
2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 1

DD2460 Lecture 3. Formal specification of safety-
critical control systems
Elena Troubitsyna



About me

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 2

• I am a professor at Theoretical Computer Science division, EECS school
• My research interests focus on formal modelling and verification of dependable systems
• Dependable means trustworthy, i.e., safe, reliable, secure, fault tolerant etc.
• I work mostly on formal specification methods and try to augment them with the 

capabilities to specify, reason and assess various dependability attributes.
• In this course, I am responsible for Event-B module.
• We will focus on specification and refinement-based development of safety-critical 

systems and representing the impact of security attacks on safety as well as specification 
of security requirements

• We will work with Rodin platform – a tool for specification and verification in Event-B



Lecture outline

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 3

• Why formal specification?
• Safety-critical control systems: structure
• What is safety and how to express it?
• Failures and their impact on safety
• About Event-B and Rodin platform
• If time permits: start to review basic set theory



4Elena Troubitsyna. DD2460 Software Safety and Security (Event-B)2023-03-23

• Formal methods are on the theoretical side of software engineering
• Definition: 

Formal methods are mathematically rigorous techniques for the specification, development, and 
verification of software and hardware systems

• Each engineering field has underlying theory because a mathematical analysis is typically 
required for good system design

• Engineering products built without knowledge of underlying theory tend to be less reliable, 
malfunctioning etc.
‒ Software engineering is still a very young discipline
‒ Its theory is still developing and the use of formal methods is still not an usual practice. 
‒ But some very expensive design errors (e.g. Intel floating point hardware) make people to 

reconsider 

• For safety-critical systems is recommended by the standards

Formal methods



5Elena Troubitsyna. DD2460 Software Safety and Security (Event-B)2023-03-23

• Programs can be viewed as mathematical expressions
• Mathematical theory allows us to prove that the program is correct or the modelled 

system has the desired properties
• Formal methods come in different flavors:

‒ Lightweight FM – a formal specification precedes the actual design

‒ Correct-by-construction development frameworks: refinement-based development (e.g., 
Event-B) and formal verification

‒ Theorem proving: domain is formalized as a theory and verified by the machine-checked 
proofs

• In all cases: modelling and reasoning improves our understanding of the system
• Proofs show that the system is correct with respect to the certain properties even if there 

are infinitely many inputs (and hence impossible to test them all)

Formal methods cnt.



What is a formal specification?

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 6

• A formal specification is the expression, in some formal
language and at the some level of abstraction, of a collection
of properties the system should satisfy through its behavior.

• The formal specification depends on
• what does “system” mean, i.e., where one draws the boundaries,
• what kind of properties are of interest,
• what level of abstraction is considered, and
• what kind of formal language is used.



Formal specification

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 9

• “Formal” is often confused with “precise” (the former entails the latter but
the reverse is not true).

• A specification is formal if it is expressed in a language made of
three components:

• rules for determining the grammatical well-formedness of sentences (the syntax);

• rules for interpreting sentences in a precise, meaningful way within the considered
domain (the semantics);

• and rules for inferring useful information from the specification (the proof theory).

• The latter component provides the basis for automated analysis
of the specification.



Why specify formally?

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 10

• Problem specifications are essential for designing, validating, 
documenting, communicating, reengineering, and reusing solutions.

• Formality helps in obtaining higher-quality specifications within such 
processes;

• it also provides the basis for their automated support.

• The act of formalization in itself has been widely experienced to raise 
many questions and detect serious problems in original informal 
formulations.

• The semantics of the formalism provides precise rules of interpretation that
overcomes many problems of natural language description.



Value of formal specification

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 13

• The cost of fixing a specification or design error is higher the later in the development that

error is identified.

• Boehm’s First Law: Errors are more frequent during requirements and design activities

and are more expensive the later they are removed.



Specification methods

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 14

• Facilitate discovering errors at early stages of system development when they are less
expensive to fix.

• Common errors introduced in the early stages of development are errors in understanding the system
requirements and errors in writing the system specification.

• Without a rigorous approach to understanding requirements and constructing specifications, it
can be very difficult to uncover such errors other than through testing of the software product after
a lot of development has already been undertaken.

• Formal specification helps to spot missing or conflicting requirements:

‒ When the temperature in the room is higher than 23oC the air conditioner should be in the cooling mode. 

˃ But what is the mode if the temperature is below or equal 23oC?

‒ The doors in the building should be closed to prevent the access of unauthorized people. When the fire 
alarm is on, all doors must be open. 

˃ Clearly cannot be satisfied at the same time.



Why is it difficult?

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 15

• High complexity
 complexity of requirements;
 complexity of the operating environment of a system or
 complexity of the design of a system.

• But precision does not address the problem of complex
requirements and operating environments.

• Complexity cannot be eliminated but we can try to master it via
abstraction.



Problem abstraction

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 16

• Abstraction can be viewed as a process of simplifying the
problem at hand and facilitating our understanding of a
system.

• Abstraction should
 focus on the intended purpose of the system and
 ignore details of how that purpose is achieved.



Abstraction

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 17

• If the purpose of the system is to provide some service, then
 model what a system does from the perspective of the service user.
 ‘user’ might be computing agents as well as humans

• If the purpose of the system is to control, monitor or
protect some phenomena, then
 the abstraction should focus on those phenomenon, considering in

what way they should be monitoring, controlled or protected and
should ignore the way in which this is achieved.



System: function, behavior and structure

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 19

• Function is what the system is intended to do.
– Described by functional specification

• Behaviour is what the system does to
implement its functions
– Described by a sequence of states

• Structure (architecture) of a system is what enables it to generate
the behavior
• It is composed on components bound together



Generic control system

Controller

Sensors

Actuators

Application

Safety-critical systems are typically control systems

Generic architecture of a control system



Control system structure

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 21

• Main components
• Application: A physical entity whose function and operation is being monitored and

controlled

• Controller. Hardware and software monitoring and controlling the application in real time

• Actuator (effector). A device that converts an electrical signal from the output of the
computer to a physical quantity, which affects the function of the application.

• Sensor. A device that converts an application’s physical quantity into an electric signal
for input into the computer.

• The behaviour of the system is cyclic. The cycle is called a control loop.

• The control loop is executed once per certain period of time



Control loop

Periodically: 

Environment’s physical process evolves; 
Updating sensors;
Reading sensors;
Computing required control actions; 
Setting actuators

Environment 
(Plant) evolves

Sensors "register" 
the state of plant

Controller reads sensors and 
calculates how to set actuators to 
achieve the desired behaviour

Controller sets actuators



Example of a control system: cold vaccine 
storage

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 23

• The temperature in a specialized freezer 
should not exceed minus 70o Celsius.

• What kind of components the freezer control 
system should have?



Example of a control system: cold vaccine
storage

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 24

• Application: storage chamber
• Sensor: temperature sensor
• Actuator: cooling engine
• Controller (software): 

‒ checks measurements 
‒ sets the cooling engine

Might also:  
‒ output information on a display
‒ Write to log file and send it over network 



A variant of control system structure with a 
human operator

Operator
SensorComputer

Actuator
Application



A networked control system structure

SensorComputer

Actuator
Application

Sensor- controller 
communication channel 

Ccontroller-actuator 
communication channel 



Defining the control cycle for the cold storage 
control system
• We want to express the following iterative behaviour:

‒ Controller receives reading from sensor
‒ It decides to increase cooler power if temperature is between -71 and   -70 

degrees and decrease cooler power if the temperature is between   -71 and -72 
degrees. 

‒ If the cooler is in the increased power state then the temperature is decreasing 
for 0.1 degree per cycle

‒ If the cooler is in the decreased power state then the temperature is increasing 
for 0.1 degree per cycle

3/23/2023 27



Specifying system behaviour (informally)
• The system behaviour is defined in terms of states.
• A state is defined by the values of variables
VARIABLES:

temp: temperature measured by the sensor
cooler: setting of cooler -- increasing or decreasing 
phase: variable defining at which phase of the control loop we are: plant, cnt

INITIALISATION: phase:= plant; cooler := decr; temp :=70
DO (infinitely)

IF phase= plant AND cooler= incr THEN temp := temp -0.1; phase := cnt
IF phase= plant AND cooler= decr THEN temp := temp +0.1; phase := cnt
IF  phase = cnt AND -71 < temp ≤ -70 then cooler := incr; phase := plant 
IF  phase = cnt AND -72 < temp ≤ 71 then cooler := decr; phase := plant

ENDDO

3/23/2023 28



Safety

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 29

• How do you define safety for the vaccine storage system?
• What kind of assumptions do you make?



Safety

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 30

• General definition of safety: 
• Safety is a property of the system to not cause harm to its users and environment,

‒ i.e., it is the absence of catastrophic consequences

• Not always the harm is direct and immediate (e.g. explosion, flood etc.). In the vaccine 
storage case, violation of temperature boundary would result: 

• If detected, in waste of the vaccine
• If not detected, in administering perished vaccine

• The variable temp denotes temperature in the cold chamber. How do you formulate safety 
property? 



Safety

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 31

• General definition of safety: 
• Safety is a property of the system to not cause harm to its users and environment, 

‒ i.e., it is the absence of catastrophic consequences

• Not always the harm is direct and immediate. In the vaccine storage case, a violation of 
temperature boundary would result: 
‒ If detected, in waste of the vaccine
‒ If not detected, in administering perished vaccine

• The variable temp denotes temperature in the cold chamber. How do you formulate safety 
property? 

temp ≤ -70



On defining safety property

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 32

• Our definition of safety property is in terms of real physical temperature

• However, temperature is measured by a sensor. 
• Healthy, i.e., correctly working sensor has a certain imprecision Δ

• Reformulating safety property temp + Δ ≤ -70

• Can we assume that the sensor is always healthy? Typically no.
• Can we assume that the controlling software always functions correctly, 

i.e., preserves safety? How to guarantee this?
• How to deal with various aspects systematically?



33Elena Troubitsyna. DD2460 Software Safety and Security (Event-B)2023-03-23

• Fault tree is a deductive safety analysis technique

• Fault tree consists of events and logical gates (in the simplest case 
OR and AND gates)

• It defines the combination of the events that lead to a hazard –
undesirable event violating safety requirement

• Fault trees are constructed top-down: we start from the event that 
we want to avoid and analyse the factors that can contribute to its 
occurrence

A brief overview of fault trees



34Elena Troubitsyna. DD2460 Software Safety and Security (Event-B)2023-03-23

Fault tree for our example



35Elena Troubitsyna. DD2460 Software Safety and Security (Event-B)2023-03-23

Fault tree for our example cnt.

not



On defining safety property

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 36

• Our definition of safety property is in terms of real physical temperature
• However, temperature is measured by a sensor. 
• Healthy, i.e., correctly working sensor has a certain impresicion Δ
• Reformulating safety property temp + Δ ≤ -70

• We need to define how the health of the sensor is checked and what system should do to 
react on failure.

• In a simple case, the sensor produces its health status together with the measurement. 

• According to our fault tree, if sensor health is OK then the controller relies on the 
measurement. If not then raises alarm (failsafe system) 



Defining safety property in presence of failures

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 37

• We want to express the following:
• If sensor is OK then set the actuator according to the measurement
• If sensor is not OK then set the actuator to safe state and raise alarm
• We need to define the additional variables to represent the sensor status and alarm
• Additional variables:
• sensor: OK, NOT
• alarm: ON, OFF



Specifying system behaviour with sensor failure 
(informally)

INIT: phase:= plant; cooler := decr; temp :=-70; sensor := OK; alarm := OFF
do infinitely

IF phase= plant AND cooler= incr THEN temp := temp -0.1; phase := cnt
IF phase= plant AND cooler= decr THEN temp := temp +0.1; phase := cnt
IF  phase = cnt AND sensor =OK AND -71 < temp + Δ ≤ -70 then cooler := incr; phase := plant 
IF  phase = cnt AND sensor =OK AND -71 < temp - Δ ≤ -72 then cooler := decr; phase := plant
IF  phase = cnt AND sensor =NOK  then cooler := decr; alarm := ON

enddo

Observe: we made the decision, that predefined safe state of the cooler is decr. After 
alarm goes ON the system deadlocks, (phase is not changed).

3/23/2023 38



39Elena Troubitsyna. DD2460 Software Safety and Security (Event-B)2023-03-23

How to verify safety?

How to express it, so it can be verified?



40Elena Troubitsyna. DD2460 Software Safety and Security (Event-B)2023-03-23

How to verify safety?

How to express it, so it can be verified?
Always after controller reacted 
if sensor is not OK then alarm is raised and actuator is in decr



41Elena Troubitsyna. DD2460 Software Safety and Security (Event-B)2023-03-23

Fault tree for our example

Always after controller reacted 
if sensor is OK and temp + Δ ≥ -70 then cooler is in decr



42Elena Troubitsyna. DD2460 Software Safety and Security (Event-B)2023-03-23

Fault tree for our example cnt.

Always after controller reacted 
if sensor is OK and temp + Δ ≥ -70 then cooler is in decr



How to verify safety?

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 43

• ”Always” in our expression means that it is an invariant property

• Testing after each statement? For large programms it is unfeasible

• Formal modelling and verification offers a solution: defining an invariant property as a part 
of the specification of the behaviour of the system.

• Invariant holds means that the predicate defining it evaluates to true after the initialisation
and after each possible state transition.



Formal specification of safety-critical systems

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 44

• The main idea is to establish a link between safety analysis and verification of system 
model

• Safety requirements should be reflected in the model: behaviour, invariant
• Formal modelling framework should support verification of the invariant
• For large-scale systems: unfeasible without automatic support for the verification

• Next we will investigate one of the existing specification frameworks – Event-B.



Event-B

• It provides us with a rich modelling language, based on set theory
• language allows precise descriptions of intended system behaviour (models) to be written in 

an abstract way

• Event-B uses the abstract machine notation as the basis.
• Event-B is successor of the B Method (also known as classical B).



Event-B
• A state-based formal approach 
• State is defined by a collection 

of variables
• Types of variables and 

properties are defined as 
invariants

• A context includes user-defined 
carrier sets, constants and their 
properties (defined as axioms)

• Dynamic behaviour is 
represented by events

• Model invariant defines a set of 
allowed (safe) states;

Machine M 
Variables v 
Invariants I 
Events
Initialisation
evt1
·· 
evtN

Context  C 
Carrier Sets d
Constants c 
Axioms  A

Event  is a guarded command

stimulus response

WHEN guard THEN assignment to variables END

Each event should preserve the invariant
We verify this by proofs



From the B Method to Event-B

• Inventor: Jean-Raymond Abrial (his previous work is Z framework)
• Both classical B and Event-B are based on set theory
• Analyse models using proofs and additionally -- model checking, animation
• Refinement-based development

• Verify conformance between higher-level and lower-level models
• Chain of refinements

o Commercial tools for classical B: Atelier-B (ClearSy, France), B-Toolkit (B-Core, UK)

o Why Event-B: realisation that it is important to reason about system behaviour, not just 
software

o Event-B is intended for modelling and refining system behaviour



Industrial uses of Event-B

• Event-B in railway interlocking
• Alstrom, Systerel

• Event-B in smart grids
• Selex, Critical Software

• Event-B in a cruise control system and a 
start-stop system

• Bosch
• Event-B in train control and signaling

systems
• Siemens Transportation



Refinement-based development

• Correct-by-construction development: 
based on refinement transformation

• From highly abstract model to detailed, 
close to implementation model

• Each refinement step (can be thought of a 
detalisaton, elaboration) introduces 
models of some requirements but 
preserves all the properties and 
observable behaviour of more abstract 
specification

• Rodin platform supports incremental 
development merging modelling and 
verification 

Abstract model

Detailed model

Implementation



Rodin

• Rodin – the automated tool platform for Event-B.
• www.event-b.org
• Integrated development environment for Event-B
• Models can be created using built-in editor.
• The platform generates proof obligations that can be discharged either

automatically or interactively.
• Rodin is a modular software and many extensions are available.

 These include alternative editors, document generators, team support, and extensions (called plugins) some of which
include support decomposition and records.

http://www.event-b.org/


Basic set theory

• A set is a collection of elements.
• Elements of a set may be numbers, names, identifiers, etc. 
 E.g. the set ℕ is the collections of all natural numbers.

• Examples:
 {3,5,7,…}
 {red, green, black}
 {yes, no}
 {wait, start, process, stop}
 But not: {1, 2, green}

• Elements of a set are not ordered. 
• Set may be finite or infinite.



Membership

• Relationship between an element and a set: is the element a member of the set or 
not?

• For element 𝒙𝒙 and set 𝑺𝑺, we express the membership relation as follows
𝒙𝒙 ∈ 𝑺𝑺 (‘𝒙𝒙 is a member of 𝑺𝑺’)

where ∈ is a predicate over sets and elements
• Set membership is a boolean property relating an element and a set, i.e., either x 

is in S or x is not in S. 
• This means that there is no concept of an element occurring more that once in a 

set, e.g., 
• 𝑎𝑎, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ;
• 3, 7 = 3, 7, 7

• Conversely, the element is not a member of the set:  𝒙𝒙 ∉ 𝑺𝑺



Set definition

• If a set has only finite number of elements, then it can be 
written explicitly, by listing all of its elements within set brackets 
′{′ and   }′ ′:
 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋 = 1𝐴𝐴, 1𝐵𝐵, 1𝐶𝐶, 1𝐷𝐷
 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓

• Some sets have predefined names: 
 ℕ – 𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑡𝑡𝑡𝑡 𝑜𝑜𝑓𝑓 𝑠𝑠𝑎𝑎𝑡𝑡𝑎𝑎𝑠𝑠𝑎𝑎𝑓𝑓 𝑠𝑠𝑎𝑎𝑛𝑛𝑏𝑏𝑡𝑡𝑠𝑠𝑠𝑠 0, 1, 2, 3, …
 ℤ − 𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑡𝑡𝑡𝑡 𝑜𝑜𝑓𝑓 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 … − 2, −1, 0, 1, 2, …

• The empty set contains no elements at all. It is the smallest
possible set.

∅ 𝑜𝑜𝑠𝑠 {}



Set comprehension

• Enumerating all of the elements of a set is not always possible.
• Would like to describe a set by in terms of a distinguishing property of 

its elements.
• Set can be defined by means of a set comprehension: 

𝒙𝒙 𝒙𝒙 ∈ 𝑺𝑺 ∧ 𝑷𝑷(𝒙𝒙)

“Set of all 𝑥𝑥 in 𝑇𝑇 that satisfy 𝑃𝑃(𝑥𝑥)”
• Each element of a set satisfies some criterion. Criterions are defined 

by predicates.

A variable ranging over …condition



Examples on set comprehension

• Examples: 
 Natural numbers less than 10:  𝑥𝑥 𝑥𝑥 ∈ ℕ ∧ 𝑥𝑥 < 10

 Even integers: 𝑥𝑥 𝑥𝑥 ∈ ℤ ∧ (∃ 𝑦𝑦. 𝑦𝑦 ∈ ℤ ∧ 2𝑦𝑦 = 𝑥𝑥)

 Sometimes it is helpful to specify a “pattern” for the elements 

 E.g.  2𝑥𝑥 𝑥𝑥 ∈ ℕ ∧ 𝑥𝑥2 ≥ 3



More examples on set comprehension

• Examples: 
 What is the set defined by the set comprehension:  

𝑧𝑧 𝑧𝑧 ∈ ℕ ∧ 𝑧𝑧 < 100 ∧ (∃ 𝑛𝑛. 𝑛𝑛 ∈ ℤ ∧ 𝑛𝑛3 = 𝑧𝑧) ?



More examples on set comprehension

• Examples: 
 What is the set defined by the set comprehension:  

𝑧𝑧 𝑧𝑧 ∈ ℕ ∧ 𝑧𝑧 < 100 ∧ (∃ 𝑛𝑛. 𝑛𝑛 ∈ ℤ ∧ 𝑛𝑛3 = 𝑧𝑧) ?

Answer: 1, 16, 27, 64



Subset and equality relations for sets

• A set 𝑺𝑺 is said to be subset of set 𝑺𝑺 when every element of 𝑺𝑺 is 
also an element of 𝑺𝑺. This is written as follows:

𝑺𝑺 ⊆ 𝑺𝑺
• For example: 
 3, 7 ⊆ 1, 2, 3, 5, 7, 9 ; 
 𝑎𝑎𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡, 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠 ⊆ 𝑎𝑎𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡, 𝑏𝑏𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎, 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠, 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡
 𝐽𝐽𝑜𝑜𝑠𝑠𝑡𝑡𝑠𝑠, 𝑊𝑊𝑡𝑠𝑠𝑡𝑡𝑡𝑡, 𝐽𝐽𝑜𝑜𝑠𝑠𝑡𝑡𝑠𝑠 ⊆ 𝑊𝑊𝑡𝑠𝑠𝑡𝑡𝑡𝑡, 𝑆𝑆𝑛𝑛𝑠𝑠𝑡𝑡𝑡, 𝐽𝐽𝑜𝑜𝑠𝑠𝑡𝑡𝑠𝑠, 𝐽𝐽𝑎𝑎𝐽𝐽𝑠𝑠𝑜𝑜𝑠𝑠

• A set 𝑺𝑺 is said to be equal to set 𝑺𝑺 when 𝑺𝑺 ⊆ 𝑺𝑺 and 𝑺𝑺 ⊆ 𝑺𝑺
𝑺𝑺 = 𝑺𝑺



More examples

Set membership says nothing about the relationship between the elements of a set 
other than that they are members of the same set. 

o the order in which we enumerate a set is not significant, e.g., 
• 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 = 𝑏𝑏, 𝑎𝑎, 𝑐𝑐 ;

o there is no concept of an element occurring more that once in a set, e.g., 
• 𝑎𝑎, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ;

• These two characteristics distinguish sets from data structures such as lists or 
arrays where elements appear in order and the same element my occur 
multiple times. 



Operations on sets (set operators)

• Union of S and T: set of elements in either S or T: 
𝑺𝑺 ∪ 𝑺𝑺

• Intersection of S and T: set of elements in both S and T:
𝑺𝑺 ∩ 𝑺𝑺

• Difference of S and T: set of elements in S but not in T: 
𝑺𝑺 ∖ 𝑺𝑺



Examples on Set Operators

o Union
• 1,2 ∪ 2,3,5 = 1,2,3,5
• {1} ∪ 2 = {1,2}
• ∅ ∪ 𝑠𝑠𝑡𝑡𝑟𝑟, 𝑠𝑠𝑠𝑠𝑠𝑠𝐽𝐽 = 𝑠𝑠𝑡𝑡𝑟𝑟, 𝑠𝑠𝑠𝑠𝑠𝑠𝐽𝐽

o Intersection
• 𝑎𝑎𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡, 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠, 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡 ∩ 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠, 𝑏𝑏𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎 = 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠
• 𝑠𝑠𝑎𝑎𝑟𝑟𝑠𝑠𝑠𝑠𝑡, 𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠, 𝑐𝑐𝑡𝑡𝑓𝑓𝑡𝑡𝑠𝑠𝑦𝑦 ∩ 𝑠𝑠𝑎𝑎𝑛𝑛𝑠𝑠𝐽𝐽𝑠𝑠𝑠𝑠, 𝑡𝑡𝑜𝑜𝑛𝑛𝑎𝑎𝑡𝑡𝑜𝑜, 𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠𝑜𝑜𝑡𝑡 =∅
• 2,3,5 ∩ ∅ = ∅

o Difference
• 𝑐𝑐𝑡𝑡𝑡𝑠𝑠𝑠𝑠, 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡𝑏𝑏𝑎𝑎𝑓𝑓𝑓𝑓 ∖ 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑠𝑠𝑜𝑜𝑓𝑓𝑓𝑓 = 𝑐𝑐𝑡𝑡𝑡𝑠𝑠𝑠𝑠, 𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡𝑏𝑏𝑎𝑎𝑓𝑓𝑓𝑓
• 𝑠𝑠𝑜𝑜𝑡𝑡, 𝑏𝑏𝑎𝑎𝑐𝑐𝐽𝐽𝑡𝑡𝑡𝑡, 𝑏𝑏𝑎𝑎𝑠𝑠𝐽𝐽𝑡𝑡𝑡𝑡 ∖ 𝑠𝑠𝑡𝑡𝑡𝑡𝑟𝑟𝑓𝑓𝑡𝑡, 𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑜𝑜𝑡𝑡, 𝑏𝑏𝑎𝑎𝑐𝑐𝐽𝐽𝑡𝑡𝑡𝑡, 𝑏𝑏𝑎𝑎𝑠𝑠𝐽𝐽𝑡𝑡𝑡𝑡
• 𝑠𝑠𝑡𝑡𝑟𝑟, 𝑠𝑠𝑠𝑠𝑠𝑠𝐽𝐽 ∖ ∅ = 𝑠𝑠𝑡𝑡𝑟𝑟, 𝑠𝑠𝑠𝑠𝑠𝑠𝐽𝐽



Set axioms and laws

• Fundamental laws (can be proven)
 Commutative laws:

𝑺𝑺 ∪ 𝑺𝑺 = 𝑺𝑺 ∪ 𝑺𝑺
𝑺𝑺 ∩ 𝑺𝑺 = 𝑺𝑺 ∩ 𝑺𝑺

 Associative laws:
𝑺𝑺 ∪ 𝑺𝑺 ∪ 𝑺𝑺 = 𝑺𝑺 ∪ (𝑺𝑺 ∪ 𝑺𝑺)
𝑺𝑺 ∩ 𝑺𝑺 ∩ 𝑺𝑺 = 𝑺𝑺 ∩ (𝑺𝑺 ∩ 𝑺𝑺)

 Distributive laws:
𝑺𝑺 ∩ (𝑺𝑺 ∪ 𝑺𝑺) = (𝑺𝑺 ∩ 𝑺𝑺) ∪ (𝑺𝑺 ∩ 𝑺𝑺)
𝑺𝑺 ∪ 𝑺𝑺 ∩ 𝑺𝑺 = 𝑺𝑺 ∪ 𝑺𝑺 ∩ (𝑺𝑺 ∪ 𝑺𝑺)



Power sets

• The power set of a set 𝑺𝑺 is the set whose elements are all 
subsets of 𝑺𝑺,

written ℙ(𝑺𝑺)
• Example, 

ℙ 1,3,5 = ∅, 1 , 3 , 5 , 1,3 , 1,5 , 3,5 , 1,3,5

• 𝑺𝑺 ∈ ℙ 𝑺𝑺 is the same as     𝑺𝑺 ⊆ 𝑺𝑺
• Sets are themselves elements – so we can have sets of sets
• Example, ℙ 1,3,5 is an example of a set of sets

1,3

1,3,5

1,5 3,5

1 3 5



Types of sets

• All the elements of a set must have the same type.

• For example, 2, 3, 4 is a set of integers.
2, 3, 4 ∈ ℙ ℤ .

So the type of 2, 3, 4 is ℙ ℤ .

To declare 𝒙𝒙 to be a set of elements of type T we write either
𝒙𝒙 ∈ ℙ 𝑺𝑺 or 𝒙𝒙 ⊆ 𝑺𝑺

More e.g., math ⊆ 𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺𝑪𝑪𝑺𝑺𝑺𝑺 - so type of math is ℙ 𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺𝑪𝑪𝑺𝑺𝑺𝑺



Cardinality

• The number of elements in a set is called its cardinality
• In Event-B this is written as card(S) 
• Examples:
 card({1, 2, 3})=3
 card({a, b, c, d})=4
 card({Bill, Anna, Anna, Bill})=2
 card(ℙ 1,3,5 )=8

• Cardinality is only defined for finite sets. 
• If S is an infinite set, then card(S) is undefined. Whenever you use the 

card operator, you must ensure that it is only applied to a finite set. 



Wrap-up

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 66

• We discussed what is the formal specification and what are the benefits of formal 
modelling

• We studied a generic architecture of a safety-critical system and performed a high-level
safety analysis

• We have outlined (informally) the main principles of modelling a safety-control system and 
defining safety invariant

• Next lecture is a detailed introduction into Event-B specification language
• First assignment: familarise yourself with Rodin platform by creating and verifying a 

simple specification
• The rest of the module: more modelling examples, refinement, verification of safety and 

modelling impact of security on safety



Questions?

2023-03-23 Elena Troubitsyna. DD2460 Software Safety and Security (Event-B) 67


	DD2460 Lecture 3. Formal specification of safety-critical control systems
	About me
	Lecture outline
	Formal methods
	Formal methods cnt.
	What is a formal specification?
	Formal specification
	Why specify formally?
	Value of formal specification
	Specification methods
	Why is it difficult?
	Problem abstraction
	Abstraction
	System: function, behavior and structure�
	Generic control system
	Control system structure
	Slide Number 22
	Example of a control system: cold vaccine storage
	Example of a control system: cold vaccine storage
	A variant of control system structure with a human operator
	A networked control system structure
	Defining the control cycle for the cold storage control system
	Specifying system behaviour (informally)
	Safety
	Safety
	Safety
	On defining safety property
	A brief overview of fault trees
	Fault tree for our example
	Fault tree for our example cnt.
	On defining safety property
	Defining safety property in presence of failures
	Specifying system behaviour with sensor failure (informally)
	How to verify safety?
	How to verify safety?
	Fault tree for our example
	Fault tree for our example cnt.
	How to verify safety?
	Formal specification of safety-critical systems
	Event-B
	Event-B
	From the B Method to Event-B
	Industrial uses of Event-B
	Refinement-based development
	Rodin
	Basic set theory
	Membership
	Set definition
	Set comprehension
	Examples on set comprehension
	More examples on set comprehension
	More examples on set comprehension
	Subset and equality relations for sets
	More examples
	Operations on sets (set operators)
	Examples on Set Operators
	Set axioms and laws
	Power sets
	Types of sets
	Cardinality
	Wrap-up 
	Questions?

