
DD2460.Lecture 6
Refinement in Event-B. Safety case.

Refinement

• Refinement is a process that is used describe any or all of the following
changes to a model:

• extended functionality: we add more functionality to the model, perhaps
modelling the requirements for a system in layers;

• more detail: we give a finer-grained model of the events. This is often described
as moving from the abstract to the concrete (from “what” to “how”)

• changing state model: we change the way that the state is modelled, but also
describe how the new state models the old state (data refinement)

Correct-by-construction development: formal
meaning

2023-04-04 3

• In all cases of refinement, the behaviour of the refined machine must be
consistent with the behaviour of the machine being refined (more abstract
machine).

• Observe consistent does not mean equivalent:
– the behaviour of the refined machine does not have to be the same, but the behaviour

must not contradict the behaviour of the machine being refined.
– e.g., machines may be nondeterministic and the refined machine may remove some of

the nondeterminism.

Refinement machine: refined state (1/2)

2023-04-04 4

• The refinement machine consists of refined state and refined events

• A refined state is logically a new state.

• The refined state must contain a refinement relation that expresses how the
refined state models the state being refined.

• The refined state may contain variables that are syntactically and semantically
equivalent to variables in the state of the machine being refined.

• In that case, the new and old variables are implicitly related by an equivalence
relation.

Refinement machine: refined and new events
(2/2)

2023-04-04 5

• Refined events logically refine the events of the refined machine.

• The refined events are considered to simulate the behaviour of the events
being refined, where the effects of the refined events are interpreted through
the refinement relation.

• New events add new functionality to the model.

• The new events must not add behaviour that is inconsistent with the behaviour
of the refined machine.

Refinement relation

2023-04-04 6

• The refinement relation is expressed explicitly or implicitly in the invariant of a
refinement
– It relates the state of the machine being refined to the state of the refinement machine.

• Refinement consistency means that any behaviour of a refined event must be
acceptable behaviour of the unrefined event in the unrefined model.

• An informal example: if in a restaurant you asked for fish or vegetables as the
main course and you are given fish then it as consistent with your request (a
valid refinement). But if you are given meat then it is not acceptable, i.e., not a
valid refinement

Rules of refinement

2023-04-04 7

• In the refinement we can:

• strengthen guards and invariants:
– guards and invariants can be strengthened, provided overall functionality is not reduced

(no new deadlocks are introduced);

• nondeterminism can be reduced:
– where a model offers choice, then the choice can be reduced (but not increased) in the

refinement;

• the state may be augmented by an orthogonal state:
– new state variables, whose values do not affect the existing state, may be added.

Once again about events in refinement

2023-04-04 8

• What might happen during refinement:
– a single event may be refined by multiple events, or
– vice versa multiple events may be refined by a single event.
– Refinement may introduce new events.

• Important: The new events must not change variables inherited from the state
of the refined machine.

• This is a restriction that recognises that a machine state can be modified only
by the events of that machine, or their refinements.

• Our informal restaurant example: in the refinement you can add one or several
other courses, i.e. starter or/and desert but you cannot change the alternatives
that you had for the main course

Example of refinement: coffee club

2023-04-04 9

• We start by specifying functionality of a simple piggybank
system for collecting and spending money for coffee.

Requirements document:

REQ1: a money bank for storing and reclaiming finite, non-
negative funds for a coffee club;

REQ2: an operation for adding money to the money bank;

REQ3: an operation for removing money from the money bank;
cannot remove more than money bank

2023-04-04 10

MACHINE CoffeeClub
VARIABLES piggybank // Denotes money bank for coffee club
INVARIANTS

inv1: piggybank ∊ NAT // REG1: piggybank should be non-negative
EVENTS

INITIALISATION ≜
then

act1: piggybank:= 0 // But could also initialize to any natural number
end

CoffeeClub Abstract Specification (1/2)

CoffeeClub Abstract Specification (2/2)

2023-04-04 11

FeedBank ≜ // REQ2: adding money to piggybank.
any amount
where

grd1: amount ∊ NAT1
then

act1: piggybank := piggybank+amount
end

RobBank ≜ // REQ3: removing money from piggybank.
any amount
where

grd1: amount ∊ 1..piggybank
then

act1: piggybank := piggybank-amount
end

Proof obligations

2023-04-04 12

Sequent representation:

hypothesis ⊦ goal

Proof obligations are the checks showing that the specification is consistent with
formal constraints of the model

hypothesis ⊦ goal means that the truth of the hypotheses leads to the truth of the
goal.

Note:

1. If any of the hypotheses is false (⊥) then any goal is trivially established.

2. If the hypotheses are identically true (⊤) then the hypotheses will be omitted.

Discharging POs

2023-04-04 13

• Important to understand that the consequent should be provable from the given
hypotheses;
– there is nothing else in the form of a hypothesis that should be required.

• If the PO cannot be discharged then there are many cases that must be
considered, of which

• the invariants are too strong/weak

• the guards are too weak/strong;

• the actions are inappropriate/incomplete

Discharging POs not the goal in itself

2023-04-04 14

• Working with Pos is not primarily about discharging the proof obligations, it’s
about determining whether the model is consistent with the requirements and
internally consistent.

• Observe that the proof obligations might be discharged, but the model may not
be what is required.

Refinement of the CoffeeClub

2023-04-04 15

• Abstract specification of CoffeeClub is very simple:

• piggybank models an amount of money

• Events FeedBank and RobBank describe adding to or taking from amount
modelled by piggybank.

• We will now model behaviour that describes club-like behaviour for members
who want to be able to purchase cups of coffee.

Additional requirements for coffee club

2023-04-04 16

• The new requirements are:

REQ4: a facility for members to join the coffee club; each member has a distinct
membership id;

REQ5: members have an account that cannot go into debt;

REQ6: an operation that enables a member to add money to their account;

REQ7: money added to a members account is also added to the club money bank;

REQ8: an operation that sets the price for a cup of coffee;

REQ9: an operation that enables a member to buy a cup of coffee; the member’s
account is reduced by the cost of a cup of coffee;

Refinement: new variables and events

2023-04-04 17

• We will introduce variables members, accounts and coffeeprice

• New events that correspond to

• a new member joining the club: each member of the club is represented by a
unique identifier that is arbitrarily chosen from an abstract set MEMBERS;

• a member adding money to their account: each member has an account, to
which they can add “money”;

• a member buying a cup of coffee: there will be a variable, coffeeprice,
representing the cost of a cup of coffee, and each member can buy a cup of
coffee provided they have enough money in their account.

• The value of all money added to accounts is added to piggybank (connection to
abstract state space)

Refinement: defining context

2023-04-04 18

Refinement: defining new variables

2023-04-04 19

Refinement: initialisation

2023-04-04 20

• In extended mode, only the new parameters, guards and actions are displayed,
that is, only the parts of an event that extend the event being refined.

Refinement: new events for setting price and
adding member

2023-04-04 21

Refinement: new events for adding money and
buying coffee

2023-04-04 22

Refinement: “old events”

2023-04-04 23

“Old” events remain unchanged. In the extended mode they are “hidden”

Unproved PO: why?

2023-04-04 24

• Why cannot we prove it?

Unproved PO: why?

2023-04-04 25

• Why cannot we prove it?

• EQL PO requires a proof that piggybank is not changed, but of course,
piggybank := piggybank+ amount must change the value of the variable
piggybank, unless amount is 0.

• Contribute appears in the refinement as a new event, but here it is changing
the value of the variable piggybank, which is part of the state of CoffeeClub, the
machine being refined.

• To preserve consistency, any event of a refinement that modifies the state of
the machine being refined must itself be a refinement of one or more events of
the machine being refined.

Corrected event:

2023-04-04 26

• The event FeedBank of CoffeeClub changes the value of the variable
piggybank in a similar way to Contribute, thus Contribute must be seen as a
refinement of FeedBank

Lesson learnt

2023-04-04 27

• Usually the presence of undischarged EQL POs will probably indicate a bad
refinement.

• Check that your working with the “old” variables is consistent with your abstract
specification.

Types of POs

2023-04-04 28

• You are all familiar with INV type of POs: proving that invariant is preserved by
the initialisation and events

• Now we have learnt about EQL POs: demonstrating consistency of refinement
wrt more abstract specification

• WD: well-defined Some expressions, especially function applications, may not
be defined everywhere. For example, f(x) is only defined if x is in the domain of
f, ie x ∊ dom(f).

• FIS: feasibility. Specifying a property with a predicate does not carry with it the
promise that there exist solutions that satisfy the predicate.

• e.g. x + 1 = x-1 cannot be satisfied by any x ∊ N. Feasibility required to show
that instances that satisfy a predicate do exist.

Safety case

•Many standards establish the need for production of a safety case, e.g.
•“Safety Cases are required for all new ships and equipment as a means of formally documenting the adequate
control of Risk and demonstrating that levels of risk achieved are As Low As Reasonably Practicable (ALARP).”
(JSP430 Ship Safety Management regulations)

• A person in control of any railway infrastructure shall not use or permit it to be used for the operation of trains
unless
(a)he has prepared a safety case …

(b)the Executive has accepted that safety case …”
(HSE Railway Safety Case Regulations)•

• “The Software Design Authority shall provide a Software Safety Case …” (U.K. Defence Standard 00-55)

Safety case presents the argument that a system will be acceptably safe in a given context

Some definitions

• "A safety case is a comprehensive and structured set of safety documentation which is aimed to
ensure that the safety of a specific vessel or equipment can be demonstrated by reference to:

• safety arrangements and organisation
• safety analyses
• compliance with the standards and best practice
• acceptance tests
• audits
• inspections
• Feedback
• Another definition
• "The software safety case shall present a well-organised and reasoned justification

based on objective evidence, that the software does or will satisfy the safety aspects of
the Statement of Technical Requirements and the Software Requirements specification."

Argument and evidence

• A safety case requires two elements:
•Supporting Evidence
• Results of observing, analysing, testing, simulating and estimating the properties of a

system that provide the fundamental information from which safety can be inferred
•High Level Argument
• Explanation of how the available evidence can be reasonably interpreted as indicating

acceptable safety – usually by demonstrating compliance with requirements, sufficient
mitigation / avoidance of hazards etc

•Argument without Evidence is unfounded

•Evidence without Argument is unexplained

Argument and evidence

Goal structuring notation (GSN)

A simple goal stucture

Strategy

Constructing safety case based on Event-B
specification

4/4/2023 36

Modelling safety requirements

2023-04-04 37

• Several types of safety requirements (SRs) that we often model:
– SRs about global properties
– SRs about local properties (at specific state of the system)
– SRs about control flow (certain order of events)
– SRs about system termination (e.g. shut down)

• We model these requirements as invariants or via guards or specific actions.
– By discharging the corresponding proof obligations we produce the evidence that the

SR has been met.

Pattern for safety case fragment about global
safety property

2023-04-04 38

Safety-critical control system: high-level
safety case

2023-04-04 39

• A safety-critical control systems has
three “main” components

• Sensing, control and actuation

• If safety is defined in terms of some
parameter being within certain safe
boundaries then a high level safety
case has the following structure:

Safety-critical networked control system: data
flow view

2023-04-04 40

Safety-security requirements interactions

4/4/2023 41

• Next slide: a fragment of safety case about sensing

• It is important to recognise that undetected failures or cyberattacks can
jeopardise safety

GS Critical parameter estimate is valid when
source of measurements S is used

SS1 Explicit
representation of the
outcome of security
monitor at each cycle,
prevention of
propagations of
corrupted data

GS2.1 Source S is
authenticated

Sn2.1
Use of
MAC

GS.1 Source
precision is validated GS.2 Security monitoring

detects security failures
GS.3 Upon detection of failure

recovery is triggered

Sn2.2
Periodic
source

authenti-
cation

GS2.2 Data
integrity is

guaranteed

Sn2.1
Use of
MAC

Sn2.3
Encrypting

GS2.3 High
availability is
guaranteed

Sn2.4
Network

traffic
monitoring

Sn2.6
Communi-

cation
timeout

monitoring

GS3.1 System model
is changed upon

failure, measurements
are used as estimates
only in fault free mode

Sn3.1
Verification
for failure

mode

Sn3.2
Verification
for nominal

mode

Event-B module wrap-up

2023-04-04 43

• We have studied how to model control systems in Event-B and reason about
their safety properties

• We have learnt how to use functions and relations to model various access
control functions

• It allows us to demonstrate that no unauthorised access to some resources is
possible

• Finally, we have learnt to use proofs as the “debagging” mechanism

• We have learnt to write a structured requirements document and create a
safety case

• Modelling dynamic properties such as liveness is not straightforward in Event-B

• So welcome a new topic – Model checking!

	DD2460.Lecture 6
	Refinement
	Correct-by-construction development: formal meaning
	Refinement machine: refined state (1/2)
	Refinement machine: refined and new events (2/2)
	Refinement relation
	Rules of refinement
	Once again about events in refinement
	Example of refinement: coffee club
	CoffeeClub Abstract Specification (1/2)
	CoffeeClub Abstract Specification (2/2)
	Proof obligations
	Discharging POs
	Discharging POs not the goal in itself
	Refinement of the CoffeeClub
	Additional requirements for coffee club
	Refinement: new variables and events
	Refinement: defining context
	Refinement: defining new variables
	Refinement: initialisation
	Refinement: new events for setting price and adding member
	Refinement: new events for adding money and buying coffee
	Refinement: “old events”
	Unproved PO: why?
	Unproved PO: why?
	Corrected event:
	Lesson learnt
	Types of POs
	Safety case
	Some definitions
	Argument and evidence
	Argument and evidence
	Goal structuring notation (GSN)
	A simple goal stucture
	Strategy
	Constructing safety case based on Event-B specification
	Modelling safety requirements
	Pattern for safety case fragment about global safety property
	Safety-critical control system: high-level safety case
	Safety-critical networked control system: data flow view
	Safety-security requirements interactions
	Slide Number 42
	Event-B module wrap-up

