
DD2460 Software safety 
and security. Lecture 4
NONDETERMINISM; FUNCTIONS AND RELATIONS IN EVENT-B 

MODELLING



Recall the example from the last lecture
Let us analyse the guards of two events:  EXIT and REGISTER

After initialisation, all sets registered, in and out are empty

Hence, after initialisation only one event – REGISTER is enabled, i.e., the guards of all other 
events evaluate to false

However, once the sets become non-empty several (sometimes all events) become enabled

Any of the enabled events can be chosen  for execution non-deterministically, i.e., we do not 
have control over which one will be executed next.

Each event results in a state change, i.e., models a state transition

Often the choice of the next state is non-deterministic, i.e., depends on which event is chosen or 
which assignment is made



EXIT ≜ // a student leaves the building

any  st

where

grd1: st ∈ registered // a student must be registered 

grd2: st ∈ in // a student must be inside 

then 

act1: in := in \ {st} // remove st from in

act2: out := out ∪ {st} // remove st from in

end

REGISTER ≜ // registration a new student

any  st

where

grd1: st ∈ STUDENTS // a new student 

grd2: st ∉ registered // … that is not in the set registered yet

then 

act1: registered := registered ∪ {st} // add st to registered

act2: out := out  ∪ {st} // add st to out

end 



Machine behaviour and nondeterminism 
• The behaviour of an Event-B machine is defined as a transition system that moves from one 
state to another through execution of events. 

• The states of a machine are represented by the different configurations of values for the 
variables:

 In the student registration example, the state is defined by the variables registered, in, out 



Machine behaviour and nondeterminism 
• In any state that a machine can reach, an enabled event is chosen to be executed to define the 
next transition. 

• If several events are enabled in a state, then the choice of which event occurs is 
nondeterministic. 

• Also, if an event is enabled for several different parameter values, the choice of value for the 
parameters is nondeterministic – the choice just needs to satisfy the event guards. 

 For example, in the REGISTER event, the choice of value for parameter st is nondeterministic, with the 
choice of value being constrained by the guards of the event to ensure that it is a fresh value. 

• Treating the choice of event and parameter values as nondeterministic is an abstraction of 
different ways in which the choice might be made in an implementation of the model. 



Note on modelling order of events
To reduce non-determinism and enforce that one event is executed after another you need to mimic 
“a program counter”: example of a simple request-response phase change (not terminating): 

MACHINE SIMPLE_REQ_RESP

VARIABLES phase
INVARIANTS
inv1: phase ∊ PHASES

EVENTS

INITIALISATION ≜

then 

act1: phase :=REQ  

end 

REQUESTING ≜

when 

grd1: phase=REQ

then 

◦ act1: phase:=RESP

end

RESPONDING ≜

when 

grd1: phase=RESP

then 

◦ act1: phase:=REQ

end

PHASES={REQ,RESP}



Event order and invariant
REQUESTING ≜

when 

grd1: phase=REQ

then 

◦ act1: letter:=B

◦ act2: phase:=RESP

end

RESPONDING ≜

when 

grd1: phase=RESP

then 

◦ act1: letter:=A

◦ act2: phase:=REQ

end

MACHINE SIMPLE_REQ_RESP

VARIABLES phase, letter

INVARIANTS

inv1: phase ∊ PHASES

inv2: letter ∊ LETTERS

inv3: how letter and phase are related?
EVENTS

INITIALISATION ≜

then 

act1: phase :=REQ 

                    act2: letter ≔ 	

end 

PHASES={REQ,RESP}

LETTERS= {A,B} 



Event order and invariant
REQUESTING ≜

when 

grd1: phase=REQ

then 

◦ act1: letter:=B

◦ act2: phase:=RESP

end

RESPONDING ≜

when 

grd1: phase=RESP

then 

◦ act1: letter:=A

◦ act2: phase:=REQ

end

MACHINE SIMPLE_REQ_RESP

VARIABLES phase, letter

INVARIANTS

inv1: phase ∊ PHASES

inv2: letter ∊ LETTERS

inv3: phase=REQ⇒ letter=A

inv4: phase=RESP⇒ letter=B
VENTS

INITIALISATION ≜

then 

act1: phase :=REQ 

                    act2: letter ≔ 	

end 



Relations between sets
• Relation between sets is an important mathematical structure which is commonly used in 
expressing specifications.

• Relations allow us to express complicated interconnections and relationships between 
entities formally.



Ordered pairs
• An ordered pair is an element consisting of two parts: 

a first part and second part

• An ordered pair with first part � and second part � is written as:  

� ↦ �

• Examples:

• ����� ↦ ���

• (��������� ↦ ����)

• (���� ↦ ��)

• ( !"�# ↦ ��$�)



Cartesian product

• The Cartesian product of two sets is 

the set of pairs whose first part is in  and second part is in %

• The Cartesian product of  with % is written:   ×  %



Cartesian product: example 
Lets consider two sets: '()* + and  +,+ %+* 

Fall

Spring

Databases

Math

Logic

SWQuality

SWSafety



Cartesian product: example 

Fall

Spring

 +,+ %* 

'()* +  ×   +,+ %* 

Databases

Math

Logic

SWquality

SWSafety

'()* + 



Cartesian product: 
definition and more examples

• Defining Cartesian product: 

• Examples: 

 ℕ × ℕ pairs of natural numbers

 1,2,3 × 2, 3 =  1 ↦ 2, 1 ↦ 3, 2 ↦ 2, 2 ↦ 3, 3 ↦ 2, 3 ↦ 3

 	552, 6788, 92:; ×  ∅ = ∅

 1 , 1,2 × 2, 3 =  1 ↦ 2, 1 ↦ 3, 1,2 ↦ 2, 1,2 ↦ 3

 card( =>?, 5@ × 2, 3 ) = card( =>? ↦ 2, =>? ↦ 3, 5@ ↦ 2, 5@ ↦ 3 ) = 4

Predicate Definition

� ↦ � ∈   ×  % � ∈    ∧   � ∈ % 



Cartesian product is a type constructor
•   ×  % is a new type constructed from types  and %.

• Cartesian product is the type constructor for ordered pairs.

• Given � ∈   and � ∈ % we have  � ↦ � ∈   ×  % 

• Examples: 

 4 ↦ 7 ∈  ℤ × ℤ

 2, 3 ↦ 4 ∈ ℙ ℤ × ℤ

 2 ↦ 1, 3 ↦ 3, 4 ↦ 5 ∈ ℙ(ℤ × ℤ)



Sets of ordered pairs
A simple database can be modelled as a set of ordered pairs:

 ��G��H�'IG���� = J	552 ↦ K@L7:, 6>5 ↦ MNOP287Q=, 92:; ↦ MNOP287Q=, RSPT ↦
U2Q232?>?, 	552 ↦ V2Qℎ, 92:; ↦ K@L7:X

 ��G��H�'IG���� has type 

 ��G��H�'IG���� ∈  ℙ(Y	VZM ×  [\]^MZM) 



Relations
• A relation R between sets  and % expresses a relationship between elements in  and elements in %:

 A relation is captured simply as a set of ordered pairs (� ↦ �) with � ∈  and � ∈ % .

• A relation is a common modelling structure so Event-B has a special notation for it:

  ⟷  % =  ℙ ( × %)

• We can write then

 ��G��H�'IG���� = J	552 ↦ K@L7:, 6>5 ↦ MNOP287Q=, 92:; ↦ MNOP287Q=, RSPT ↦
U2Q232?>?, 	552 ↦ V2Qℎ, 92:; ↦ K@L7:X

as 

��G��H�'IG���� ∈ Y	VZM ⟷ [\]^MZM

• Do not confuse the arrow symbols:

⟷ combines two sets to form a set;

↦   combines two elements to form an ordered pair.



Domain and range
 ��G��H�'IG���� = J	552 ↦ K@L7:, 6>5 ↦ MNOP287Q=, 92:; ↦ MNOP287Q=, RSPT ↦

U2Q232?>?, 	552 ↦ V2Qℎ, 92:; ↦ K@L7:X

'()* + 

Anna

Ben

Jack

Irum

a�,+ 

Alex

Databases

Math

Logic

SWQuality

SWSafety

a�,+ = 	552, 6>5, 92:;, 	8>b, RSPT '()* + = U2Q232?>?, V2Qℎ, K@L7:, MNM2c>Q=, MNOP287Q=



Domain
• The domain of a relation * is the set of first parts of all the pairs in *, written �I!(*)

 ��G��H�'IG���� = J	552 ↦ K@L7:, 6>5 ↦ MNOP287Q=, 92:; ↦ MNOP287Q=, RSPT ↦
U2Q232?>?, 	552 ↦ V2Qℎ, 92:; ↦ K@L7:X,

 a�,+ = 	552, 6>5, 92:;, 	8>b, RSPT

then

�I!(��G��H�'IG����) = 	552, 6>5, 92:;, RSPT

Predicate Definition

� ∈ �I!(*) ∃ �.  � ↦ � ∈ *  



Range
• The range of a relation * is the set of second parts of all the pairs in *, written ��H ^

 ��G��H�'IG���� = J	552 ↦ K@L7:, 6>5 ↦ MNOP287Q=, 92:; ↦ MNOP287Q=, RSPT ↦
U2Q232?>?, 	552 ↦ V2Qℎ, 92:; ↦ K@L7:X

 ��H(��G��H�'IG����) = K@L7:, MNOP287Q=, U2Q232?>?, V2Qℎ

Predicate Definition

� ∈ ��H(*) ∃ � . � ↦ � ∈ *  



Relational image definition
• Assume * ∈   ↔ % and  � ⊆  

• The relational image of set � under relation * is written * �

oSet of all elements in ran(R) that has elements of set A as the first elements of their pairs

Predicate Definition

� ∈ * �  ∃ �.  � ∈ � ∧  � ↦ � ∈ *  



Relational image examples
• ��G��H�'IG���� = J	552 ↦ K@L7:, 6>5 ↦ MNOP287Q=, 92:; ↦ MNOP287Q=, RSPT ↦
U2Q232?>?, 	552 ↦ V2Qℎ, 92:; ↦ K@L7:X

 ��G��H�'IG���� J	552, 6>5X = JK@L7:, MNOP287Q=, V2QℎX

• hIG���i�h�G��� = J6S@j5 ↦ V2Qℎ, 92:?@5 ↦ R5c@ST2Q7:?, 6S@j5 ↦ MQ2Q7?Q7:?,
                                           9@5? ↦ U2Q232?>?X

 hIG���i�h�G��� 6S@j5 = V2Qℎ, MQ2Q7?Q7:?



Partial functions
• Special kind of relation: each domain element has at most one range element associated with it.

• To declare � as a partial function: 

� ∈ k         l

•It is said to be partial because there may be values in the set k that are not in the domain of �

• Each domain element is mapped to one range element:

� ∈ �I! �    ⟹    h��� � � = �

• Usually formalised as a uniqueness constraint

� ↦ �� ∈ � ∧ � ↦ �$ ∈ �    ⟹      ��=�$



Function Application
We can use functional application for partial functions

• If  � ∈ �I! � , then we write � � for the unique range element associated with � in �. 

• if  � ∉ �I! � , then � � is undefined.

• if  h��� � � > �, then � � is undefined. 

Name Expression Meaning Well-definedness

Function application � �
� � = � ⟺

� ↦ � ∈ �

� ∈ k        l

∧  � ∈ �I!(�)



Examples
 Y	VZM= 	552, 6>5, 92:;, 	8>b, RSPT ,  VY]V6Z^M = 0123, 1230, 2301, 3012

 ��G��H�aG!���� = 	552 ↦ 0123, 6>5 ↦ 1230, RSPT ↦ 3012

 ��G��H�aG!���$ = 	552 ↦ 0123, 6>5 ↦ 1230, 92:; ↦ 2301, 92:; ↦ 3012

• ��G��H�aG!���� ∈ Y	VZM         VY]V6Z^M

 ��G��H�aG!����(6>5)=1230

 ��G��H�aG!����(92:;) is undefined

• ��G��H�aG!���$ ∉ Y	VZM          VY]V6Z^M

��G��H�aG!���$(92:;) is undefined



Domain Restriction

• Given relation  * ∈  ⟷ % and � ⊆  , the domain restriction of * by � is written 

�      *

• Restrict relation * so it only contains pairs whose first part is in the set � (keep only those pairs 
whose first element is in A)

• Example:  

��G"�'I�I� = LS>>5 ↦ LS2q>, =>88@j ↦ 325252, S>r ↦ 2qq8>

S>r, q75;        ��G"�'I�I�= S>r ↦ 2qq8>



Domain Subtraction
• Given  * ∈  ⟷ % and � ⊆  the domain subtraction of * by � is written

�       *

• Remove those pairs from relation * whose first part is in the set � (keep only those pairs whose 
first element NOT in A)

• Example:  

��G"�'I�I� = LS>>5 ↦ LS2q>, =>88@j ↦ 325252, S>r ↦ 2qq8>

S>r, q75;        ��G"�'I�I�= LS>>5 ↦ LS2q>, =>88@j ↦ 325252



Range Restriction
• Given  * ∈  ⟷ % and � ⊆ % the range restriction of * by � is written 

*.      �

• Restrict relation R so the it only contains pairs whose second part is in the set � (keep only 
those pairs whose second element is in �)

• Example:  

��G"�'I�I� = LS>>5 ↦ LS2q>, =>88@j ↦ 325252, S>r ↦ 2qq8>

��G"�'I�I�      LS2q>, q>2S = LS>>5 ↦ LS2q>



Range Subtraction
• Given  * ∈  ⟷ % and � ⊆ % the range subtraction of * by � is written

*      �

• Remove those pairs from relation * whose second part is in the set � (keep only those pairs 
whose second element NOT in �)

• Example:  

��G"�'I�I� = LS>>5 ↦ LS2q>, =>88@j ↦ 325252, S>r ↦ 2qq8>

��G"�'I�I�      LS2q>, 325252 = S>r ↦ 2qq8> 



Domain and range, 
restriction and subtraction: summary
Assume * ∈   ↔ % and  � ⊆  , s ⊆ %

Predicate Definition Name

� ↦ � ∈ 	     ^ � ↦ � ∈ ^ ∧  � ∈ 	 Domain restriction

� ↦ � ∈ 	     ^ � ↦ � ∈ ^ ∧  � ∉ 	 Domain subtraction

� ↦ � ∈ ^     6 � ↦ � ∈ ^ ∧  � ∈ 6 Range restriction

� ↦ � ∈ ^      6 � ↦ � ∈ ^ ∧  = ∉ 6 Range subtraction



Relation and function
Function is a special case of relation: at most one element from the range correspond to each 
element in the domain 

Any operation applicable to a relation or a set is also applicable to a function

- domain and range of a function, range restriction, etc.

If � is a function , then �(�) is the result of function � for the argument b.



Function Overriding
• Override the function � by the function t : 

�      t

• Function  � is updated according to t (Override: replace existing mapping with new ones)

• � and t must be partial functions of the same type



Function overriding definition
• Definition in terms of function override and set union

�       � ↦ � = �       � ∪ � ↦ �

 �      t =  �I!(t)     � ∪ t

• Examples:

��G��H�aG!��� = 	552 ↦ 0123, 6>5 ↦ 1230, 92:; ↦ 2301, RSPT ↦ 3012 ,

t = J6>5 ↦ 5555}

��G��H�aG!���     t= 	552 ↦ 0123, 6>5 ↦ 5555, 92:; ↦ 2301, RSPT ↦ 3012

 t� = J6>5 ↦ 5555, 	552 ↦ 1111}

 ��G��H�aG!���     t�= 	552 ↦ 1111, 6>5 ↦ 5555, 92:; ↦ 2301, RSPT ↦ 3012



Total Functions
• A total function is a special kind of partial function. Declaration of  � as a total function

� ∈ k ⟶ l

• This means that � is well-defined for every element in k, i.e., � ∈ k ⟶ l is shorthand for

� ∈ k       l ∧  �I! � = k



Total injective function
Function called total injective (or 1-1), if for every element � from its range there exists only one 
element � in the domain  and  �I! � = k. Declaration �

� ∈ k ↣ l 

• Example:

 G���H�!� ∈ ) +* ↣ )a�,+ 

Every user in a system  has one unique user name. 



Total surjective function
Function called surjective, denoted as

� ∈ k ↠ l 

if its range is the whole target and ��H � = l.

• Example

� −”2QQ>5r? ?:ℎ@@8”

� ∈ Mz]UZYzM ↠ M[{\\KM

- No school without students (full set M[{\\KM is covered).



Bijective function
Function is bijective, if it is total, injective and surjective: 

� ∈ k         l 

• Example

“Married to” – is bijective function, 

 k - set of “married man” 

 l - set of “married woman”



Example: printer access for students
The system tracks the permissions that students have with regard to the printers available at the 
university network.

• A system should support adding a permission for a student in order to get an access to a 
particular printer and removing a permission. 

• A system should support removing a student’s access to all printers at once. 

• A system should support giving the combined permissions of  any two students to both of them. 



Requirements document
R1. There is a finite number of students at the university

R2. There is a finite number of printers at the university network

R3. A student might have or might have not a permission to use one or several printers

R4. A permission can be added to a student

R5. A permission to use a certain printer can be removed from a student

R6. A permission to use all the printers can be removed from a student

R7. The system should be able to give a combined permission to any two students



Printer access
• Permissions are naturally expressed as a relation between students and printers, so the 
machine makes use of a variable whose type is relation.

• Since the machine will have to keep track of changing permissions, it will make use of a variable
access whose type is a relation between STUDENTS and PRINTERS.

• As permissions are added or removed, the variable will be updated to reflect the information.



Printer access: context

CONTEXT PrinterAccess_c0

SETS STUDENTS

PRINTERS 

AXIOMS

axm1: finite(STUDENTS)

axm2: finite(PRINTERS)

axm3: STUDENTS≠ ∅

axm4: PRINTERS≠ ∅

END

R1

R2

R1

R1

R2

R2



Printer access: machine

MACHINE PrinterAccess_m0

SEES PrinterAccess_c0

VARIABLES access 

INVARIANTS

inv1: access ∈ STUDENTS ⟷ PRINTERS

EVENTS

INITIALISATION ≜

begin

act1: access := ∅

end

…

R3



Model events
ADD ≜

any st pr

where

grd1: st ∈ STUDENTS

grd2: pr ∈ PRINTERS

then

act1: access:=access ∪ J?Q ↦ qSX

end

BLOCK ≜

any st pr

where

grd1: st ∈ STUDENTS

grd2: pr ∈ PRINTERS

grd3: ?Q ↦ qS ∈ access

then

act1: access:=access \J?Q ↦ qSX

end

R4

R5



Model events
BAN ≜

any st 

where

grd1: st ∈ STUDENTS

then

act1: access:= ?Q       access

end

UNIFY ≜

any st1  st2

where

grd1: st1 ∈ STUDENTS

grd2: st2 ∈ STUDENTS

then

act1: access:= access ∪ ( ?Q1 × access ?Q2 ) ∪ ( ?Q2 ×

access ?Q1 )

end

END

R6

R7

•Domain subtractions: remove those pairs from relation access

whose first part is in the set {st}(keep only those pairs whose 

first element is NOT st)



Model events
BAN ≜

any st 

where

grd1: st ∈ STUDENTS

then

act1: access:= ?Q       access

end

UNIFY ≜

any st1  st2

where

grd1: st1 ∈ STUDENTS

grd2: st2 ∈ STUDENTS

then

act1: access:= access ∪ ( ?Q1 × access ?Q2 ) ∪ ( ?Q2 ×

access ?Q1 )

end

END

R6

R7

•Relational image: Set of all elements in ran(access) that has 

st2 as the first elements of their pairs

•Cartesian product with singleton set will produce a set of pairs 

with st1 as the first elements and printers of the second 

student as the second element



Printer access rules
• Assume that we want to restrict the number of printers that a student can have access to. 

For example, a student can use no more than 3 printers. 

We have to reflect this new functionality in our model.



Model events: modification of ADD event

ADD ≜

any st pr

where

grd1: st ∈ STUDENTS

grd2: pr ∈ PRINTERS

grd3: ??? // we have to specify new condition here 

then

act1: access:=access ∪ J?Q ↦ qSX

end



Model events: modification of ADD event

// We restrict a domain of access relation by a set containing one element student st, i.e.,    
st                 access. As a result of this operation we get a set of pairs, whose the first element is st.

Then by card operator we count a number of such pairs. Thus, we get a number of printers 
that this particular student st has access to. 

ADD ≜

any st pr

where

grd1: st ∈ STUDENTS

grd2: pr ∈ PRINTERS

grd3: card( st                 access) < 3  // new guard

then

act1: access:=access ∪ J?Q ↦ qSX

end



Model events: modification of UNIFY 
event
Similarly, we have to modify the event UNIFY. 

However, the new guard  here will be rather complex:

• Informally: we have to check,  if, after the Unify operation, two students still will have 
access to no more than 3 printers. 

This means that the following property should be defined as a model invariant (and, 
consequently preserved during events execution):

 ∀ ?Q.  ?Q ∈ �I! �hh���  ⟹ h��� ?Q      �hh��� ≤ 3



More examples
• Every person is either a student or a lecturer. But no person can be a student and a lecturer at 
the same time.

 Mz]UZYzM ⊆ �Z^M\YM, KZ[z]^Z^M ⊆ �Z^M\YM

 KZ[z]^Z^M ∪ Mz]UZYzM = �Z^M\YM  

 KZ[z]^Z^M ∩ Mz]UZYzM = ∅

• Only lecturer can teach course 

 >. L., [@PS?>K>:QPS>S ∈ [\]^MZM ⟷ KZ[z]^Z^M



More examples

• Every course is given by at most one lecturer 

[@PS?>K>:QPS>S ∈ [\]^MZM ⟶ KZ[z]^Z^M // total function

• A lecturer has to teach at least one course and at most three courses

 [@PS?>K>:QPS>S ∈ [\]^MZM ⟶ KZ[z]^Z^M ∧  ��H([@PS?>K>:QPS>S) = KZ[z]^Z^M

 ∧ (∀ 8.  h��� [@PS?>K>:QPS>S    8 ≤ 3))

Range restriction: results in a set of pairs whose second element is l



Comment on Initialisation event

inv1 invariant should be preserved upon INITIALISATION event.

BUT Rodin prover will fail to prove that since upon substitution [@PS?>K>:QPS>S by ∅, it will have to 
prove that  ∅ ∈   COURSES ⟶  LECTURERS.  But it is wrong! 

MACHINE CoursesRegistration_m0

SEES CoursesRegistration_m0

VARIABLES access

INVARIANTS

inv1: [@PS?>K>:QPS>S ∈ COURSES ⟶ LECTURERS

….

EVENTS

INITIALISATION ≜

begin

act1: [@PS?>K>:QPS>S := ∅ // wrong! Since [@PS?>K>:QPS>S defined as a total function

end



Simple example: seat booking system
The system allows a person to make a seat booking. Specifically: 

• A system should support booking a seat by only one person;

• A system should support cancelling of a booking.



Modelling seat booking system in Event-B
• In the static part of our Event-B model – context - we will introduce required sets: SEATS  and 
PERSONS as well as required axioms.

• In the dynamic part of the model – machine – we will define (specify) operations by events 
BOOK and CANCEL, correspondingly.

• We introduce a variable booked_seats whose type is a partial function on the sets SEATS and 
PERSONS. 

• booked_seats keeps a track on booked seats and persons make their booking. 

• Since booking of a seat can be done or cancelled, the variable booked_seats will be updated by 
the events BOOK or CANCEL to reflect this.



Seat booking system
We define a context BookingSeats_c0 as follows

CONTEXT

BookingSeats_c0

SETS

PERSONS 

SEATS 

AXIOMS 

axm1: finite(SEATS)

axm2: finite(PERSONS)

axm3: SEATS≠ ∅

axm4: PERSONS≠ ∅

END



Machine BookingSeats_m0 BookingSeats_m0 BookingSeats_m0 BookingSeats_m0 
MACHINE  BookingSeats_m0 

SEES BookingSeats_c0

VARIABLES

booked_seat

INVARIANTS

inv1: booked_seat ∈ SEATS PERSONS

// this variable is defined as a partial function (every seat can be 

occupied by only one person, but not every seat from the set SEATS 

is booked yet)

EVENTS

INITIALISATION ≜

then 

act1: booked_seat := ∅ // empty set 

end 

BOOK ≜ //booking a seat

any person  seat

where

grd1: person ∈ PERSONS // take any person

grd2: seat ∈ SEATS // we take any seat …

grd3: seat ∉ dom(booked_seat) // ... that is free

then 

act1: booked_seat := booked_seat ∪ {seat ↦ person} 

end 

CANCEL ≜ // cancelation of booking

any person seat

where

grd1: seat ↦ person ∈ booked_seat // any pair 

from booked_seat

then 

act1: booked_seat := booked_seat \ {seat ↦ person}

// delete this pair from booked_seat

end 

END



Wrap-up
We have reviewed the ways to define the order of events and how it is related to invariant 
definition

This is important to keep in mind while defining safety invariant in assignment 1B 

We have reviewed the notions functions and relations and their use in specification

We rely on the definitions of these mathematical structures to specify various aspects of system 
behaviour

We have reviewed the basic ideas of defining requirements document and tracing requirements 
in the specification


