Examination in Programming in Python BB1000

Suggested solutions

2019-08-16 08:00-13:00
Grading:

® E:Part1>=75%

® D:Part1>=75% and Part 2 >= 25%

® C:Part1>=75% and Part 2 >= 75%

® B:Part1>=75% and Part 2 >= 75% and Part 3 >= 25%
® A:Part1>=75% and Part 2 >= 75% and Part 3 >= 75%

Each correctly answered question yields one point.

Note: Part 2 will only be graded if Part 1 has been passed. Part 3 will only be graded if both parts 1 and 2 both has been passed.

Part 1

1. Write a function definition that

o

takes one optional parameter with default valuenone

o with no parameter it returns -999

o the parameter can be assumed to be a sequence-like type (e.g. list, tuple)
the function returns the sum of the parameter elements if provided

o an empty sequence gives zero

o

Solution:

>>> def sum_elements (seg=None) :
if seqg is None:
return -999
else:
return sum(seq)

Such that

>>> sum_elements ()

=999

>>> sum_elements ([])

0

>>> sum_elements ((1, 2))

3

>>> sum_elements (range (4))
6

2. List a way of looping over a dictionary (there are a few) so that e.g.¢»a": 1, "bn: 2, wc»: 3} is displayed on the screen as

a->1
b->2
c->3

Solution:

>>>d = {"a": 1, "b": 2,
>>> for k, v in d.items():
print (£ {k}->{v}")

@ 3}

a->1
b->2
c->3

3. Afunction takes a CSV-string with name/gender data as input and returns a dictionary with gender as key and a list of full names as value.

e.g. with

>>> sample data = """first_ name,last_name,gender
. Quintina,Firle,F
. Jesse,Nunson,M
. Lena,Stockley,F

Margaux, Sirr,F

. Taylor,Alishoner, M"""

Reorder and indent correctly the source lines:

names = {"F": [], "M": []}

return names

def group_by_gender (data) :

first, last, gender = line.split(",")
lines data.split("\n")

names [gender] .append (f" {first} {last}")
for line in lines([1:]:

Solution:

>>> def group by gender (data) :
names = {"F": [], "M": []}
lines = data.split("\n")
for line in lines(1:]:
first, last, gender = line.split(",")
names [gender] .append (£" {first} {last}")
return names

such that

>>> group_by_gender (sample_data)
{'F': ['Quintina Firle', 'Lena Stockley', 'Margaux Sirr'], 'M': ['Jesse Nunson',6 'Taylor Alishoner']}

4. Asingle line with sp1it and join can split a multiline string
>>> text = """one

two
threennn

into

'one| two|three'

Write down an instruction with one or more lines that does this

Solution:
>>> text = """one
two
threemnn
>>> | . join(text.split('\n'))

'one| two|three"

5. Outline a function which takes a string as input and returns a tuple with two objects

o a modified string with vowels replaced with a star+ -
o the number of replacements

Solution:

>>> def strip_vowels (text):
new = []
count = 0
for ¢ in text:
if c.lower() in 'eiyaou':
new.append ('*')
count += 1
else:
new.append (c)
modified = ''.join (new)
return (modified, count)

such that

>>> strip vowels('hello world')
(*h*11* w*rld', 3)

6. What is the role of the binary operators // and % in Python arithmetics?
Truncated integer division and modulus (remainder)

7. When calling a Python script from the command line

$ python script.py argl arg2
The arguments are saved in a specific data structure of a specific module What is the type and name of the data structure and which module?
They are colleced in the list sys.argv

8. Give an example of an important usage of the variable__name__in Python scripts

To filter out code that should not run during import of a module, that only runs when the script is the main program

if __name_ == "__main_ ":

Part 2

9. Outline a class definition car for a car with attributes make, model, year.

Solution

>>> class Car:
def __init__ (self, make, model, year):
self.make = make
self.model = model
self.year = year

10. (Car continued)
Add a class method so that default string representation of an object mimics the command for creation.

Solution

>>> class Car:

def __init__ (self, make, model, year):
self.make = make
self.model = model
self.year = year

def __repr_ (self):

return f"Car ('{self.make}', '{self.model}', {self.year})"
>>> car = Car('Volvo', 'Amazon',6 1964
>>> repr (car)
"Car('vVolvo', 'Amazon', 1964)"

11. (Car continued)
Add another class method so that the other string representation of an object reads

Solution

>>> class Car:

def __init_ (self, make, model, year):
self.make = make
self.model = model
self.year = year

def __repr_ (self):
return f"{self._class_ . name_}('{self.make}', '{self.model}', {self.year})"

def str__(self):

return f"{self.make} {self.model} ({self.year})"

>>> car = Car('Volvo', 'Amazon', 1964)
>>> str(car)
'Volvo Amazon (1964)'

12. (Car Continued)

Outline code that generate a list of Car objects by reading the a filecars . csv containing

Dodge, Charger, 1969
GMC, Vandura G2500,1995
Toyota, Sienna, 2007
Dodge, Challenger, 2012
Pontiac,Grand Am,1989
Nissan,Altima, 2009
Mazda,MPV, 2002
Cadillac,DeVille, 1994
Mercury, Tracer, 1999
Volkswagen, Passat, 1988

Solution:

>>> cars = []

>>> for line in open('cars.csv'):

make, model, year = line.strip().split(',')

car = Car (make, model, year)
e cars.append (car)

such that

>>> cars
[Car('Dodge', 'Charger', 1969), Car('GMC', 'Vandura G2500', 1995), Car('Toyota', 'Sienna', 2007), Car('Dodge', 'Challenger', 2012), Car(

(Car Continued)

The sorted function has the documentation

sorted (iterable, /, *, key=None, reverse=False)
Return a new list containing all items from the iterable in ascending order.

A custom key function can be supplied to customize the sort order, and the
reverse flag can be set to request the result in descending order.

How can you use this to sort the cars by year from newest to oldest?

Solution:

>>> def get_year(car):
e return car.year

>>> sorted(cars, key=get_year, reverse=True)
[Car ('Dodge', 'Challenger', 2012), Car('Nissan', 'Altima', 2009), Car('Toyota', 'Sienna', 2007), Car('Mazda', 'MPV', 2002), Car('Mer

(Car Continued)
A car salesman wants to use your code but update to have a price attribute. Define a new class that inherits from Car with an initial price zero

Solution:

>>> class CardsSale(Car):

def __init__ (self, make, model, year, price=0):
super () .__init__ (make, model, year)

. self.price = price

such that

>>> car = Car4Sale('Volvo', 'Amazon',6 1964)

>>> car.price

0

>>> car = Car4Sale('Volvo', 'Amazon',6 1964, 9900)
>>> car.price

9900

(Car Continued)
Write the function to calculate the total price for a list of cars

Solution:

>>> def sum_values(cars):
return sum(car.price for car in cars)

>>> sum_values ([1)
0
>>> sum_values ([
Car4sale('Chevrolet' ,'Silverado 3500',2003,34452),
Car4sale('Mazda', 626, 1991, 17121),
Car4sale('Oldsmobile', ‘'Achieva', 1993, 12982),
oD
64555
(Car Continued)
When it comes to extending a class an alternative to inheritance is so called composition, which means in this case that a car and its price are
separate data attributes of a new class
>>> class CarWithPrice:
. def __init_ (self, car, price=0):
. self.car = car
. self.price = price
def __str__ (self):
return f"{self.car}: {self.price}"

>>> car = Car ('Mercury', 'Sable', 1988)
>>> car_price = CarWithPrice(car, 7000)

What will be the output ofprint (car_price)?

Solution:

>>> print (car_price)

Mercury Sable (1988): 7000
Part 3

17. The documentation for functools.partial contains the following

The partial() is used for partial function application which “freezes” some portion of a function’s arguments and/or keywords resulting in a new object
with a simplified signature. For example, partial() can be used to create a callable that behaves like the int() function where the base argument
defaults to two:

>>> from functools import partial
>>> basetwo = partial(int, base=2)

>>> basetwo.__doc__ = 'Convert base 2 string to an int.'
>>> basetwo ('10010")
18

Make an analogy of this for the print function such that objects are printed on separate lines.

Solution:
>>> lprint = partial (print, sep='\n')

>>> lprint('a', 'b', 'c')
a
b
c

Hint: use the sep keyword argument
18. The zip documentation contains
class zip(object) zip(iter1 [iter2 [...]]) --> zip object

Return a zip object whose next() method returns a tuple where the i-th element comes from the i-th iterable argument. The next() method
continues until the shortest iterable in the argument sequence is exhausted and then it raises Stoplteration.

From this description what would be the output of

11 = [1, 2, 3]

12 = [4, 5]
for z in zip(11, 12):
print (z)
Solution:
>>> 11 = [1, 2, 3]
>>> 12 = [4, 5]
>>> for z in zip(11, 12):
print(z)
(1, 4)
(2, 5)

19. The map function has the following documentation
class map(object) map(func, iterables) --> map object™
Make an iterator that computes the function using arguments from each of the iterables. Stops when the shortest iterable is exhausted.

What is the output of the following?

11 = [1, 2, 3]

12 = [4, 5]

def £(x, y): return x + y
for s in map(f, 11, 12):

print (s)

Solution:
>>> 11 = [1, 2, 3]
>>> 12 = [4, 5]

>>> def f(x, y): return x + y
>>> for s in map(f, 11, 12):
print(s)

20. The colorama module in Python can be used to give color output in a terminal e.g.

>>> from colorama import Fore, Style
>>> print (Fore.RED + 'some red text' + Style.RESET ALL)

some red text
Use this to design a decorator such that all output from a decorated function is in red

Solution:

>>> def red(f):
def wrap(*args, **kwargs):
print (Fore.RED, end='")
f(*args, **kwargs)
print (Style.RESET_ALL)
return wrap

such that

>>> @red
. def hello():

.. print ("Hello world!")
>>> hello()

Hello world!

	Examination in Programming in Python BB1000
	Suggested solutions
	2019-08-16 08:00-13:00
	Part 1
	Part 2
	Part 3

