DD2460 Software safety and security. Lecture 4

ON THE USE OF SET THEORY, MODELLING WITH SETS

Lecture outline

Basic set theory

Examples of using sets in Event-B modelling

Predicates

Simple Event-B specification: access to university buildings

Basic set theory

- A set is a collection of elements.
- Elements of a set may be numbers, names, identifiers, etc.
 - lacktriangle E.g. the set $\mathbb N$ is the collections of all natural numbers.

• Examples:

- **•** {3,5,7,...}
- {red, green, black}
- {yes, no}
- {wait, start, process, stop}
- But **not:** {1, 2, green}
- Elements of a set are not ordered.
- Set may be finite or infinite.

Membership

- Relationship between an element and a set: is the element a member of the set or not?
- \bullet For element x and set S, we express the membership relation as follows

$$x \in S$$
 ('x is a member of S')

where ∈ is a predicate over sets and elements

- Set membership is a boolean property relating an element and a set, i.e., either x is in S or x is not in S.
- This means that there is no concept of an element occurring more that once in a set, e.g.,
 - $\{a, a, b, c\} = \{a, b, c\};$
 - {3,7} = {3,7,7}
- Elements may themselves be sets, i.e., we can have a set of sets.
- Conversely, the element is not a member of the set: $x \notin S$

Set definition

- If a set has only finite number of elements, then it can be written explicitly, by listing all of its elements within set brackets $\binom{4}{3}$ and $\binom{3}{3}$:
 - LectureHall = $\{1A, 1B, 1C, 1D\}$
 - $SEMESTRS = \{spring, fall\}$
- Some sets have predefined names:
 - \mathbb{N} the set of natural numbers $\{0, 1, 2, 3, ...\}$
 - \mathbb{Z} the set of integers $\{...-2,-1, 0,1,2,...\}$
- The empty set contains no elements at all. It is the **smallest** possible set.

Set comprehension

- Enumerating all of the elements of a set is not always possible.
- Would like to describe a set by in terms of a distinguishing property of its elements.
- Set can be defined by means of a set comprehension:

A variable ranging over ... condition

"Set of all x in T that satisfy P(x)"

• Each element of a set satisfies some criterion. Criterions are defined by predicates.

Examples on set comprehension

• Examples:

- Natural numbers less than 10: $\{x \mid x \in \mathbb{N} \land x < 10\}$
- Even integers: $\{x \mid x \in \mathbb{Z} \land (\exists y. y \in \mathbb{Z} \land 2y = x)\}$
- Sometimes it is helpful to specify a "pattern" for the elements
 - ► E.g. $\{2x \mid x \in \mathbb{N} \land x^2 \ge 3\}$

More examples on set comprehension

- Examples:
 - What is the set defined by the set comprehension:

$$\{z \mid z \in \mathbb{N} \land z < 100 \land (\exists m.m \in \mathbb{Z} \land m^3 = z)\}$$
?

More examples on set comprehension

- Examples:
 - What is the set defined by the set comprehension:

$$\{z \mid z \in \mathbb{N} \land z < 100 \land (\exists m.m \in \mathbb{Z} \land m^3 = z)\}$$
?

Answer: {1, 8, 27, 64}

Sets in Event-B specifications

Example: we want to define a variable *current_season* which models current season

CONTEXT C

SETS

SEASONS = {SPRING, SUMMER, AUTUMN,
WINTER}

CONSTANTS

SPRING

SUMMER

AUTUMN

WINTER

MACHINE M

SEES Context C

VARIABLES

current_season

INVARIANT

current_season ∈ SEASONS

Subset and equality relations for sets

• A set *S* is said to be *subset* of set *T* when every element of *S* is also an element of *T*. This is written as follows:

$$S \subseteq T$$

- For example:
 - $\{3,7\} \subseteq \{1,2,3,5,7,9\};$
 - $\{apple, pear\} \subseteq \{apple, banana, pear, grape\}$
 - $\{Jones, White, Jones\} \subseteq \{White, Smith, Jones, Jakson\}$
- A set S is said to be equal to set T when $S \subseteq T$ and $T \subseteq S$ S = T

More examples

Set membership says nothing about the relationship between the elements of a set other than that they are members of the same set.

- o the order in which we enumerate a set is not significant, e.g.,
 - $\{a, b, c\} = \{b, a, c\};$
- o there is no concept of an element occurring more that once in a set, e.g.,
 - $\{a, a, b, c\} = \{a, b, c\};$
 - These two characteristics distinguish sets from data structures such as **lists** or **arrays** where elements appear in order and the same element my occur multiple times.

Operations on sets (set operators)

• Union of S and T: set of elements in either S or T:

$$S \cup T$$

• Intersection of S and T: set of elements in both S and T:

$$S \cap T$$

• Difference of S and T: set of elements in S but not in T:

$$S \setminus T$$

Examples on Set Operators

Union

- $\{1,2\} \cup \{2,3,5\} = \{1,2,3,5\}$
- $\{1\} \cup \{2\} = \{1,2\}$
- $\emptyset \cup \{red, pink\} = \{red, pink\}$

Intersection

- $\{apple, pear, grape\} \cap \{pear, banana\} = \{pear\}$
- $\{radish, onion, celery\} \cap \{pumpkin, tomato, carrot\} = \emptyset$
- $\{2,3,5\} \cap \emptyset = \emptyset$

Difference

- $\{chess, tennis, football\} \setminus \{tennis, golf\} = \{chess, football\}$
- {pot, bucket, basket} \ {needle, scissors} = {pot, bucket, basket}
- $\{red, pink\} \setminus \emptyset = \{red, pink\}$

Set axioms and laws

- Fundamental laws (can be proven)
 - Commutative laws:

$$S \cup T = T \cup S$$
$$S \cap T = T \cap S$$

Associative laws:

$$(S \cup T) \cup R = S \cup (T \cup R)$$

 $(S \cap T) \cap R = S \cap (T \cap R)$

Distributive laws:

$$S \cap (T \cup R) = (S \cap T) \cup (S \cap R)$$

 $S \cup (T \cap R) = (S \cup T) \cap (S \cup R)$

Group activity

Challenge 1 (3 min):

Imagine that you need to model a drink dispenser. The basic functionality would be a user comes and selects a drink and the machine dispenses it. (We assume a money-free word for now). Which variable and which type do you need to define?

Power sets

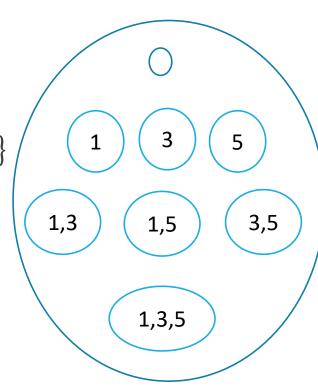
ullet The **power set** of a set $oldsymbol{S}$ is the set whose elements are all subsets of $oldsymbol{S}$,

written $\mathbb{P}(S)$

Example,

$$\mathbb{P}(\{1,3,5\}) = \{\emptyset, \{1\}, \{3\}, \{5\}, \{1,3\}, \{1,5\}, \{3,5\}, \{1,3,5\}\}$$

- $S \in \mathbb{P}(T)$ is the same as $S \subseteq T$
- Sets are themselves elements so we can have **sets of sets**
- Example, $\mathbb{P}(\{1,3,5\})$ is an example of a set of sets



Types of sets

- All the elements of a set must have the same type.
- For example, {2, 3, 4} is a set of integers.

$$\{2,3,4\} \in \mathbb{P}(\mathbb{Z}).$$

So the type of $\{2, 3, 4\}$ is $\mathbb{P}(\mathbb{Z})$.

To declare x to be a set of elements of type T we write either

$$x \in \mathbb{P}(T)$$
 or $x \subseteq T$

More e.g., math $\subseteq COURCES$ - so type of math is $\mathbb{P}(COURCES)$

More on "seasons" example

If we ant to define two variables warm_seasons and cold_seasons:

For Sweden (with some optimism)

warm_seasons = {SPRING,SUMMER}

cold_seasons= {AUTUMN, WINTER}

For Hawaii

warm_seasons = {SPRING,SUMMER, AUTUMN, WINTER}

 $cold_seasons = \emptyset$

In both cases $warm_seasons$ and $cold_seasons$ variable have type $\mathbb{P}(SEASONS)$

Group activity

Challenge 1 (3 min): done

Imagine that you need to model a drink dispenser. The basic functionality would be a user comes and selects a drink and the machine dispenses it. (We assume a money-free word for now). Which variable and which type do you need to define?

Challenge 2 (5 min): Now you need to model a smart drink dispenser. It categorises the drinks into healthy and not-so-healthy. The dispenser first asks the user to make a choice of healthy or unhealthy drink. Then it asks the selection criteria: contains no sugar or no caffeine. Then it shows the corresponding options. Which variables do you need to introduce? What are the types?

Cardinality

- The number of elements in a set is called its *cardinality*
- In Event-B this is written as card(S)
- Examples:
 - card({1, 2, 3})=3
 - **card**({a, b, c, d})=4
 - card({Bill, Anna, Anna, Bill})=2
 - $card(\mathbb{P}(\{1,3,5\}))=8$
- Cardinality is only defined for finite sets.
 - If S is an infinite set, then *card*(S) is undefined. Whenever you use the card operator, you must ensure that it is only applied to a finite set.

Expressions

- Expressions are syntactic structures for specifying values (elements or sets)
- Basic expressions are
 - literals (e.g., 3, Ø);
 - variables (e.g., x, a, room, registered);
 - carrier sets (e.g., S, STUDENTS, FRUITS).
- Compound expressions are formed by applying expressions to operators such as

$$x + y$$
 and $S \cup T$

to any level of nesting.

Predicates

- **Predicates** are syntactic structures for specifying logical statements, i.e., statements that are either **TRUE** or **FALSE** (but not both!!!).
- Equality of expressions is an example of predicate
 - e.g., registered = registered _spring U registered _fall.
- Set membership, e.g., $5 \in \mathbb{N}$
- Subset relations, e.g., $S \subseteq T$
- ullet For integer elements we can write ordering predicates such as $\, x < y \,$.

Predicate logic

- Basic predicates: $x \in S$, $S \subseteq T$, $x \le y$
- Predicate operators:

Name	Predicate	Definitions
Negation	$\neg P$	P does not hold
Conjunction	$P \wedge Q$	both P and Q hold
Disjunction	$P \lor Q$	either P or Q holds
Implication	$P \Rightarrow Q$	if P holds, then Q holds

Examples

P - Bob attends **MATH** course,

Q - Mary is happy

Predicate	
$\neg P$	Bob does not attend MATH course
$P \wedge Q$	Bob attends <i>MATH</i> course and Mary is happy
$P \lor Q$	Bob attends <i>MATH</i> course or Mary is happy
$P \Rightarrow Q$	If Bob attends MATH course, then Mary is happy

Quantified Predicates

We can quantify over a variable of a predicate universally or existentially:

Name	Predicate	Definition
Universal Quantification	$\forall x \cdot P$	P holds for all x
Existential Quantification	$\exists x \cdot P$	P holds for some x

Quantified Predicates

In the predicate $\forall x \cdot P$ the quantification is over all possible values in the type of the variable x.

Typically we constrain the range of values using implication.

Examples:

- $\forall x \cdot x > 5 \implies x > 3$
- $\forall st \cdot st \in registered \implies st \in STUDENTS$

Quantified Predicates

In the case of **existential quantification** we typically constrain the range of values using **conjunction**.

Example:

• we could specify that integer **z** has a positive square root as follows:

$$\exists y. y \ge 0 \land y^2 = z$$

■ $\exists st \cdot st \in STUDENTS \land st \notin registered$

Examples

 $DATABASE = \{Bill, Ben, Anna, Alice\}, MATH = \{Alice, Ben\}$

```
Alice \in DATABASE TRUE
```

 $Anna \in MATH$ FALSE

 $\forall x \cdot x \in DATABASE \implies x \in MATH \text{ FALSE}$

 $\exists x.x \in MATH \land x \in DATABASE$ TRUE

 $\forall x \cdot x \in MATH \implies x \in DATABASE$ TRUE

Free and bound variables

Variables play two different roles in predicate logic:

- A variable that is universally or existentially quantified in a predicate is said to be a **bound** variable.
- A variable referenced in a predicate that is not bound variable is called a **free** variable.
- Example

$$\exists y. y \ge 0 \land y^2 = z$$

y is bound while z is free.

This is a property of y and may be true or false depending on what z is.

The role of y is to bind the quantifier \exists and the formula together.

Predicates on Sets

Predicates on sets can be defined in terms of the logical operators as follows:

Name	Predicate	Definition
Subset	$S\subseteq T$	$\forall x \cdot x \in S \Rightarrow x \in T$
Set equality	S = T	$S \subseteq T \land T \subseteq S$

Duality of universal and existential quantification

$$\neg \forall x \cdot (x \in S \Rightarrow T) = \exists x \cdot (x \in S \land \neg T)$$

$$\neg \exists x \cdot (x \in S \land T) = \forall x \cdot (x \in S \Rightarrow \neg T)$$

Defining set operators with logic

Name	Predicate	Definition
Negation	$x \notin S$	$\neg(x \in S)$
Union	$x \in S \cup T$	$x \in S \lor x \in T$
Intersection	$x \in S \cap T$	$x \in S \land x \in T$
Difference	$x \in S \setminus T$	$x \in S \land x \notin T$
Subset	$S\subseteq T$	$\forall x \cdot x \in S \Rightarrow x \in T$
Power set	$x \in \mathbb{P}(T)$	$x \subseteq T$
Empty set	$x \in \emptyset$	FALSE
Membership	$x \in \{a,,b\}$	$x=a \lor \lor x=b$

Predicates in Event-B

- The invariants of an Event-B model and the guards of an event are formulated as predicates.
- The proof obligations generated by Rodin are also predicates.
- A predicate is simply an expression, the value of which is either true or false.

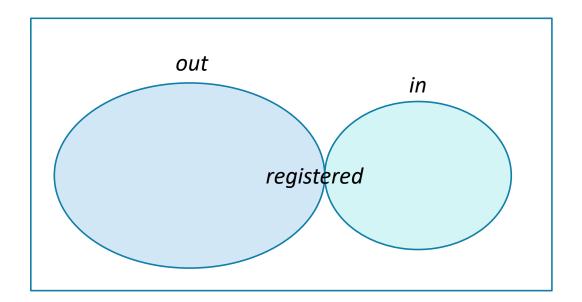
Example: access control to a building

A system for controlling access to a university building

- An university has some fixed number of students.
- Students can be inside or outside the university building.
- The system should allow a new student to be registered in order to get the access to the university building.
- To deny the access to the building for a student the system should support deregistration.
- The system should allow only registered students to enter the university building.

Example: access control to a building

A system for controlling access to a university building



Model context

```
CONTEXT BuildingAccess_c0

SETS STUDENTS //

CONSTANTS max_capacity // max capacity of the building is defined as a model constant (we will need it later in the course lectures)

AXIOMS

axm1: finite(STUDENTS)

axm2: max_capacity ∈ ℕ

axm3: max_capacity > 0

END
```

Model machine

```
MACHINE BuildingAccess_m0
SEES BuildingAccess_c0
VARIABLES registered in out
//The machine state is represented by three variables, registered, in, out.
INVARIANTS
inv1: registered \subseteq STUDENTS
                                     // registered students are of type STUDENTS
inv2: registered = in \cup out
                                     // registered students are either inside or outside
                                        the university building
inv3: in \cap out = \emptyset
                                    // no student is both inside and outside the university building
EVENTS ...
```

```
EVENTS
INITIALISATION ≜
    then
         act1: registered, in, out := \emptyset,\emptyset,\emptyset // initially all the variables are empty
    end
           // a student entering the building
                                                               Redundant guard since every
    any st
                                                               student from out is registered
    where
         grd1: st \in registered
                                  // student must be registered
                                     // student must be outside
         grd2: st \in out
    then
         act1: in := in \cup \{st\} // add to in
         act2: out := out \setminus \{st\} // remove from out
    end
```

```
// a student leaves the building
EXIT ≜
    any st
                                                          Redundant guard since every
    where
                                                           student from in is registered
        grd1: st ∈ registered // a student must be registered
        grd2: st \in in // a student must be inside
    then
        act1: in := in \setminus \{st\} // remove st from in
        act2: out := out U {st} // remove st from in
    end
REGISTER ≜ // registration a new student
    any st
    where
        grd1: st ∈ STUDENTS // a new student
        grd2: st ∉ registered // ... that is not in the set registered yet
    then
        act1: registered := registered ∪ {st} // add st to registered
                                // add st to out
        act2: out := out ∪ {st}
    end
```

```
DEREGISTER1 ≜ // de-register a student
    any st
    where
        grd1: st \in registered // a student must be registered
    then
        act1: registered := registered \ {st} // remove st from registered
        act2: in := in \setminus \{st\} // remove st from in
        act3: out := out \setminus \{st\} // remove st from out
    end
DEREGISTER2 ≜ // de-register a student while he/she is outside the building
    any st
    where
        grd1: st \in out // a new student
    then
        act1: registered := registered \ {st} // remove st from registered
        act2: out := out \setminus \{st\} // remove st from out
    end
END
```

Wrap-up

We have refreshed the knowledge about set theory and predicate logic

Formal specification in Event-B is about using them to abstractly describe behaviour of the system

We rely on properties of different mathematical structures to implicitly state some properties

For example, when we defined a carrier set STUDENTS, we have implicitly defined the constrain for the eventual implementation of the student registration management system: there no two identical students, i.e. even if the some students have identical names they id should be different

Observe that invariant enforces us to be very precise