
DD2460 Software safety
and security. Lecture 4
ON THE USE OF SET THEORY, MODELLING WITH SETS

Lecture outline
Basic set theory

Examples of using sets in Event-B modelling

Predicates

Simple Event-B specification: access to university buildings

Basic set theory
• A set is a collection of elements.

• Elements of a set may be numbers, names, identifiers, etc.
 E.g. the set ℕ is the collections of all natural numbers.

• Examples:
 {3,5,7,…}
 {red, green, black}
 {yes, no}
 {wait, start, process, stop}
 But not: {1, 2, green}

• Elements of a set are not ordered.

• Set may be finite or infinite.

Membership
• Relationship between an element and a set: is the element a member of the set or not?

• For element 𝒙𝒙 and set 𝑺𝑺, we express the membership relation as follows

𝒙𝒙 ∈ 𝑺𝑺 (‘𝒙𝒙 is a member of 𝑺𝑺’)

where ∈ is a predicate over sets and elements

• Set membership is a boolean property relating an element and a set, i.e., either x is in S or x is not in
S.

• This means that there is no concept of an element occurring more that once in a set, e.g.,
• 𝑎𝑎,𝑎𝑎, 𝑏𝑏, 𝑐𝑐 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ;
• 3, 7 = 3, 7, 7

• Elements may themselves be sets, i.e., we can have a set of sets.

• Conversely, the element is not a member of the set: 𝒙𝒙 ∉ 𝑺𝑺

Set definition
• If a set has only finite number of elements, then it can be written explicitly, by listing all of its
elements within set brackets ′{′ and }′ ′:
 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋 = 1𝐴𝐴, 1𝐵𝐵, 1𝐶𝐶, 1𝐷𝐷
 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓

• Some sets have predefined names:
 ℕ – 𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑡𝑡𝑡𝑡 𝑜𝑜𝑓𝑓 𝑠𝑠𝑎𝑎𝑡𝑡𝑎𝑎𝑠𝑠𝑎𝑎𝑓𝑓 𝑠𝑠𝑎𝑎𝑛𝑛𝑏𝑏𝑡𝑡𝑠𝑠𝑠𝑠 0, 1, 2, 3, …
 ℤ − 𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑡𝑡𝑡𝑡 𝑜𝑜𝑓𝑓 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 …− 2,−1, 0, 1, 2, …

• The empty set contains no elements at all. It is the smallest possible set.

∅ 𝑜𝑜𝑠𝑠 {}

Set comprehension
• Enumerating all of the elements of a set is not always possible.

• Would like to describe a set by in terms of a distinguishing property of its elements.

• Set can be defined by means of a set comprehension:

𝒙𝒙 𝒙𝒙 ∈ 𝑺𝑺 ∧ 𝑷𝑷(𝒙𝒙)

“Set of all 𝑥𝑥 in 𝑇𝑇 that satisfy 𝑃𝑃(𝑥𝑥)”
• Each element of a set satisfies some criterion. Criterions are defined by predicates.

A variable ranging over … condition

Examples on set comprehension

• Examples:

 Natural numbers less than 10: 𝑥𝑥 𝑥𝑥 ∈ ℕ ∧ 𝑥𝑥 < 10

 Even integers: 𝑥𝑥 𝑥𝑥 ∈ ℤ ∧ (∃ 𝑦𝑦.𝑦𝑦 ∈ ℤ ∧ 2𝑦𝑦 = 𝑥𝑥)

 Sometimes it is helpful to specify a “pattern” for the elements

 E.g. 2𝑥𝑥 𝑥𝑥 ∈ ℕ ∧ 𝑥𝑥2 ≥ 3

More examples on set comprehension

• Examples:

 What is the set defined by the set comprehension:

𝑧𝑧 𝑧𝑧 ∈ ℕ ∧ 𝑧𝑧 < 100 ∧ (∃ 𝑛𝑛.𝑛𝑛 ∈ ℤ ∧𝑛𝑛3 = 𝑧𝑧) ?

More examples on set comprehension

• Examples:

 What is the set defined by the set comprehension:

𝑧𝑧 𝑧𝑧 ∈ ℕ ∧ 𝑧𝑧 < 100 ∧ (∃ 𝑛𝑛.𝑛𝑛 ∈ ℤ ∧𝑛𝑛3 = 𝑧𝑧) ?

Answer: 1, 8, 27, 64

Sets in Event-B specifications

CONTEXT C

SETS

SEASONS = {SPRING, SUMMER, AUTUMN,
WINTER}

CONSTANTS

SPRING

SUMMER

AUTUMN

WINTER

MACHINE M

SEES Context C

VARIABLES

current_season

INVARIANT

current_season ∈ SEASONS

Example: we want to define a variable current_season
which models current season

Subset and equality relations for sets
• A set 𝑺𝑺 is said to be subset of set 𝑺𝑺 when every element of 𝑺𝑺 is also an element of 𝑺𝑺. This is
written as follows:

𝑺𝑺 ⊆ 𝑺𝑺

• For example:
 3, 7 ⊆ 1, 2, 3, 5, 7, 9 ;
 𝑎𝑎𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡,𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠 ⊆ 𝑎𝑎𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡, 𝑏𝑏𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎,𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠,𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡
 𝐽𝐽𝑜𝑜𝑠𝑠𝑡𝑡𝑠𝑠,𝑊𝑊𝑡𝑠𝑠𝑡𝑡𝑡𝑡, 𝐽𝐽𝑜𝑜𝑠𝑠𝑡𝑡𝑠𝑠 ⊆ 𝑊𝑊𝑡𝑠𝑠𝑡𝑡𝑡𝑡, 𝑆𝑆𝑛𝑛𝑠𝑠𝑡𝑡𝑡, 𝐽𝐽𝑜𝑜𝑠𝑠𝑡𝑡𝑠𝑠, 𝐽𝐽𝑎𝑎𝐽𝐽𝑠𝑠𝑜𝑜𝑠𝑠

• A set 𝑺𝑺 is said to be equal to set 𝑺𝑺 when 𝑺𝑺 ⊆ 𝑺𝑺 and 𝑺𝑺 ⊆ 𝑺𝑺
𝑺𝑺 = 𝑺𝑺

More examples
Set membership says nothing about the relationship between the elements of a
set other than that they are members of the same set.

o the order in which we enumerate a set is not significant, e.g.,
• 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 = 𝑏𝑏,𝑎𝑎, 𝑐𝑐 ;

o there is no concept of an element occurring more that once in a set, e.g.,
• 𝑎𝑎, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ;

◦ These two characteristics distinguish sets from data structures such as lists or arrays
where elements appear in order and the same element my occur multiple times.

Operations on sets (set operators)
• Union of S and T: set of elements in either S or T:

𝑺𝑺 ∪ 𝑺𝑺

• Intersection of S and T: set of elements in both S and T:
𝑺𝑺 ∩ 𝑺𝑺

• Difference of S and T: set of elements in S but not in T:
𝑺𝑺 ∖ 𝑺𝑺

Examples on Set Operators
o Union

• 1,2 ∪ 2,3,5 = 1,2,3,5
• {1} ∪ 2 = {1,2}
• ∅ ∪ 𝑠𝑠𝑡𝑡𝑟𝑟, 𝑠𝑠𝑠𝑠𝑠𝑠𝐽𝐽 = 𝑠𝑠𝑡𝑡𝑟𝑟, 𝑠𝑠𝑠𝑠𝑠𝑠𝐽𝐽

o Intersection
• 𝑎𝑎𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡,𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠,𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡 ∩ 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠, 𝑏𝑏𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎 = 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠
• 𝑠𝑠𝑎𝑎𝑟𝑟𝑠𝑠𝑠𝑠𝑡, 𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠, 𝑐𝑐𝑡𝑡𝑓𝑓𝑡𝑡𝑠𝑠𝑦𝑦 ∩ 𝑠𝑠𝑎𝑎𝑛𝑛𝑠𝑠𝐽𝐽𝑠𝑠𝑠𝑠, 𝑡𝑡𝑜𝑜𝑛𝑛𝑎𝑎𝑡𝑡𝑜𝑜, 𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠𝑜𝑜𝑡𝑡 =∅
• 2,3,5 ∩ ∅ = ∅

o Difference
• 𝑐𝑐𝑡𝑡𝑡𝑠𝑠𝑠𝑠, 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡𝑏𝑏𝑎𝑎𝑓𝑓𝑓𝑓 ∖ 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑜𝑜𝑓𝑓𝑓𝑓 = 𝑐𝑐𝑡𝑡𝑡𝑠𝑠𝑠𝑠, 𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡𝑏𝑏𝑎𝑎𝑓𝑓𝑓𝑓
• 𝑠𝑠𝑜𝑜𝑡𝑡, 𝑏𝑏𝑎𝑎𝑐𝑐𝐽𝐽𝑡𝑡𝑡𝑡,𝑏𝑏𝑎𝑎𝑠𝑠𝐽𝐽𝑡𝑡𝑡𝑡 ∖ 𝑠𝑠𝑡𝑡𝑡𝑡𝑟𝑟𝑓𝑓𝑡𝑡, 𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑜𝑜𝑡𝑡, 𝑏𝑏𝑎𝑎𝑐𝑐𝐽𝐽𝑡𝑡𝑡𝑡, 𝑏𝑏𝑎𝑎𝑠𝑠𝐽𝐽𝑡𝑡𝑡𝑡
• 𝑠𝑠𝑡𝑡𝑟𝑟, 𝑠𝑠𝑠𝑠𝑠𝑠𝐽𝐽 ∖ ∅ = 𝑠𝑠𝑡𝑡𝑟𝑟, 𝑠𝑠𝑠𝑠𝑠𝑠𝐽𝐽

Set axioms and laws
•Fundamental laws (can be proven)
 Commutative laws:

𝑺𝑺 ∪ 𝑺𝑺 = 𝑺𝑺 ∪ 𝑺𝑺
𝑺𝑺 ∩ 𝑺𝑺 = 𝑺𝑺 ∩ 𝑺𝑺

 Associative laws:
𝑺𝑺 ∪ 𝑺𝑺 ∪ 𝑺𝑺 = 𝑺𝑺 ∪ (𝑺𝑺 ∪ 𝑺𝑺)
𝑺𝑺 ∩ 𝑺𝑺 ∩ 𝑺𝑺 = 𝑺𝑺 ∩ (𝑺𝑺 ∩ 𝑺𝑺)

 Distributive laws:
𝑺𝑺 ∩ (𝑺𝑺 ∪ 𝑺𝑺) = (𝑺𝑺 ∩ 𝑺𝑺) ∪ (𝑺𝑺 ∩ 𝑺𝑺)
𝑺𝑺 ∪ 𝑺𝑺 ∩ 𝑺𝑺 = 𝑺𝑺 ∪ 𝑺𝑺 ∩ (𝑺𝑺 ∪ 𝑺𝑺)

Group activity
Challenge 1 (3 min):

Imagine that you need to model a drink dispenser. The basic functionality would be a user
comes and selects a drink and the machine dispenses it. (We assume a money-free word for
now). Which variable and which type do you need to define?

Power sets
• The power set of a set 𝑺𝑺 is the set whose elements are all subsets of 𝑺𝑺,

written ℙ(𝑺𝑺)

• Example,
ℙ 1,3,5 = ∅, 1 , 3 , 5 , 1,3 , 1,5 , 3,5 , 1,3,5

• 𝑺𝑺 ∈ ℙ 𝑺𝑺 is the same as 𝑺𝑺 ⊆ 𝑺𝑺

• Sets are themselves elements – so we can have sets of sets

• Example, ℙ 1,3,5 is an example of a set of sets

1,3

1,3,5

1,5 3,5

1 3 5

Types of sets
• All the elements of a set must have the same type.

• For example, 2, 3, 4 is a set of integers.

2, 3, 4 ∈ ℙ ℤ .

So the type of 2, 3, 4 is ℙ ℤ .

To declare 𝒙𝒙 to be a set of elements of type T we write either

𝒙𝒙 ∈ ℙ 𝑺𝑺 or 𝒙𝒙 ⊆ 𝑺𝑺

More e.g., math ⊆ 𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺𝑪𝑪𝑺𝑺𝑺𝑺 - so type of math is ℙ 𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺𝑪𝑪𝑺𝑺𝑺𝑺

More on “seasons” example
If we ant to define two variables warm_seasons and cold_seasons:

For Sweden (with some optimism)

warm_seasons = {SPRING,SUMMER}

cold_seasons= {AUTUMN, WINTER}

For Hawaii

warm_seasons = {SPRING,SUMMER, AUTUMN, WINTER}

cold_seasons = ∅

In both cases warm_seasons and cold_seasons variable have type ℙ(SEASONS)

Group activity
Challenge 1 (3 min): done

Imagine that you need to model a drink dispenser. The basic functionality would be a user
comes and selects a drink and the machine dispenses it. (We assume a money-free word for
now). Which variable and which type do you need to define?

Challenge 2 (5 min): Now you need to model a smart drink dispenser. It categorises the drinks
into healthy and not-so-healthy. The dispenser first asks the user to make a choice of healthy or
unhealthy drink. Then it asks the selection criteria: contains no sugar or no caffeine. Then it
shows the corresponding options. Which variables do you need to introduce? What are the
types?

Cardinality
• The number of elements in a set is called its cardinality

• In Event-B this is written as card(S)
• Examples:
 card({1, 2, 3})=3
 card({a, b, c, d})=4
 card({Bill, Anna, Anna, Bill})=2
 card(ℙ 1,3,5)=8

• Cardinality is only defined for finite sets.
• If S is an infinite set, then card(S) is undefined. Whenever you use the card operator, you must ensure

that it is only applied to a finite set.

Expressions
• Expressions are syntactic structures for specifying values (elements or sets)

• Basic expressions are
 literals (e.g., 3, ∅);
 variables (e.g., x, a, room, registered);
 carrier sets (e.g., S, STUDENTS, FRUITS).

• Compound expressions are formed by applying expressions to operators such as

𝒙𝒙 + 𝒚𝒚 and 𝑺𝑺 ∪ 𝑺𝑺
to any level of nesting.

Predicates
• Predicates are syntactic structures for specifying logical statements, i.e., statements that are
either TRUE or FALSE (but not both!!!).

• Equality of expressions is an example of predicate
 e.g., registered = registered _spring∪ registered _fall.

• Set membership, e.g., 𝟓𝟓 ∈ ℕ

• Subset relations, e.g., 𝑺𝑺 ⊆ 𝑺𝑺

• For integer elements we can write ordering predicates such as 𝒙𝒙 < 𝒚𝒚 .

Predicate logic
• Basic predicates: 𝒙𝒙 ∈ 𝑺𝑺,𝑺𝑺 ⊆ 𝑺𝑺,𝒙𝒙 ≤ 𝒚𝒚

• Predicate operators:

Name Predicate Definitions
Negation ¬ 𝑃𝑃 P does not hold
Conjunction 𝑃𝑃 ∧ 𝑄𝑄 both P and Q hold
Disjunction 𝑃𝑃 ∨ 𝑄𝑄 either P or Q holds
Implication 𝑃𝑃 ⇒ 𝑄𝑄 if P holds, then Q holds

Examples
𝑃𝑃 - Bob attends MATH course,

𝑄𝑄 - Mary is happy

Predicate
¬𝑃𝑃 Bob does not attend MATH course

𝑃𝑃 ∧ 𝑄𝑄 Bob attends MATH course and Mary is happy

𝑃𝑃 ∨ 𝑄𝑄 Bob attends MATH course or Mary is happy

𝑃𝑃 ⇒ 𝑄𝑄 If Bob attends MATH course, then Mary is happy

Quantified Predicates
We can quantify over a variable of a predicate universally or existentially:

Name Predicate Definition

Universal Quantification ∀𝑥𝑥 � 𝑃𝑃 P holds for all x

Existential Quantification ∃𝑥𝑥 � 𝑃𝑃 P holds for some x

Quantified Predicates
In the predicate ∀𝑥𝑥 � 𝑃𝑃 the quantification is over all possible values in the type
of the variable x.

Typically we constrain the range of values using implication.

Examples:

 ∀𝑥𝑥 � 𝑥𝑥 > 5 ⟹ 𝑥𝑥 > 3
 ∀𝑠𝑠𝑡𝑡 � 𝑠𝑠𝑡𝑡 ∈ 𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑟𝑟 ⟹ 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆

Quantified Predicates
In the case of existential quantification we typically constrain the range of
values using conjunction.

Example:

 we could specify that integer z has a positive square root as follows:

∃ 𝑦𝑦.𝑦𝑦 ≥ 0 ∧ 𝑦𝑦2 = 𝑧𝑧
 ∃ 𝑠𝑠𝑡𝑡 � 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆 ∧ 𝑠𝑠𝑡𝑡 ∉ 𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑟𝑟

Examples
𝐷𝐷𝐴𝐴𝑇𝑇𝐴𝐴𝐵𝐵𝐴𝐴𝑆𝑆𝑆𝑆 = 𝐵𝐵𝑠𝑠𝑓𝑓𝑓𝑓,𝐵𝐵𝑡𝑡𝑠𝑠,𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎,𝐴𝐴𝑓𝑓𝑠𝑠𝑐𝑐𝑡𝑡 , 𝑀𝑀𝐴𝐴𝑇𝑇𝑀𝑀= 𝐴𝐴𝑓𝑓𝑠𝑠𝑐𝑐𝑡𝑡,𝐵𝐵𝑡𝑡𝑠𝑠

𝐴𝐴𝑓𝑓𝑠𝑠𝑐𝑐𝑡𝑡 ∈ 𝐷𝐷𝐴𝐴𝑇𝑇𝐴𝐴𝐵𝐵𝐴𝐴𝑆𝑆𝑆𝑆

𝐴𝐴𝑠𝑠𝑠𝑠𝑎𝑎 ∈ 𝑀𝑀𝐴𝐴𝑇𝑇𝑀𝑀

∀𝑥𝑥 � 𝑥𝑥 ∈ 𝐷𝐷𝐴𝐴𝑇𝑇𝐴𝐴𝐵𝐵𝐴𝐴𝑆𝑆𝑆𝑆 ⟹ 𝑥𝑥 ∈ 𝑀𝑀𝐴𝐴𝑇𝑇𝑀𝑀

∃ 𝑥𝑥. 𝑥𝑥 ∈ 𝑀𝑀𝐴𝐴𝑇𝑇𝑀𝑀 ∧ 𝑥𝑥 ∈ 𝐷𝐷𝐴𝐴𝑇𝑇𝐴𝐴𝐵𝐵𝐴𝐴𝑆𝑆𝑆𝑆

∀𝑥𝑥 � 𝑥𝑥 ∈ 𝑀𝑀𝐴𝐴𝑇𝑇𝑀𝑀 ⟹ 𝑥𝑥 ∈ 𝐷𝐷𝐴𝐴𝑇𝑇𝐴𝐴𝐵𝐵𝐴𝐴𝑆𝑆𝑆𝑆

TRUE
FALSE

FALSE
TRUE

TRUE

Free and bound variables
Variables play two different roles in predicate logic:

• A variable that is universally or existentially quantified in a predicate is said to be a bound
variable.

• A variable referenced in a predicate that is not bound variable is called a free variable.

• Example

∃ 𝒚𝒚.𝒚𝒚 ≥ 𝟎𝟎 ∧ 𝒚𝒚𝟐𝟐 = 𝒛𝒛

𝑦𝑦 is bound while 𝑧𝑧 is free.

This is a property of y and may be true or false depending on what z is.

The role of y is to bind the quantifier ∃ and the formula together.

Predicates on Sets
Predicates on sets can be defined in terms of the logical operators as follows:

Name Predicate Definition

Subset 𝑺𝑺 ⊆ 𝑺𝑺 ∀𝒙𝒙 � 𝒙𝒙 ∈ 𝑺𝑺 ⇒ 𝒙𝒙 ∈ 𝑺𝑺

Set equality 𝑺𝑺 = 𝑺𝑺 𝑺𝑺 ⊆ 𝑺𝑺 ∧ 𝑺𝑺 ⊆ 𝑺𝑺

Duality of universal and existential
quantification
¬∀𝒙𝒙 � 𝒙𝒙 ∈ 𝑺𝑺 ⇒ 𝑺𝑺 = ∃𝒙𝒙 � (𝒙𝒙 ∈ 𝑺𝑺 ∧ ¬𝑺𝑺)

¬∃𝒙𝒙 � 𝒙𝒙 ∈ 𝑺𝑺 ∧ 𝑺𝑺 = ∀𝒙𝒙 � (𝒙𝒙 ∈ 𝑺𝑺 ⇒ ¬𝑺𝑺)

Defining set operators with logic
Name Predicate Definition

Negation 𝒙𝒙 ∉ 𝑺𝑺 ¬(𝒙𝒙 ∈ 𝑺𝑺)

Union 𝒙𝒙 ∈ 𝑺𝑺 ∪ 𝑺𝑺 𝒙𝒙 ∈ 𝑺𝑺 ∨ 𝒙𝒙 ∈ 𝑺𝑺

Intersection 𝒙𝒙 ∈ 𝑺𝑺 ∩ 𝑺𝑺 𝒙𝒙 ∈ 𝑺𝑺 ∧ 𝒙𝒙 ∈ 𝑺𝑺

Difference 𝒙𝒙 ∈ 𝑺𝑺 ∖ 𝑺𝑺 𝒙𝒙 ∈ 𝑺𝑺 ∧ 𝒙𝒙 ∉ 𝑺𝑺

Subset 𝑺𝑺 ⊆ 𝑺𝑺 ∀𝒙𝒙 � 𝒙𝒙 ∈ 𝑺𝑺 ⇒ 𝒙𝒙 ∈ 𝑺𝑺

Power set 𝒙𝒙 ∈ ℙ(𝑺𝑺) 𝒙𝒙 ⊆ 𝑺𝑺

Empty set 𝒙𝒙 ∈ ∅ FALSE

Membership 𝒙𝒙 ∈ {a,…, b} 𝒙𝒙=a ∨ … ∨ 𝒙𝒙=b

Predicates in Event-B
• The invariants of an Event-B model and the guards of an event are formulated as predicates.

• The proof obligations generated by Rodin are also predicates.

• A predicate is simply an expression, the value of which is either true or false.

Example: access control to a building
A system for controlling access to a university building

• An university has some fixed number of students.

• Students can be inside or outside the university building.

• The system should allow a new student to be registered in order to get the access to the
university building.

• To deny the access to the building for a student the system should support deregistration.

• The system should allow only registered students to enter the university building.

Example: access control to a building
A system for controlling access to a university building

out
in

registered

Model context
CONTEXT BuildingAccess_c0

SETS STUDENTS //

CONSTANTS max_capacity // max capacity of the building is defined as a model constant
(we will need it later in the course lectures)

AXIOMS
axm1: finite(STUDENTS)
axm2: max_capacity ∈ ℕ
axm3: max_capacity > 0

END

Model machine
MACHINE BuildingAccess_m0

SEES BuildingAccess_c0

VARIABLES registered in out
//The machine state is represented by three variables, registered, in, out.

INVARIANTS
inv1: registered ⊆ STUDENTS // registered students are of type STUDENTS

inv2: registered = in ∪ out // registered students are either inside or outside
the university building

inv3: in ∩ out = ∅ // no student is both inside and outside the university building

EVENTS …

EVENTS
INITIALISATION≜

then
act1: registered, in, out := ∅,∅,∅ // initially all the variables are empty

end

ENTER ≜ // a student entering the building
any st
where

grd1: st ∈ registered // student must be registered
grd2: st ∈ out // student must be outside

then
act1: in := in ∪ {st} // add to in
act2: out := out \ {st} // remove from out

end

Redundant guard since every
student from out is registered

EXIT ≜ // a student leaves the building
any st
where

grd1: st ∈ registered // a student must be registered
grd2: st ∈ in // a student must be inside

then
act1: in := in \ {st} // remove st from in
act2: out := out ∪ {st} // remove st from in

end
REGISTER ≜ // registration a new student

any st
where

grd1: st ∈ STUDENTS // a new student
grd2: st ∉ registered // … that is not in the set registered yet

then
act1: registered := registered ∪ {st} // add st to registered
act2: out := out ∪ {st} // add st to out

end

Redundant guard since every
student from in is registered

DEREGISTER1 ≜ // de-register a student
any st
where

grd1: st ∈ registered // a student must be registered
then

act1: registered := registered \ {st} // remove st from registered
act2: in := in \ {st} // remove st from in
act3: out := out \ {st} // remove st from out

end
DEREGISTER2 ≜ // de-register a student while he/she is outside the building

any st
where

grd1: st ∈ out // a new student
then

act1: registered := registered \ {st} // remove st from registered
act2: out := out ∖ {st} // remove st from out

end
END

Wrap-up
We have refreshed the knowledge about set theory and predicate logic

Formal specification in Event-B is about using them to abstractly describe behaviour of the
system

We rely on properties of different mathematical structures to implicitly state some properties

For example, when we defined a carrier set STUDENTS, we have implicitly defined the constrain
for the eventual implementation of the student registration management system: there no two
identical students, i.e. even if the some students have identical names they id should be
different

Observe that invariant enforces us to be very precise

	DD2460 Software safety and security. Lecture 4
	Lecture outline
	Basic set theory
	Membership
	Set definition
	Set comprehension
	Examples on set comprehension
	More examples on set comprehension
	More examples on set comprehension
	Sets in Event-B specifications
	Subset and equality relations for sets
	More examples
	Operations on sets (set operators)
	Examples on Set Operators
	Set axioms and laws
	Group activity
	Power sets
	Types of sets
	More on “seasons” example
	Group activity
	Cardinality
	Expressions
	Predicates
	Predicate logic
	Examples
	Quantified Predicates
	Quantified Predicates
	Quantified Predicates
	Examples
	Free and bound variables
	Predicates on Sets
	Duality of universal and existential quantification
	Defining set operators with logic
	Predicates in Event-B
	Example: access control to a building
	Example: access control to a building
	Model context
	Model machine
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Wrap-up

