Course plan

Course literature and supplementary reading

  • D. Montgomery, E. Peck, G. Vining: Introduction to Linear Regression Analysis. Wiley-Interscience, (6th Edition (2021). ISBN-10: 978-1-119-57872-7. 704 pages or 5th Edition (2012). ISBN-10: 978-1-118-62736-5. 645 pages). Acronym below: MPV. 

The textbook MPV can be bought at THS Kårbokhandel, Drottning Kristinas väg 15-19. The book also has a solutions manual.

There are a number of other books that cover the topics of the course, and which we will use during the course. Here are some recommendations, which are all available freely online:

 

Preliminary plan of lectures and exercises sessions

  • The order of lectures and exercise sessions is subject to change.
  • Lecturers and guest lecturers: Timo Koski (TK),  Isaac Ren (IR), guest lecturers from If P&C Insurance (If), Mattias Villani (MV).  
  • Problems to be solved during the exercise sessions and recommended exercises to be solved on your own are found here.
Day Date Time Hall Topic Lecturer
1. Wed 18/1 15-17 F1

Lecture 1: Introduction to Course Work. Simple Linear Regression, Conditional Expectation

MPV parts of Ch. 2  or pp 12-22, p. 26

TK
2. Thu 19/1 10-12 D1

Lecture 2: Centering matrix, idempotent matrices  and other linear algebra, random vectors, expectation of random vectors, covariance matrix, multivariate normal distribution.  

TK
3. Fri 20/1 8-10 F2 Exercise 1 IR
4. Tue 24/1 13-15 F2

Lecture 3: Multiple Linear regression Part 1. 

Least Squares Estimate (LSE)

Projection geometry of LSE, MLE

MPV Ch. 3 pp. 67-83

TK
5. Wed 25/1 10-12 F2

Lecture 4: Multiple Regression Part 2. 

Gauss-Markov Theorem, Prediction, Quadratic Forms Fundamental Variance Decomposition, Distribution of LSE Residuals  

TK
6. Thu 26/1

8-10

D1

Lecture 5: Confidence Intervals for Multiple Regression, F -test for  model

TK
7. Fri 27/1 10-12 D1 Exercise 2 IR
8. Tue 31/1 15-17 D1

Lecture 6: Further Confidence Intervals using the centered model

MPV pp. 84-85, pp. 581-582

TK
9. Wed 1/2 10-12 F2 Exercise 3 IR
10. Thu 2/2 8-10 E1

Lecture 7: Model Selection by F-test, Variable Selection. Model selction by  Akaike Information Criterion (AIC) 

MPV Ch. 10 

TK
11. Tue 7/2 15-17 D1

Exercise 4

 IR
12. Wed 8/2 15-17 D1

Lecture 8: Bias-Variance Trade Off, High dimensional Data

TK
13. Thu 9/2 8-10 D1

Lecture 9: 9.1. Bayesian Inference

 9.2 Causality and Regression 

TK
14. Mon 13/2 10-12 F2

Lecture 10: Bayesian Regression 

MV
15. Wed 15/2

10-12

F2

Lecture 11: Model Validation

MPV Ch. 11

TK
16. Thu 16/2 8-10 D1

Lecture 12: Big data: reduction of variables by Principal Component Regression 

TK
17. Fri 17/2 13-15 E1

Lecture 13: Logistic Regression

MPV Ch. 13.2

TK
18. Tue 21/2 15-17 D1

 Exercise 5

IR
19. Wed 22/2 10-12 F1

Lecture 14

If
20. Thu 24/2 8-10 E1 Lecture 15 If
21. Mon 27/2 13-15

F1

Exercise 6 If
22. Tue 28/2 15-17 D1 Exercise 7 If

23. Thu 2/3 8-10 D1 Lecture 16

If

Mon 13/3 08-13 Exam
Wed 7/6 08-13 Re-exam