
- 141a Rayleigh-Ritz method convergence theory part 1: Bauer-Fike theorem https://play.kth.se/media/0_xtk09cm4
- 141b Rayleigh-Ritz method convergence theory part 2: Derivation of bound https://play.kth.se/media/t/0_vrylvoyf
- 142 Rayleigh-Ritz method: small example https://play.kth.se/media/t/0_fnd3eqd3
- Numerical Gram-Schmidt orthogonalization:
- 150 Classical Gram-Schmidt & Repeated Gram-Schmidt: https://play.kth.se/media/t/0_ru0cn21d
- 151 Modified Gram-Schmidt: https://play.kth.se/media/t/0_inznie5i
- 152 CPU-timing demo (beyond the scope of the course but may help to understand observations in HW1): https://play.kth.se/media/t/0_u6f5om44
- Arnoldi method:
- 160 Arnoldi factorization and derivation of Arnoldi method: https://play.kth.se/media/t/0_xleo1rha
- 162 Krylov subspaces and Arnoldi's method: https://play.kth.se/media/t/0_jzcqs8er
- 165 Convergence of the Arnoldi method for eigenvalue problems: Part 1 statement of main theorem: https://play.kth.se/media/t/0_layolchr
- 166 Convergence of the Arnoldi method for eigenvalue problems: Part 2 proof of main theorem: https://play.kth.se/media/t/0_0geih9f6
- 167 Convergence of the Arnoldi method for eigenvalue problems: Part 3 convergence disks: https://play.kth.se/media/t/0_mr869wxy
- 167b Convergence of the Arnoldi method for eigenvalue problems: Part 4 outlier theory: https://play.kth.se/media/t/0_cn0saapp
- 168 Shift and invert Arnoldi method for eigenvalue problems: https://play.kth.se/media/t/0_vr45ztje
- 170 Lanczos method: https://play.kth.se/media/t/0_6fz0pho5
- 169 Breakdown: https://play.kth.se/media/t/0_g3jov29e
Block 2: Iterative methods for large and sparse linear systems
- 201 Application: CPU socket https://play.kth.se/media/t/0_n0cnxcqv
- 202a Plotting with against CPU-time (CG application): https://play.kth.se/media/t/0_o6mmqivi
- 202b Plotting with against CPU-time (Precond GMRES application): https://play.kth.se/media/0_rebb52fi
- GMRES
- 210 GMRES derivation from AM: https://play.kth.se/media/t/0_bhu8ji9i (new)
- 212 GMRES convergence theory 1: Convergence theory preparation: https://play.kth.se/media/t/0_qx56u1v3
- 213 GMRES convergence theory 2: Main convergence theorem : https://play.kth.se/media/t/0_r2unnt87
- 214 GMRES convergence theory 3: Disk bound and rule-of-thumb: https://play.kth.se/media/t/0_2zba1c2v
- 215 GMRES convergence theory 4: Disk bound with outlier https://play.kth.se/media/t/0_78mlxlu8
- 216 GMRES preconditioning: https://play.kth.se/media/t/0_jeixnf2y
- 217 GMRES preconditioning demo: https://play.kth.se/media/t/0_unskflne
- 220 Application: Arnoldi-Tikhonov regularization https://play.kth.se/media/t/0_mmgg2y9i
- Conjugate gradients
- 230 Conjugate Gradients intro: https://play.kth.se/media/t/0_rsdgaznt
- 231 Conjugate Gradients derivation part 1: Residual is orthogonal to a Krylov subspace: https://play.kth.se/media/t/0_0x1sgsz2
- 232a Conjugate Gradients derivation part 2: Short term-recurrence ansatz: https://play.kth.se/media/t/0_6c1k5ej9
- 232b Conjugate Gradients derivation part 3: Orthogonality properties of r- and p- vectors https://play.kth.se/media/t/0_s1tl3mig
- 233 CG demo: https://play.kth.se/media/t/0_ymj8gh8y
- 234 CG preconditioning 1: https://play.kth.se/media/t/0_qj31rbuj
- 235 CG preconditioning 2: https://play.kth.se/media/t/0_4pf3g58h (new recording)
- Conjugate gradients normal equations
- 240 CGNE - derivation of conjugate gradients normal equations: https://play.kth.se/media/t/0_pgxt4plx
- 241 CGNE convergence theory: https://play.kth.se/media/t/0_uhog3mui
- 242 CGNE matlab demo: https://play.kth.se/media/t/0_j3ids6s0
- 250 BiCG from PCG: https://play.kth.se/media/t/0_xlka5ac7
Block 3: The QR-method
- 302: The two-phase approach: https://play.kth.se/media/t/0_iktgzhcp
- Phase 1: Hessenberg reduction
- 312: Householder reflectors that map x to the direction of e1: https://play.kth.se/media/t/0_4fyax1bm
- 313: Hessenberg reduction: https://play.kth.se/media/t/0_r9p5kfxs
- Phase 2: Hessenberg QR-method
- 323 Givens rotations: Definition and example: https://play.kth.se/media/t/0_qs6gs4aq
- 325 QR-factorization of Hessenberg via Givens derivation: https://play.kth.se/media/t/0_bv950zzu
- 326 QR-factorization of Hessenberg via Givens (matlab demo): https://play.kth.se/media/t/0_bbmkydoo
- Acceleration and deflation:
- 331: Shifted QR-method introduction: https://play.kth.se/media/t/0_e7xcfls9
- 333: Shifted QR-method with exact shifts: https://play.kth.se/media/t/0_y3gbs2y9
- 335: Shifted QR-method with Deflation: https://play.kth.se/media/t/0_v84xxo7m
- Convergence theory of QR-methog:
- 341 Part 0. Overview of the convergence approach: https://play.kth.se/media/t/0_ufdf8abw
- 344 Part 1. NSI <=> USI https://play.kth.se/media/t/0_q566cfc2
- 345 Part 2. Convergence unnormalized simultaneous iteration for special case: https://play.kth.se/media/t/0_0gn999z7
- 346 Part 3. Convergence unnormalized simultaneous iteration general: https://play.kth.se/media/t/0_5e12jksb
- 349 Matlab illustration: USI convergence https://play.kth.se/media/0_9punjw92
Block 4: Algorithms for matrix functions
- 402 Application in data science: Estrada index and subgraph centrality TODO
- 403 Proof of the Taylor definition https://play.kth.se/media/t/0_mp1d50te
- General methods
- 414a Schur-Parlett for a 2x2 matrix: https://play.kth.se/media/t/0_hq17szfe
- 414b Schur-Parlett: f(T) where T triangular https://play.kth.se/media/t/0_v78zlt6q (new)
- Specialized matrix function methods
- 421 Scaling-and-squaring for the matrix exponendial: https://play.kth.se/media/t/0_36lwyyq3
- 423 Newton SQRTM: https://play.kth.se/media/t/0_hpdzaw0c
- 424 Denman-Beavers iteration: https://play.kth.se/media/t/0_a4uw3wjj
- 425 Matrix sign function: https://play.kth.se/media/t/0_hzu65o3d
- Krylov methods for f(A)b
- 432 Shift invariance: https://play.kth.se/media/t/0_h9cvc79y
- 434 FOM derivation https://play.kth.se/media/t/0_u4e77gi6
- 437 Matlab example Krylov method for f(A)b (no audio): https://play.kth.se/media/t/0_41s7n5qv
- 441 Phi-functions and exponential integrators https://play.kth.se/media/t/0_p24djy88
- 101 Applications: https://play.kth.se/media/t/0_6hjn401v