DD2460 Software safety and security. Lecture 4

NONDETERMINISM; FUNCTIONS AND RELATIONS IN EVENT-B MODELLING

Recall the example from the last lecture

Let us analyse the guards of two events: EXIT and REGISTER
After initialisation, all sets registered, in and out are empty
Hence, after initialisation only one event - REGISTER is enabled, i.e., the guards of all other events evaluate to false

However, once the sets become non-empty several (sometimes all events) become enabled
Any of the enabled events can be chosen for execution non-deterministically, i.e., we do not have control over which one will be executed next.

Each event results in a state change, i.e., models a state transition
Often the choice of the next state is non-deterministic, i.e., depends on which event is chosen or which assignment is made

```
EXIT \triangleq // a student leaves the building
    any st
    where
        grd1: st E registered // a student must be registered
        grd2: st E in // a student must be inside
    then
        act1: in := in \{st} // remove st from in
        act2: out := out U{st} // remove st from in
    end
REGISTER \triangleq // registration a new student
    any st
    where
    grd1: st E STUDENTS // a new student
    grd2: st # registered // ... that is not in the set registered yet
then
    act1: registered := registered }\cup{st} // add st to registere
    act2: out := out U {st} // add st to out
end
```


Machine behaviour and nondeterminism

- The behaviour of an Event-B machine is defined as a transition system that moves from one state to another through execution of events.

- The states of a machine are represented by the different configurations of values for the variables:
- In the student registration example, the state is defined by the variables registered, in, out

Machine behaviour and nondeterminism

- In any state that a machine can reach, an enabled event is chosen to be executed to define the next transition.
- If several events are enabled in a state, then the choice of which event occurs is nondeterministic.
- Also, if an event is enabled for several different parameter values, the choice of value for the parameters is nondeterministic - the choice just needs to satisfy the event guards.
- For example, in the REGISTER event, the choice of value for parameter st is nondeterministic, with the choice of value being constrained by the guards of the event to ensure that it is a fresh value.
- Treating the choice of event and parameter values as nondeterministic is an abstraction of different ways in which the choice might be made in an implementation of the model.

Note on modelling order of events

To reduce non-determinism and enforce that one event is executed after another you need to mimic "a program counter": example of a simple request-response phase change (not terminating):

MACHINE SIMPLE_REQ_RESP

```
VARIABLES phase
INVARIANTS
    inv1: phase \inPHASES
```

EVENTS
INITIALISATION \triangleq
end
then
then
act1: phase :=REQ

REQUESTING \triangleq
REQUESTING
then
end
RESPONDING \triangleq
when

```
grd1: phase=REQ
```

act1: phase:=RESP
。

```
\
```

act1: phase:=REQ

Event order and invariant

MACHINE SIMPLE_REQ_RESP

VARIABLES phase, letter
INVARIANTS
inv1: phase \in PHASES
inv2: letter \in LETTERS
inv3: how letter and phase are related?
EVENTS
INITIALISATION $\xlongequal{\wedge}$
then
act1: phase :=REQ
act2: letter $:=A$
end

```
REQUESTING \triangleq
            when
                            grd1: phase=REQ
                            act1: letter:=B
                            act2: phase:=RESP
                                    end
RESPONDING \triangleq
when
grd1: phase=RESP
then
act1: letter:=A
act2: phase:=REQ

PHASES \(=\{R E Q, R E S P\}\)
LETTERS \(=\{A, B\}\)

\section*{Event order and invariant}

\section*{MACHINE SIMPLE_REQ_RESP}

VARIABLES phase, letter
INVARIANTS
inv1: phase \(\in\) PHASES
inv2: letter \(\in\) LETTERS
inv3: phase=REQ \(\Rightarrow\) letter=A
inv4: phase \(=\) RESP \(\Rightarrow\) letter \(=B\) VENTS
INITIALISATION \(\triangleq\)
then
act1: phase :=REQ
act2: letter \(:=A\)
```

REQUESTING \triangleq
when
grd1: phase=REQ
then
act1: letter:=B
act2: phase:=RESP
end
RESPONDING \triangleq
when
then
act1: letter:=A
act2: phase:=REQ
end

```

\section*{Relations between sets}
- Relation between sets is an important mathematical structure which is commonly used in expressing specifications.
- Relations allow us to express complicated interconnections and relationships between entities formally.

\section*{Ordered pairs}
- An ordered pair is an element consisting of two parts:
a first part and second part
- An ordered pair with first part \(\boldsymbol{x}\) and second part \(\boldsymbol{y}\) is written as:
\[
x \mapsto y
\]
- Examples:
- (apple \(\mapsto\) red)
- (Databases \(\mapsto\) fall)
- (115A \(\mapsto\) 30)
- (Smith \(\mapsto\) 0123)

\section*{Cartesian product}
- The Cartesian product of two sets is
the set of pairs whose first part is in \(\boldsymbol{S}\) and second part is in \(\boldsymbol{T}\)
- The Cartesian product of \(\boldsymbol{S}\) with \(\boldsymbol{T}\) is written: \(\boldsymbol{S} \times \boldsymbol{T}\)

\section*{Cartesian product: example}

Lets consider two sets: COURSES and SEMESTERS


\section*{Cartesian product: example}


\section*{Cartesian product: definition and more examples}
- Defining Cartesian product:
\begin{tabular}{|c|c|}
\hline Predicate & Definition \\
\hline\(x \mapsto y \in S \times T\) & \(x \in S \wedge y \in T\) \\
\hline
\end{tabular}
- Examples:
- \(\mathbb{N} \times \mathbb{N}\) pairs of natural numbers
- \(\{1,2,3\} \times\{a, b\}=\{1 \mapsto a, 1 \mapsto b, 2 \mapsto a, 2 \mapsto b, 3 \mapsto a, 3 \mapsto b\}\)
- \{Anna, Bill,Jack \(\} \times \varnothing=\varnothing\)
- \(\{\{1\},\{1,2\}\} \times\{a, b\}=\{\{1\} \mapsto a,\{1\} \mapsto b,\{1,2\} \mapsto a,\{1,2\} \mapsto b\}\)
- \(\operatorname{card}(\{y e s, n o\} \times\{a, b\})=\operatorname{card}(\{y e s \mapsto a, y e s \mapsto b, n o \mapsto a, n o \mapsto b\})=4\)

\section*{Cartesian product is a type constructor}
- \(\boldsymbol{S} \times \boldsymbol{T}\) is a new type constructed from types \(\boldsymbol{S}\) and \(\boldsymbol{T}\).
- Cartesian product is the type constructor for ordered pairs.
- Given \(x \in S\) and \(y \in T\) we have \(x \mapsto y \in S \times T\)
- Examples:
- \(4 \mapsto 7 \in \mathbb{Z} \times \mathbb{Z}\)
- \(\{2,3\} \mapsto 4 \in \mathbb{P}(\mathbb{Z}) \times \mathbb{Z}\)
- \(\{2 \mapsto 1,3 \mapsto 3,4 \mapsto 5\} \in \mathbb{P}(\mathbb{Z} \times \mathbb{Z})\)

\section*{Sets of ordered pairs}

A simple database can be modelled as a set of ordered pairs:
\[
\begin{aligned}
\text { studentCourses }= & \{\text { Anna } \mapsto \text { Logic, Ben } \mapsto \text { SWQuality,Jack } \mapsto \text { SWQuality, Irum } \mapsto \\
& \text { Databases, Anna } \mapsto \text { Math,Jack } \mapsto \text { Logic }\}
\end{aligned}
\]
studentCourses has type
studentCourses \(\in \mathbb{P}(N A M E S \times\) COURSES \()\)

\section*{Relations}
- A relation R between sets \(\boldsymbol{S}\) and \(\boldsymbol{T}\) expresses a relationship between elements in \(S\) and elements in \(\boldsymbol{T}\) :
- A relation is captured simply as a set of ordered pairs ( \(\boldsymbol{s} \mapsto \boldsymbol{t}\) ) with \(\boldsymbol{s} \in \boldsymbol{S}\) and \(\boldsymbol{t} \in \boldsymbol{T}\).
- A relation is a common modelling structure so Event-B has a special notation for it:
\[
\boldsymbol{S} \leftrightarrow \boldsymbol{T}=\mathbb{P}(\boldsymbol{S} \times \boldsymbol{T})
\]
- We can write then
\[
\begin{aligned}
& \text { studentCourses }=\{\text { Anna } \mapsto \text { Logic, Ben } \mapsto \text { SWQuality, Jack } \mapsto \text { SWQuality, Irum } \mapsto \\
&\text { Databases, Anna } \mapsto \text { Math,Jack } \mapsto \text { Logic }\} \\
& \text { as } \\
& \text { studentCourses } \in \text { NAMES } \leftrightarrow \text { COURSES }
\end{aligned}
\]
- Do not confuse the arrow symbols:
\(\leftrightarrow\) combines two sets to form a set;
\(\mapsto\) combines two elements to form an ordered pair.

\section*{Domain and range}
studentCourses \(=\{\) Anna \(\mapsto\) Logic, Ben \(\mapsto\) SWQuality,Jack \(\mapsto\) SWQuality,Irum \(\mapsto\) Databases, Anna \(\mapsto\) Math, Jack \(\mapsto\) Logic \(\}\)


NAMES \(=\{\) Anna,Ben,Jack,Alex, Irum \(\}\)
COURSES \(=\{\) Databases,Math,Logic,SWSafety,SWQuality \(\}\)

\section*{Domain}
- The domain of a relation \(\boldsymbol{R}\) is the set of first parts of all the pairs in \(\boldsymbol{R}\), written \(\operatorname{dom}(\boldsymbol{R})\)
\begin{tabular}{|c|c|}
\hline Predicate & Definition \\
\hline\(x \in \operatorname{dom}(R)\) & \(\exists y \cdot x \mapsto y \in R\) \\
\hline
\end{tabular}
```

studentCourses $=\{$ Anna \mapsto Logic, Ben \mapsto SWQuality,Jack \mapsto SWQuality,Irum \mapsto
Databases, Anna \mapsto Math,Jack \mapsto Logic \},
NAMES $=\{$ Anna,Ben,Jack,Alex, Irum $\}$
then
dom(studentCourses $)=\{$ Anna, Ben, Jack, Irum $\}$

```

\section*{Range}
- The range of a relation \(\boldsymbol{R}\) is the set of second parts of all the pairs in \(\boldsymbol{R}\), written \(\boldsymbol{r a n}(R)\)
\begin{tabular}{|c|c|}
\hline Predicate & Definition \\
\hline\(y \in \operatorname{ran}(R)\) & \(\exists x \cdot x \mapsto y \in R\) \\
\hline
\end{tabular}
studentCourses \(=\{\) Anna \(\mapsto\) Logic,Ben \(\mapsto\) SWQuality,Jack \(\mapsto\) SWQuality,Irum \(\mapsto\) Databases, Anna \(\mapsto\) Math, Jack \(\mapsto\) Logic \(\}\)
ran \((\) studentCourses \()=\{\) Logic, SWQuality, Databases, Math \(\}\)

\section*{Relational image definition}
- Assume \(\boldsymbol{R} \in \boldsymbol{S} \leftrightarrow \boldsymbol{T}\) and \(\boldsymbol{A} \subseteq \boldsymbol{S}\)
- The relational image of set \(\boldsymbol{A}\) under relation \(\boldsymbol{R}\) is written \(\boldsymbol{R}[\boldsymbol{A}]\)
\begin{tabular}{|c|c|}
\hline Predicate & Definition \\
\hline\(y \in R[A]\) & \(\exists x . x \in A \wedge x \mapsto y \in R\) \\
\hline
\end{tabular}
-Set of all elements in \(\operatorname{ran}(\boldsymbol{R})\) that has elements of \(\boldsymbol{\operatorname { s e t }} \boldsymbol{A}\) as the first elements of their pairs

\section*{Relational image examples}
```

- studentCourses $=\{$ Anna \mapsto Logic, Ben \mapsto SWQuality,Jack \mapsto SWQuality,Irum \mapsto
Databases, Anna \mapsto Math, Jack \mapsto Logic $\}$
studentCourses $[\{$ Anna, Ben $\}]=\{$ Logic, SWQuality, Math $\}$
- courseLecturer $=\{$ Brown \mapsto Math,Jacson \mapsto Informatics, Brown \mapsto Statistics,
Jons \mapsto Databases $\}$
courseLecturer $[\{$ Brown $\}]=\{$ Math, Statistics $\}$

```

\section*{Partial functions}
- Special kind of relation: each domain element has at most one range element associated with it.
- To declare \(\boldsymbol{f}\) as a partial function:
\[
f \in X \longrightarrow Y
\]
- It is said to be partial because there may be values in the set \(\boldsymbol{X}\) that are not in the domain of \(\boldsymbol{f}\)
- Each domain element is mapped to one range element:
\[
x \in \operatorname{dom}(f) \Rightarrow \operatorname{card}(f[\{x\}])=1
\]
- Usually formalised as a uniqueness constraint
\[
x \mapsto y_{1} \in f \wedge x \mapsto y_{2} \in f \quad \Rightarrow \quad y_{1}=y_{2}
\]

\section*{Function Application}

We can use functional application for partial functions
- If \(\boldsymbol{x} \in \boldsymbol{\operatorname { d o m }}(\boldsymbol{f})\), then we write \(\boldsymbol{f}(\boldsymbol{x})\) for the unique range element associated with \(\boldsymbol{x}\) in \(\boldsymbol{f}\).
- if \(\boldsymbol{x} \notin \operatorname{dom}(f)\), then \(f(x)\) is undefined.
- if \(\operatorname{card}(f[\{x\}])>\mathbf{1}\), then \(f(x)\) is undefined.
\begin{tabular}{|c|c|c|c|}
\hline Name & Expression & Meaning & Well-definedness \\
\hline Function application & \(\boldsymbol{f}(\boldsymbol{x})\) & \begin{tabular}{c}
\(\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{y} \Leftrightarrow\) \\
\(\boldsymbol{x} \mapsto \boldsymbol{y} \in \boldsymbol{f}\)
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{f} \in \boldsymbol{X} H \boldsymbol{Y}\) \\
\(\wedge \boldsymbol{x} \in \operatorname{dom}(\boldsymbol{f})\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}
\(N A M E S=\{\) Anna,Ben,Jack, Alex, Irum \(\}, \operatorname{MNUMBERS}=\{0123,1230,2301,3012\}\)
studentNumber \(1=\{\) Anna \(\mapsto 0123\), Ben \(\mapsto 1230\), Irum \(\mapsto 3012\}\)
studentNumber \(2=\{\) Anna \(\mapsto 0123\), Ben \(\mapsto\) 1230, Jack \(\mapsto 2301\),Jack \(\mapsto 3012\}\)
- studentNumber \(1 \in N A M E S \rightarrow M N U M B E R S\)
studentNumber 1 (Ben)=1230
studentNumber1(Jack) is undefined
- studentNumber \(2 \notin N A M E S \rightarrow M N U M B E R S\)
studentNumber2(Jack) is undefined

\section*{Domain Restriction}
- Given relation \(\boldsymbol{R} \in S \leftrightarrow \boldsymbol{T}\) and \(\boldsymbol{A} \subseteq S\), the domain restriction of \(\boldsymbol{R}\) by \(A\) is written
\[
A \triangleleft R
\]
- Restrict relation \(\boldsymbol{R}\) so it only contains pairs whose first part is in the set \(\boldsymbol{A}\) (keep only those pairs whose first element is in A)
- Example:
\[
\begin{gathered}
\text { fruitColor }=\{\text { green } \mapsto \text { grape, yellow } \mapsto \text { banana, red } \mapsto \text { apple }\} \\
\{\text { red,pink }\} \triangleleft \text { fruitColor }=\{\text { red } \mapsto \text { apple }\}
\end{gathered}
\]

\section*{Domain Subtraction}
- Given \(\boldsymbol{R} \in \boldsymbol{S} \leftrightarrow \boldsymbol{T}\) and \(\boldsymbol{A} \subseteq \boldsymbol{S}\) the domain subtraction of \(\boldsymbol{R}\) by \(\boldsymbol{A}\) is written
\[
A \notin R
\]
- Remove those pairs from relation \(\boldsymbol{R}\) whose first part is in the set \(\boldsymbol{A}\) (keep only those pairs whose first element NOT in A)
- Example:
\[
\begin{aligned}
& \text { fruitColor }=\{\text { green } \mapsto \text { grape, yellow } \mapsto \text { banana, red } \mapsto \text { apple }\} \\
& \{\text { red,pink }\} \notin \text { fruitColor }=\{\text { green } \mapsto \text { grape,yellow } \mapsto \text { banana }\}
\end{aligned}
\]

\section*{Range Restriction}
- Given \(R \in S \leftrightarrow T\) and \(A \subseteq T\) the range restriction of \(R\) by \(\boldsymbol{A}\) is written
\[
R \triangleright A
\]
- Restrict relation R so the it only contains pairs whose second part is in the set \(\boldsymbol{A}\) (keep only those pairs whose second element is in \(\boldsymbol{A}\) )
- Example:
\[
\begin{gathered}
\text { fruitColor }=\{\text { green } \mapsto \text { grape, yellow } \mapsto \text { banana, red } \mapsto \text { apple }\} \\
\text { fruitColor } D\{\text { grape }, \text { pear }\}=\{\text { green } \mapsto \text { grape }\}
\end{gathered}
\]

\section*{Range Subtraction}
- Given \(\boldsymbol{R} \in S \leftrightarrow \boldsymbol{T}\) and \(\boldsymbol{A} \subseteq \boldsymbol{T}\) the range subtraction of \(\boldsymbol{R}\) by \(\boldsymbol{A}\) is written
\[
R \boxminus A
\]
- Remove those pairs from relation \(\boldsymbol{R}\) whose second part is in the set \(\boldsymbol{A}\) (keep only those pairs whose second element NOT in \(\boldsymbol{A}\) )
- Example:
\[
\begin{gathered}
\text { fruitColor }=\{\text { green } \mapsto \text { grape, yellow } \mapsto \text { banana, red } \mapsto \text { apple }\} \\
\text { fruitColor } \mapsto\{\text { grape, banana }\}=\{\text { red } \mapsto \text { apple }\}
\end{gathered}
\]

\section*{Domain and range, restriction and subtraction: summary}

Assume \(\boldsymbol{R} \in \boldsymbol{S} \leftrightarrow \boldsymbol{T}\) and \(\boldsymbol{A} \subseteq \boldsymbol{S}, \boldsymbol{B} \subseteq \boldsymbol{T}\)
\begin{tabular}{|c|c|l|}
\hline Predicate & \multicolumn{1}{|c|}{ Definition } & \multicolumn{1}{|c|}{ Name } \\
\hline \(\boldsymbol{x} \mapsto y \in A \triangleleft R\) & \(\boldsymbol{x} \mapsto \boldsymbol{y} \in R \wedge \boldsymbol{x} \in A\) & Domain restriction \\
\hline \(\boldsymbol{x} \mapsto \boldsymbol{y} \in A \notin R\) & \(\boldsymbol{x} \mapsto y \in R \wedge \boldsymbol{y} \notin A\) & Domain subtraction \\
\hline \(\boldsymbol{x} \mapsto y \in R \triangleright B\) & \(\boldsymbol{x} \mapsto y \in R \wedge \boldsymbol{y} \in B\) & Range restriction \\
\hline \(\boldsymbol{x} \mapsto y \in R \triangleright 3\) & \(\boldsymbol{x} \mapsto y \in R \wedge y \notin B\) & Range subtraction \\
\hline
\end{tabular}

\section*{Relation and function}

Function is a special case of relation: at most one element from the range correspond to each element in the domain

Any operation applicable to a relation or a set is also applicable to a function
- domain and range of a function, range restriction, etc.

If \(\boldsymbol{f}\) is a function, then \(\boldsymbol{f}(\boldsymbol{x})\) is the result of function \(\boldsymbol{f}\) for the argument \(x\).

\section*{Function Overriding}
- Override the function \(\boldsymbol{f}\) by the function \(\boldsymbol{g}\) :
\[
f \nLeftarrow g
\]
- Function \(\boldsymbol{f}\) is updated according to \(g\) (Override: replace existing mapping with new ones)
- \(f\) and \(g\) must be partial functions of the same type

\section*{Function overriding definition}
- Definition in terms of function override and set union
\[
\begin{gathered}
\boldsymbol{f} \notin\{\boldsymbol{a} \mapsto \boldsymbol{b}\}=(\{\boldsymbol{a}\} \notin \boldsymbol{f}) \cup\{\boldsymbol{a} \mapsto \boldsymbol{b}\} \\
\boldsymbol{f} \nLeftarrow \boldsymbol{g}=(\operatorname{dom}(\boldsymbol{g}) \notin \boldsymbol{f}) \cup \boldsymbol{g}
\end{gathered}
\]
- Examples:
\[
\text { studentNumber }=\{\text { Anna } \mapsto 0123, \text { Ben } \mapsto 1230, \text { Jack } \mapsto 2301, \text { Irum } \mapsto 3012\}
\]
\[
\boldsymbol{g}=\{\text { Ben } \mapsto 5555\}
\]
\[
\text { studentNumber } \notin \boldsymbol{g}=\{\text { Anna } \mapsto 0123, \text { Ben } \mapsto 5555, \text { Jack } \mapsto 2301, \text { Irum } \mapsto 3012\}
\]
\[
\boldsymbol{g 1}=\{\text { Ben } \mapsto 5555, \text { Anna } \mapsto 1111\}
\]
\[
\text { studentNumber } \notin g 1=\{\text { Anna } \mapsto 1111, \text { Ben } \mapsto 5555, \text { Jack } \mapsto 2301 \text {, Irum } \mapsto 3012\}
\]

\section*{Total Functions}
- A total function is a special kind of partial function. Declaration of \(f\) as a total function
\[
f \in X \rightarrow Y
\]
- This means that \(\boldsymbol{f}\) is well-defined for every element in \(\boldsymbol{X}\), i.e., \(\boldsymbol{f} \in \boldsymbol{X} \longrightarrow \boldsymbol{Y}\) is shorthand for \(f \in X H Y \wedge \operatorname{dom}(f)=X\)

\section*{Total injective function}

Function called total injective (or 1-1), if for every element \(\boldsymbol{y}\) from its range there exists only one element \(\boldsymbol{x}\) in the domain and \(\boldsymbol{\operatorname { d o m }}(\boldsymbol{f})=\boldsymbol{X}\). Declaration \(\boldsymbol{f}\)
\[
f \in X \mapsto Y
\]
- Example:
username \(\in U S E R S \rightarrow\) UNAMES
Every user in a system has one unique user name.

\section*{Total surjective function}

Function called surjective, denoted as
\[
f \in X \rightarrow Y
\]
if its range is the whole target and \(\boldsymbol{\operatorname { r a n }}(\boldsymbol{f})=\boldsymbol{Y}\).
- Example
f-"attends school"
\(f \in S T U D E N T S \rightarrow\) SCHOOLS
- No school without students (full set SCHOOLS is covered).

\section*{Bijective function}

Function is bijective, if it is total, injective and surjective:
\[
f \in X>Y
\]
- Example
"Married to" - is bijective function,
\(\boldsymbol{X}\) - set of "married man"
\(\boldsymbol{Y}\) - set of "married woman"

\section*{Example: printer access for students}

The system tracks the permissions that students have with regard to the printers available at the university network.
- A system should support adding a permission for a student in order to get an access to a particular printer and removing a permission.
- A system should support removing a student's access to all printers at once.
- A system should support giving the combined permissions of any two students to both of them.

\section*{Requirements document}

R1. There is a finite number of students at the university
R2. There is a finite number of printers at the university network
R3. A student might have or might have not a permission to use one or several printers
R4. A permission can be added to a student
R5. A permission to use a certain printer can be removed from a student
R6. A permission to use all the printers can be removed from a student
R7. The system should be able to give a combined permission to any two students

\section*{Printer access}
- Permissions are naturally expressed as a relation between students and printers, so the machine makes use of a variable whose type is relation.
- Since the machine will have to keep track of changing permissions, it will make use of a variable access whose type is a relation between STUDENTS and PRINTERS.
- As permissions are added or removed, the variable will be updated to reflect the information.

\section*{Printer access: context}
```

CONTEXT PrinterAccess_c0
SETS STUDENTS R1
PRINTERS R2
AXIOMS
axm1: finite(STUDENTS) R1
axm2: finite(PRINTERS)R2
axm3: STUDENTS = \emptyset
axm4: PRINTERS = \emptyset R2
END

```

\section*{Printer access: machine}
```

MACHINE PrinterAccess_m0
SEES PrinterAccess_cO
VARIABLES access
INVARIANTS
inv1: access \in STUDENTS }\leftrightarrowP\mathrm{ PRINTERS
R3
EVENTS
INITIALISATION \triangleq
begin
act1: access := \emptyset
end
...

```

\section*{Model events}
```

ADD\triangleq R4
any st pr
where
grd1: st \in STUDENTS
grd2: pr \in PRINTERS
then
act1: access:=access \cup{st\mapstopr}
end
BLOCK \# R5
any st pr
where
grd1: st \in STUDENTS
grd2: pr \in PRINTERS
grd3: st \mapstopr \in access
then
act1: access:=access \{st \mapsto pr}
end

```

\section*{Model events}
-Domain subtractions: remove those pairs from relation access whose first part is in the set \(\{s t\}\) (keep only those pairs whose first element is NOT st)
```

BAN 』 R6
any st
where
grd1: st \in STUDENTS
then
act1: access:={st}}\not\in\mathrm{ access
end
UNIFY \# R7
any st1 st2
where
grd1: st1 \in STUDENTS
grd2: st2 \in STUDENTS
then
act1: access:= access \cup ({st1} }\times\mathrm{ access [{st2}]) U ({st2} }
access[{st1}])
end
END

```
-Relational image: Set of all elements in ran(access) that has st2 as the first elements of their pairs

\section*{Model events}


\section*{Printer access rules}
- Assume that we want to restrict the number of printers that a student can have access to.

For example, a student can use no more than 3 printers.
We have to reflect this new functionality in our model.

\section*{Model events: modification of ADD event}
```

ADD\triangleq
any st pr
where
grd1: st \in STUDENTS
grd2: pr E PRINTERS
grd3: ??? // we have to specify new condition here
then
act1: access:=access \cup {st\mapstopr}
end

```

\section*{Model events: modification of ADD event}
```

ADD \triangleq
any st pr
where
grd1: st \in STUDENTS
grd2: pr E PRINTERS
grd3: card({st}}\downarrow\mathrm{ access) < 3 // new guard
then
act1: access:=access \cup{st\mapstopr}
end

```
// We restrict a domain of access relation by a set containing one element student st, i.e., \(\{s t\} \triangleleft a c c e s s\). As a result of this operation we get a set of pairs, whose the first element is \(\boldsymbol{s t}\). Then by card operator we count a number of such pairs. Thus, we get a number of printers that this particular student st has access to.

\section*{Model events: modification of UNIFY event}

Similarly, we have to modify the event UNIFY.
However, the new guard here will be rather complex:
- Informally: we have to check, if, after the Unify operation, two students still will have access to no more than 3 printers.

This means that the following property should be defined as a model invariant (and, consequently preserved during events execution):
\(\forall s t . s t \in \operatorname{dom}(\boldsymbol{a c c e s s}) \Rightarrow \boldsymbol{c a r d}(\{s t\} \triangleleft \boldsymbol{a c c e s s}) \leq 3\)

\section*{More examples}
- Every person is either a student or a lecturer. But no person can be a student and a lecturer at the same time.
\(S T U D E N T S \subseteq P E R S O N S, L E C T U R E R S \subseteq P E R S O N S\)
LECTURERS U STUDENTS \(=\) PERSONS
LECTURERS \(\cap\) STUDENTS \(=\varnothing\)
- Only lecturer can teach course
e.g., CourseLecturer \(\in\) COURSES \(\leftrightarrow\) LECTURERS

\section*{More examples}
- Every course is given by at most one lecturer

CourseLecturer \(\in\) COURSES \(\rightarrow\) LECTURERS // total function
- A lecturer has to teach at least one course and at most three courses

CourseLecturer \(\in\) COURSES \(\rightarrow\) LECTURERS ^ ran(CourseLecturer \()=\) LECTURERS
\(\wedge(\forall l . \operatorname{card}(\) CourseLecturer \(\triangleright\{l\}) \leq 3))\)

Range restriction: results in a set of pairs whose second element is I

\section*{Comment on Initialisation event}
```

MACHINE CoursesRegistration_m0
SEES CoursesRegistration_m0
VARIABLES access
INVARIANTS
inv1: CourseLecturer \in COURSES }->\mathrm{ LECTURERS
....
EVENTS
INITIALISATION \triangleq
begin
act1: CourseLecturer := \emptyset // wrong! Since CourseLecturer defined as a total function
end

```
inv1 invariant should be preserved upon INITIALISATION event.
BUT Rodin prover will fail to prove that since upon substitution CourseLecturer by \(\emptyset\), it will have to prove that \(\varnothing \in\) COURSES \(\rightarrow\) LECTURERS. But it is wrong!

\section*{Simple example: seat booking system}

The system allows a person to make a seat booking. Specifically:
- A system should support booking a seat by only one person;
- A system should support cancelling of a booking.

\section*{Modelling seat booking system in Event-B}
- In the static part of our Event-B model - context - we will introduce required sets: SEATS and PERSONS as well as required axioms.
- In the dynamic part of the model - machine - we will define (specify) operations by events BOOK and CANCEL, correspondingly.
- We introduce a variable booked_seats whose type is a partial function on the sets SEATS and PERSONS.
- booked_seats keeps a track on booked seats and persons make their booking.
- Since booking of a seat can be done or cancelled, the variable booked_seats will be updated by the events BOOK or CANCEL to reflect this.

\section*{Seat booking system}

We define a context BookingSeats_c0 as follows
```

CONTEXT
BookingSeats_c0
SETS
PERSONS
SEATS
AXIOMS
axm1: finite(SEATS)
axm2: finite(PERSONS)
axm3: SEATS }=
axm4: PERSONS == \emptyset
END

```

\section*{Machine BookingSeats_m0}
```

MACHINE BookingSeats_m0
SEES BookingSeats_c0
VARIABLES
booked_seat
INVARIANTS
inv1: booked_seat \in SEATS }\longrightarrowPERSON
// this variable is defined as a partial function (every seat can be
occupied by only one person, but not every seat from the set SEATS
is booked yet)
EVENTS
INITIALISATION \triangleq
then
act1: booked_seat := \emptyset // empty set
end
BOOK \ //booking a seat
any person seat
where
grd1: person }\in\mathrm{ PERSONS // take any person

```
CANCEL \(\triangleq \quad / /\) cancelation of booking
    any person seat
    where
        grd1: seat \(\mapsto\) person \(\in\) booked_seat // any pair
        from booked_seat
    then
    act1: booked_seat := booked_seat \\{seat } \mapsto \text { person\} }
    // delete this pair from booked_seat
    end

\section*{Wrap-up}

We have reviewed the ways to define the order of events and how it is related to invariant definition

This is important to keep in mind while defining safety invariant in assignment 1B
We have reviewed the notions functions and relations and their use in specification
We rely on the definitions of these mathematical structures to specify various aspects of system behaviour

We have reviewed the basic ideas of defining requirements document and tracing requirements in the specification```

