Course Plan

Course literature and supplementary reading

  • D. Montgomery, E. Peck, G. Vining: Introduction to Linear Regression Analysis. Wiley-Interscience, (6th Edition (2021). ISBN-10: 978-1-119-57872-7. 704 pages or 5th Edition (2012). ISBN-10: 978-1-118-62736-5. 645 pages). Acronym below: MPV (for the 5th edition). 

The textbook MPV can be bought at THS Kårbokhandel, Drottning Kristinas väg 15-19. The book also has a solutions manual.  MPV is digitally available via KTHB. 

There are a number of other books that cover the topics of the course, and which we will use during the course. Here are some recommendations, which are all available freely online:

 

Preliminary plan of lectures and exercises sessions

  • The order of lectures and exercise sessions is subject to change.
  • Lecturers and guest lecturers: Timo Koski (TK),  teaching assistants (TA), guest lecturers from If P&C Insurance (If), Mattias Villani (MV).  
  • Problems to be solved during the exercise sessions and recommended exercises to be solved on your own are found here.
Day Date Time Hall Topic Lecturer
1. Tue  16/1 15-17 F1

Lecture 1: Introduction to Course Work. Simple Linear Regression, Conditional Expectation,  

MPV parts of Ch. 2  or pp 12-22, p. 26

MPV6th  pp. 12-22

TK
2. Thu 18/1 13-15 E1

Lecture 2: Centering matrix, idempotent matrices  and other linear algebra, random vectors, expectation of random vectors, covariance matrix, multivariate normal distribution.  

TK
3. Fri 19/1 8-10 E1 Exercise 1 TA
4.Mon 22/1 08-10 E1

Lecture 3: Multiple Linear regression Part 1. 

Least Squares Estimate (LSE)

Projection geometry of LSE, MLE

MPV Ch. 3 pp. 67-83

MPV6th  pp. 69-86

TK
5. Tue 23/1 13-15 E1

Lecture 4: Multiple Regression Part 2. 

Gauss-Markov Theorem MVP pp. 587-588,  MVP6th  pp. 615-615 Prediction of new  y MVP   pp.33-34 p. 104 ,

MVP6th 106  Quadratic Forms p. MVP 580-584

MVP6th  608-612

Fundamental Variance Decomposition, Distribution of LSE Residuals

TK
6. Thu 25/1

10-12

E1

Lecture 5: Confidence Intervals for Multiple Regression, F -test for model

MPV Sections 2.3-2.4, 3.3-3.4

MPV6th Sections 2.3-2.4  3.3-3.4 

TK
7. Fri 26/1 08-10 E1 Exercise 2 TA
8.Mon 29/1 08-10 E1

Lecture 6:

Model  Diagnostics & Residual analysis,   

MPV pp. 211-219   MPV pp. 133-135   pp.  151-152

MPV6th 217-225 , MPV6th 139-144

MPV6th 156-157

 

TK
9. Tue 30/01 13-15 M1 Exercise 3 TA
10. Thu 1/2 13-15 F2

Lecture 7:

Further Confidence Intervals using the centered model

MPV pp. 84-85, pp. 581-582

MPV6th 86-87 pp. 609-611

 

TK
11. Fri 2/2 08-10 D1

Exercise 4

 IR
12. Wed 7/2 13-15 E1

Lecture 8: 

Model Selection by F-test, Variable Selection. Model selection by  Akaike Information Criterion (AIC) 

MPV Ch. 10 pp. 327-328  pp. 334-337

MPV6th Ch 10  pp.342-343   pp. 349-352

 

TK
13. Thu 8/2 13-15 Q1

Lecture 9:

Logistic Regression

MPV Ch. 13.2

MPV 6th  Ch. 13.2

 

TK
14. Fri  9/2 08-10 D1

 Lecture 10: 

 

1. Generalized  inverses

2. Bias-Variance Trade Off, High dimensional Data, Lasso & Ridge regression 

 

MPV pp. 304 -314

MPV6th  pp. 312-320

TK
15. Mon 12/2

08-10

D1

Lecture 11:

 

1. Gradient Descent   Lecture Notes on Canvas 

2. Big data: reduction of number of predictors  by Principal Component Regression  MPV pp. 313-315  

MPV6th p.329-330

 

TK
16. Wed 14/2 13-15 E1

Lecture 12:  1. Linear Regression and Causal Inference 

2. Bayesian Learning 

TK 
17.  Thu 15/2 13-15 Q1

Lecture 13:  Bayesian Regression 

MV
16. Fri 16/2 08-10 D1

Exercise 5

TA
19.Mon  19/2 08-10 F1

Lecture 14

If
20. Tue 20/2 10-12 Q1 Lecture 15 If
21. Fri 23/2 08-10

D1

Exercise 6 If
22. Mon 26/2 08-10 E1 Exercise 7 TA

23.Wed 28/2 13-15 D1 Lecture 16

If

24.Thu   29/2 10-12 E1  Exercise  If 
Mon 11/3 08-13 Exam
Tue    04/06 08 -13 Re-exam