Mini Review: Sets and Relations

 

Additional Set Operations

 

Intersection

The intersection between two sets \text{X}X and \text{Y}Y is written as X\:\cap\:YXY and defined as follows:

X\:\cap\ Y\:=\lbrace x\:|\:x\:\in X\:and\:x\:\in Y\rbraceX Y={x|xXandxY}

Example

For X=\lbrace a,b\rbraceX={a,b} and Y=\lbrace b,c\rbraceY={b,c}, the intersection is X\:\cap\:Y=\lbrace b\rbraceXY={b}

Difference

The difference between two sets XX and YY is written as X\:\setminus YXY (or sometimes as X-YXY and is also called the relative complement of YY in YY. It is defined as follows:

X\:\setminus\:Y=\lbrace x\:|\:x\in X\:and\:x\notin Y\rbraceXY={x|xXandxY} 

Example

For X=\lbrace a,b\rbraceX={a,b} and \lbrace b,c\rbrace{b,c}, the set difference is X\:\backslash\:Y=\lbrace a\rbraceXY={a}.