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Abstract The outstanding merits of scanning transmission electron tomography as a technique for the
investigation of the internal structure and morphology of nanoparticle and nanocluster materials are
summarized with the aid of numerous typical illustrations. Reference is made also to the significant
advances that have arisen in probing ultrastructural characteristics of nanoscale solids using aberration-
corrected (AC) electron microscopy (EM). Information of a unique kind may be retrieved by combining
the imaging and analytical power of ACEM.

& 2013 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

So widespread in hospitals throughout the world is the use of CT
scanners (where CT stands for computerised tomography) that the
general public is now aware that this procedure entails taking a
variety of X-ray images through a range of accurately aligned
settings which, in turn, yield a three-dimensional (3D) picture of
the subject under investigation.
earch Society. Production and hostin
3

. Thomas).

ese Materials Research Society.
Scientists interested in the nanostructures of a variety of solid
objects also use tomographic approaches. Sometimes they use X-rays,
but nowadays, increasing use is being made of electron tomography
(ET), the essence of which is summarised below. Before doing so,
however, we recall that, with the greater availability of synchrotron
sources, short wavelength X-rays are used to determine the 3D
structures of small objects. X-rays possess several advantages over
electrons as probing radiation, principally because they have greater
penetrating power. They have, however, some disadvantages in that
they are far less readily focusable than electrons. Notwithstanding the
ever-increasing improvements that are being made in the construction
of Fresnel lenses for focusing X-rays, ET has at present far greater
resolving power than its X-ray counterpart. A summary of the nature
of the relative strengths and advantages of each technique is given in
an earlier article by two of us [1], from which some parts of this
review are taken. For completeness, some illustrative examples of
X-ray tomographic reconstructions are given in Fig. 1.
g by Elsevier B.V. All rights reserved.
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Fig. 1 (a) Reconstructed X-ray tomogram illustrating (top) the side view
of a reconstructed tungsten plug and (bottom) the measurement of the size
of the keyhole. Reproduced from [2]. (b) X-ray tomography of whole yeast
cells showing (top) a single projection image of a rapidly frozen budding
yeast, a section through a tomographic reconstruction of the yeast (scale
bar¼0.5 mm) and a volume-rendered view of the reconstruction. The
bottom two panels show a volume-rendered image with the nucleus
(purple), vacuole (pink) and lipid droplets (white) and a colour-coded
reconstruction of a budding yeast with lipid droplets (white), vacuoles
(grey) and numerous other subcellular structures coloured shades of green,
orange and red. Reproduced from [3].
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Fig. 2 (a) The essence of tomographic reconstruction. The top schematic
shows a series of projections of an object at different angles and the bottom
schematic depicts how these images are back-projected into space, wherein
the conglomerate sum of the back-projections defines the reconstructed
object. (b) A Fourier space representation of the angular series of images
(projections) in (a), illustrating the finite angular increment θ between
images, and the maximum angular range α to which images are recorded,
leading to incomplete sampling; the latter giving rise to a large ‘missing
wedge’ of unsampled information. Each data point is represented
schematically, showing that the radial sampling of Fourier space leads to
a greater sampling density around the centre of Fourier space, meaning that
lower spatial frequency information is oversampled relative to high spatial
frequency information.
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In recent years the remarkable resolving power of the electron
microscope has been enhanced still further by the introduction of
aberration-corrected optics. This has led to an ability to resolve
directly structural detail at the atomic level, with clarity and
precision, leading to new insights into the physical and chemical
behaviour of nanoscale structure and devices. Later in this review,



Fig. 3 (a) HAADF-STEM image of concave iron oxide nanoparticles taken from an ET tilt-series. (b) Quantification of the concavity volume of
the nanoparticle indicated in (a), from CS-ET and SIRT reconstructions. Reproduced from [11].

Fig. 4 (a) HAADF-STEM image of an Au nanoparticle. (b,c) Surface-rendered views of a reconstructed Au nanoparticle, with dimensions
indicated. (d) 3D simulations for the real (using the tomogram) and an idealised (estimated from a single image) nanoparticle, showing regions of
high electromagnetic-field enhancement (marked in orange). Reproduced from [35].

J.M. Thomas et al.224
we give a number of examples of high resolution imaging, but
focus first on the principles and recent applications of ET.
2. The essence of electron tomography (ET) using a scanning
transmission electron microscope

2.1. Principles [1]

Tomography, which involves generating a reconstruction from
projections of an object viewed from different directions (see
Fig. 2(a)), derives from the mathematical principles described by
Radon just over ninety years ago [4]. The Radon transform is
defined as a mapping into so-called ‘Radon space’ of a function
describing a real space object, by the projection, or line integral,
through that function along all possible lines. Thus, given a
sufficient number of projections, an inverse Radon transform
(or back-projection) of this space should reconstruct the object.
In practice, however, the sampling will always be limited, the
inversion will be imperfect, and the goal then becomes to achieve
the ‘best’ reconstruction of the object given the limited
experimental data. This is particularly so in ET, where the
specimen is rotated in order to obtain projections at different
angles, because the limited space within the microscope objective
lens frequently prevents rotation of the sample holder through the
full angular range. This leaves a ‘missing wedge’ of information
unsampled by the tilt-series of images (projections) (see Fig. 2(b)).
Additionally, a limit on the total number of tilt-series images that
can be acquired may be imposed by the electron beam sensitivity
of the sample. This is less of a problem for many samples in the
materials sciences, such as metals or alloys, which are often
relatively robust under the electron beam, but is frequently a
limiting factor in the biological sciences, where ‘low-dose’
acquisition schemes must be followed.

Another important concept in tomography is the so-called
‘central slice theorem.’ This says that a projection of an object
at a given angle in real space is a central section through the
Fourier transform of that object [5]. Hence once can see how by
recording multiple projections at different angles, many Fourier
sections will be sampled, and in principle tomographic reconstruc-
tion is possible from an inverse Fourier transform. This approach
is known as direct Fourier reconstruction [5,6]. Although elegant,
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Fig. 5 HAADF-STEM image of Ru10Pt2 nanoclusters on MCM-41
mesoporous silica. The inset shows one of the particles at high
magnification showing individual atoms and atom clusters. Repro-
duced from [39].

Fig. 6 (a) HAADF-STEM image of Ru–Pt–based catalyst. The inset
shows the particles studied by X-ray microanalysis. X-ray spectra
recorded approximately every 0.5 nm led to a compositional profile
shown in (b). From the area under the curve in the region of the three
nanoparticles, the ratio of Ru:Pt for each particle is consistent with the
5:1 ratio expected from the synthesis. Reproduced from [40].
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and used in the first demonstration of ET [7], Fourier reconstruc-
tion methods have for a long time been seen as computationally
intensive and difficult to implement, and simpler real space back-
projection methods [8–10] have been preferred. With recent
computational advances however, Fourier based methods have
seen a resurgence, being used in some modern algorithms that are
capable of providing high-fidelity reconstructions [11,12].

The method of back-projection is based on inverting the set of
recorded images, projecting each image back into an object space
at the angle at which the original image was recorded. Using a
sufficient number of back-projections, from different angles, the
superposition of all the back-projected ‘rays’ will reconstruct the
original object, see again Fig. 2(a). The mathematical principles of
tomographic reconstruction are detailed in many books, such as
those by Kak and Slaney [13], Herman [14] and Deans [5].
Foundational reviews of reconstruction methods specifically with
regards to ET have been given by, for example, Penczek [15] and
in the book edited by Frank [16].

Reconstructions using back-projection often appear blurred with
fine spatial detail reconstructed poorly. This is an effect of the
uneven sampling of spatial frequencies in the ensemble of original
projections. As can be seen in Fig. 2(b), there is proportionately
greater sampling of data near the centre of Fourier space compared
with the periphery. It is possible partially to rebalance the
frequency distribution in Fourier space by using a weighting filter:
a radially linear function in Fourier space, zero at the centre and a
maximum at the edge. This improved reconstruction approach is
known as weighted back-projection [10,17].

Further enhancements in fidelity of tomographic reconstructions
may be obtained via the use of iterative reconstruction algorithms
[18–22]; for recent advanced algorithms in ET, see e.g. [11,12,23,24].
In iterative reconstruction methods, the reconstruction can be
improved by noting that each recorded image is a ‘perfect’ reference
projection. If an (imperfect) reconstruction is re-projected back along
the original projection direction, the re-projections, in general, will not
be identical to the original images. The difference, characteristic of
the deficiency of the reconstruction, can be back-projected to generate
a ‘difference’ reconstruction, which can be used to correct the original
reconstruction, to constrain the reconstruction to agree better with the
original set of images. A single operation will not fully correct the
reconstruction and the comparison must be repeated until a ‘best’
solution is reached. In conjunction with this difference-based iterative
refinement, the fidelity of a reconstruction can also be improved by
incorporating some additional prior-knowledge about the object
during the reconstruction process. One approach to this is ‘discrete’
tomography, which is described elsewhere [23,25]. Another is the so-
called procedure of ‘compressed sensing,’ which has been the recent
focus of attention in our group, and which we recall below.

2.2. Compressed sensing electron tomography (CS-ET) [26]

The principles of image compression (e.g., as used for JPEG
formats), where images are retrieved from their compressed form
without significant information loss, provide an alternative basis
for 3D reconstruction from very limited data sets as we have in
ET and found often in magnetic resonance imaging [27] and X-ray



Fig. 8 3D reconstruction of a dual-axis tilt series of CdTe tetrapods. (a) is
of the tetrapods are poorly reconstructed, due to the missing wedge, as indic
an axis perpendicular to that in (a) showing poorly reconstructed legs, aga
data sets illustrating that all legs are well reconstructed. (d) Detailed view

Fig. 7 A montage of tomographic projections of MCM-48 silica
(with corresponding simulations and Fourier transforms) shown at
major zones axes as the 3D tomographic reconstruction is rotated
about a o1124 zone axis. Reproduced from [41].
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CT [28]. The method known as ‘compressed sensing’ (CS) is able
to recover a high-fidelity reconstruction from a highly under-
sampled data set if the object to be reconstructed is ‘sparse,’ in this
context meaning having relatively few non-zero pixels (or voxels)
[29,30]. The sparsity may be in the same space as the reconstruc-
tion (typically real space) or in some other space linked by a
known transform (e.g., in a gradient domain). If the object can be
approximated in a sparse way, it is said to be ‘compressible.’ To
ensure a high-fidelity reconstruction, free from aliasing artefacts,
for example, sampling of the object should be performed in a
random (or near-random) fashion [27]. A tilt-series, as acquired in
ET, has been shown to provide a sampling scheme that, although
clearly not random, results in aliasing artefacts that are sufficiently
‘noise-like’ that they can be removed by CS. Thus for ET, the
CS reconstruction proceeds by finding the sparsest representation
of the object to be reconstructed, subject to re-projections of that
object best-fitting the original microscope images. Here, the
knowledge that the object is in some sense ‘sparse’ provides the
extra prior information that improves the reconstruction.

Recently, the authors, in collaboration with the Gladden group
in Cambridge (especially D.J. Holland) have shown that CS
applied to ET can yield high-fidelity 3D reconstructions from
a reconstruction of a single tilt series and shows that some of the legs
ated by the arrows. (b) is a reconstruction of a tilt series recorded about
in indicated by the arrows. (c) is a dual axis reconstruction of the two
of the tetrapod selected in (c). Reproduced from [43].
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very few images. One example, a CS-ET reconstruction of
concave iron oxide nanoparticles [11], illustrated in Fig. 3,
demonstrates how, compared with the standard iterative recon-
struction algorithm in ET (known as the simultaneous iterative
reconstruction technique, SIRT [20]), CS-ET provides a faithful
reconstruction of the octahedral morphology and a robust quanti-
tative measurement of the nanoparticle concavity, even from a tilt-
series composed of only nine images. Knowledge of precise 3D
morphology, such as the concavity, is key for application of the
particles in drug delivery and photocatalysis [31].

Compared with discrete tomography, CS-ET potentially offers a
more flexible approach to how constraints can be applied. For
example, for homogeneous objects with sharp boundaries, sparsity
may be found in the gradient domain by minimising the so-called
{200}
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Fig. 9 High resolution TEM image of an AgI nanoparticle recorded
parallel to the o1104 zone axis, exhibiting a truncated octahedral
morphology. The planes seen in the figure are labelled. The inset
shows the FFT of the nanoparticle.

1 nm

Fig. 10 (a) High resolution TEM image of an Au nanoparticle exhibiting fi

revealed more clearly in (b) which is a Fourier-filtered version of the ima
‘total variation’ [11,24], or for more diffuse objects (e.g., those
with compositional gradients), wavelet representations can be used
[32,33], as they are for JPEG compression in digital photography.
Although still in its infancy, we expect CS-ET to be adopted
widely in the future. In particular, the ability of CS-ET to yield
high-fidelity reconstructions from relatively few images should
prove to be of great benefit in the study of beam-sensitive samples,
or where total acquisition time is limited.

2.3. Nanoparticles with plasmonic responses[26]

Nanoscale solids in the range 1–100 nm are well-known to exhibit
chemical properties that are critically dependent upon their shape and
morphology [1,34]. Whereas conventional scanning transmission elec-
tron microscopy (STEM) and other high-resolution imaging techniques
cannot reveal directly the 3D morphology of such nanoparticles, the ET
approach outlined above can. A prime example is a study [35] linking
the plasmonic response of an Au nanoparticle to its true morphology.
STEM tomography showed the nanoparticle to have a 3D shape
markedly different from the one that would be inferred from a single 2D
image (Fig. 4(a)–(c)). Using the ET reconstruction, the morphology of
the nanoparticle was encoded as finite elements and used as input to 3D
electrodynamics simulations [35]. By comparing simulations performed
using a model based on the true irregular morphology, with those using
an idealised shape assumed from a 2D (S)TEM image, dramatic
differences in the predicted optical properties were found (Fig. 4(d)).

2.4. Revealing the tortuosity and pore-structure of mesoporous silica

Ordered mesoporous silicas are excellent supports for a range of
nanoparticle and nanocluster bimetallic catalysts of high activity and
selectivity in the hydrogenation of a range of organic molecules
[36–38]. The catalytic variant of cubic mesoporous silica known as
MCM-48—there is a hexagonal variant known as MCM-41, where
MCM stands for mobil catalytic material—has a complex gyroid-like
3D pore network. This cubic phase, as a catalyst support, is intrinsically
superior to its hexagonal analogue, MCM-41, in that pores run in three
mutually perpendicular directions in the former, whereas they run in
only one direction in the latter. Clearly the diffusion of reactants to, and
products away from the minute nanoclusters anchored to the
1
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ve-fold twinning. The five sectors (labelled) of the twinned particle are
ge in (a). Re-entrant facets are marked with chevrons.
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Fig. 11 (a) High resolution TEM image of a RuO2 nanorod decorated with Ru clusters. Edge dislocations can be seen at interface between Ru
and RuO2 for the cluster on the right-hand side of the rod. (b) The three orientation relationships of RuO2 and Ru lattices are shown, in plan view
(Ru atoms in dark grey and O atoms in light grey). The values of the mismatch are given for the Ru lattice relative to the RuO2 substrate.
Reproduced from [55].

1 nm

Fig. 12 Aberration-corrected (a) BF- and (b) ADF-STEM images of a Ga-Pd nanoparticle particle, recorded simultaneously. The contrast and
clarity of the ADF image is considerably higher than that of the BF image.
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mesoporous silica is much facilitated using MCM-48 supports. To fix
our ideas, Figs. 5 and 6 show STEM, high-angle annular dark-field
(HAADF) images – see Section 3 for more details—of typical Ru-Pt
nanocluster selective hydrogenation catalysts.

Returning to the investigation of the porosity of the mesoporous
silica support, a significant advantage of studying such systems using
ET is the ability to visualise the pore structure directly. As well as
providing a model-independent structure solution, tomography, being a
direct imaging technique, further provided the opportunity to reveal any
deviations from the perfect crystal structure, such as twin boundaries.
A series of 158 HAADF-STEM images was acquired every 11
between −781 and +791. Fig. 7 shows a montage of voxel projections
computed from a 3D tomographic reconstruction of a sub-100 nm
particle of MCM-48 silica [41]. Each projection is at a zone axis
encountered when rotating about a o1124 axis through a symmetry-
independent sector of reciprocal space. A {112} plane, whose normal
is vertical in the plane of the paper, is common to all projections. On
the right of each image is a simulation of the MCM-48 structure based
on an approximate gyroid surface. Power spectra (computed diffracto-
grams) for both experiment and simulation are shown as insets. The
agreement between experiment and simulation is remarkably consistent
for each projection. Based on the direct 3D information available from
ET, the structural model was revised to better match the observed pore
size and distribution. The original model was based on studies [42] in
which the complementary pore sizes of MCM-48 were determined
based primarily on pore volumes modelled from nitrogen gas
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Fig. 13 A montage of aberration-corrected ADF-STEM images of different morphologies of gold nanoparticles. (a) shows a single crystal
nanoparticle, (b) a singly-twinned nanoparticle, (c) a small decahedral nanoparticle in five-fold orientation (image courtesy of J.S. Barnard), and (d)
an icosahedral nanoparticle, oriented parallel to its two-fold axis.

1 nm

Fig. 14 (a) Aberration-corrected ADF-STEM image of a GaPd2 nanoparticle viewed parallel to the [120] zone axis. Notice how the ‘waviness’ of
the projected structure reduces significantly at the nanoparticle's edge—highlighted further in the inset. (b) The GaPd2 structure projected parallel
to the [120] zone axis, Ga in red, Pd in light blue.
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adsorption–desorption experiments; in the future, direct structural
measurements available with STEM tomography should overcome
some of the limitations of such model-dependent analyses.

A concluding example of 3D nanostructure determination is given
in Fig. 8, which demonstrates the improvements in fidelity that can be
realised when a tomographic reconstruction is based on a dual-axis
1 nm

Fig. 15 Aberration-corrected ADF-STEM image of a small GaPd2
nanoparticle showing a re-entrant facet (marked with a chevron) and a
single twin boundary (arrowed).

Fig. 16 Aberration-corrected TEM images of Cu particles in a high-perf
and a disordered over-layer. (d) is a magnified region of the area marked
series [43]. A single-axis reconstruction of CdTe tetrapods reveals
some legs have not been reconstructed, due to the effects of the missing
wedge. By taking mutually perpendicular tilt series and reconstructing
their combination, the size of the missing wedge is reduced and the
structure of the tetrapods is fully revealed.

3. Atomic-scale high resolution electron microscopy (HREM)

Numerous recent articles and books have dealt with the principles
of HREM and with the particular variant known as annular dark-
field (ADF) or high-angle annular dark-field HAADF) scanning
transmission electron microscopy (STEM)—see e.g. [44–47]. With
the advent of aberration-corrected optics for HREM, a new era in
atomic-scale imaging has arrived. In this short survey we aim to
reach two goals: first a set of illustrations of the quality of such
atomic-scale images to metal nanoclusters and nanoparticles is
given; second, we enter into the present speculative field of
ascertaining what feature of these nanocatalysts is likely to hold
the key to the root cause of the exceptional catalytic activity of
such materials as nano-gold on various oxide or carbonaceous
supports.

Firstly, it is important to stress that a wealth of information can
be obtained from conventional high resolution micrographs
recorded from instruments without aberration correction, and we
begin this section with a few examples. Fig. 9 shows a high
resolution image recorded on a conventional TEM using a relatively
high beam energy of 400 keV—this approach, where the higher
beam energy yields a smaller electron wavelength, was for a long
time the best available method to improve the ‘point’ resolution.
The image is of a single AgI nanoparticle sitting on a carbonaceous
support. The nanoparticle is oriented such that the electron beam is
parallel to the o1104 zone axis, as confirmed by the fast Fourier
ormance Cu/Zn/Al2O3 catalyst, showing significant faceting, twinning
in (c). Reproduced from [64].
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Fig. 17 (a) Aberration-corrected HAADF-STEM images of an gold/
titania catalyst. (b) Magnified part of (a) showing single gold atoms
(black circles) and gold clusters (white circles) Reproduced from [67].
Images courtesy of P.L. Gai.
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transform (FFT) of the image shown as an inset. The nanoparticle
shows a truncated octahedral morphology, with well-defined {100}
and {111} facets. Phase contrast such as that seen in this image can
be beneficial when investigating the structure of low atomic number
material. In this case, it is clear that the carbonaceous support
directly below the nanoparticle in the figure is of a graphitic nature
with 3–4 layers of graphite apparently coherent with the {200}
planes of the nanoparticle. However, phase-contrast images, parti-
cularly those from microscopes that are not aberration corrected,
also need to be interpreted with caution as rapid contrast reversals
can occur with change of defocus and specimen thickness.

Fig. 10 shows an HR-TEM image of a gold nanoparticle that
exhibits a more complex, five-fold twinned structure. Here successive
cyclic twinning on the {111} planes leads to this pseudo-five-fold
symmetric arrangement, where the five sectors are perhaps more
easily seen in Fig. 10(b), which is a Fourier-filtered version of the raw
image in Fig. 10(a). Successive twinning of a face centred cubic (fcc)
lattice leads to a rotation between sectors of 70.531, or 352.641 over
the five sectors. Since this is less than the 3601 needed for perfect
closure there must inevitably be some distortion of the crystal lattice
within the nanoparticle. Also indicated on the image are re-entrant
{111} ‘Marks-type’ [48] facets that serve to reduce the surface-area-
to-volume-ratio, and do so more favourably than truncation on {100}
planes (as in Ino's decahedron [49]). The nature of the distortion in
five-fold twinned nanoparticles has been the subject of many HREM
studies and is a topic of much debate [50–53]. Recent work using
aberration-corrected TEM asserts that the strain present in such
nanoparticles is likely to have significant impact on surface adsorp-
tion properties, therefore being of high catalytic significance [54].

As a final example of conventional HR-TEM Fig. 11 shows that a
thin ruthenium metal over-layer is seen to have grown on a ruthenium
oxide nanorod, a composite structure with possible catalytic or energy
applications [55]. In the image the ruthenium metal layer has grown
in a semi-coherent fashion with the orientation relationships shown in
Fig. 11b.

Whilst conventional HR-TEM can yield many images, when
dealing with ultra-small nanoparticles or nanoclusters, ADF- or
HAADF-STEM (ideally on an aberration-corrected instrument) can
often offer some particular advantages. Fig. 12 shows simulta-
neously recorded (a) bright field (BF)- and (b) ADF-STEM images
of a very small icosahedral Ga-Pd nanoparticle viewed close to its
five-fold axis. In the phase-contrast BF image, the nanoparticle is
barely visible and structural detail is very difficult to discern. ADF
imaging however, is sensitive to the atomic number (Z) of the
constituent atoms of the sample (in the limit of Rutherford
scattering, a Z2 relationship), and hence in the ADF image, the
high Z nanoparticle is rendered clearly visible against the low
atomic number silicon support film. To see detail in the BF image,
phase contrast can be enhanced through a change in the image
focus, but as noted previously, this can lead to significant changes in
the image that require careful interpretation. A great strength of
ADF-STEM is that the images are often ‘directly interpretable’ in
terms of the projected atomic structure of the specimen. This is
further demonstrated in Fig. 13, in which four different morphol-
ogies of gold nanoparticles are revealed with clarity. The gold
nanoparticle in Fig. 13(a) is seen to be single-crystalline polyhedral,
while in (b) a twin boundary separating two crystalline domains is
clearly visible. (c) and (d) show examples of the two primary
morphologies of five-fold twinned nanoparticles: (c) is a decahedral
nanoparticle viewed close to its five-fold axis, and (d) is an
icosahedral nanoparticle viewed close to its two-fold axis.

The addition of a second constituent species in nanoparticles and
nanoclusters can significantly broaden the range of properties that are
available [56]. Bimetallic systems are of particular interest for many
catalytic applications [57,58]. The widened range of properties further
heightens the need for judicious control of nanoparticle structure and
for suitable characterisation methods. One promising route to achieving
bimetallic systems with carefully controlled properties is to exploit the
well-defined structures of intermetallic compounds, a prime example
being the development of ‘nano-sized’ Ga-Pd intermetallic compounds
for effecting selective hydrogenation reactions and other important
processes such as methanol synthesis and methanol steam reforming
[59,60]. Aberration-corrected (S)TEM can make important contribu-
tions to the knowledge-based development of such nanocatalysts, as
exemplified in Figs. 14 and 15, where ADF-STEM has been used to



Fig. 18 Electron-induced X-ray emission spectrum of Ru5PtSn nanoclusters on a mesoporous silica. The arrow in the inset identifies the particle
for which this emission spectrum was recorded. The peak for Cu originates from the sample holder and grid. The tabulation refers to the results of
8 different X-ray emission spectra. Reproduced from [39].
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reveal the atomic structure of GaPd2 nanoparticles (see also Leary et al.
[61,62]). The intermetallic GaPd2 structure [63] is orthorhombic, but
can be described as a distorted fcc structure. That distortion manifests
itself as ‘waviness’ in the structure when viewed parallel to certain
zone axes, which enables verification of the intermetallic state in the
nanoparticles [61]. As an example, Fig. 14 shows a GaPd2 nanoparticle
viewed parallel to the [120] zone axis, where the ‘wavy’ nature of the
projected structure is clear. However, the directly interpretable images
provided by ADF-STEM are also extremely valuable in revealing
deviations from the ideal structure – in Fig. 14 it can be seen that the
‘waviness’ reduces significantly at the nanoparticle's edge, which may
be related to strain at the nanoparticle surface as well as segregation of
Ga away from near-surface regions to form surface oxides [61]. With
much smaller GaPd2 nanoparticles, such as seen in Fig. 15, more
detailed examination of the particle structure can take place. As seen
with the Au nanoparticle in Fig. 10, the nanoparticle possesses re-
entrant facets. This distinct faceting leads to a high proportion of low-
coordinated surface atoms–environments quite distinct from a bulk
terminated surface–the implications of which for Ga-Pd nanocatalysts
are yet to be determined.

Also visible in Fig. 15 is a single twin boundary permeating the
nanoparticle (arrowed), which causes perturbation of the nanopar-
ticle surface. Such nano-crystalline defects are not insignificant,
indeed they have been directly implicated in catalytic processes, as
recently detailed for copper nanoparticles in the Cu/ZnO/Al2O3

catalyst system for methanol synthesis (see Fig. 16) [64]. It is
believed that the surface structural irregularity functions as the
locus of methanol synthesis and that traces of Zn at defect sites
may also enhance catalytic activity.

In addition to catalytic nanoparticles, there is also increasing interest
in few-atom nanoclusters, or indeed single atoms, as powerful catalysts
[65,66]. The ‘Z-contrast’ of aberration-corrected ADF-STEM is
invaluable for enabling visualisation of such minute metallic catalysts
supported on low atomic number supports, as exemplified in Fig. 17.
There, single and pairs of gold atoms (circled in black) and gold
clusters (circled in white) are clearly identified on the surface of titania,
the nature of which are of particular interest for application in the
selective oxidation of carbon monoxide [67].

We end this short survey with a brief example of the power of
modern transmission electron microscopy not only to visualise the
structure of nanoparticles and nanoclusters, but also to probe their
chemical composition. Fig. 18 shows an energy dispersive X-ray
spectrum from a single nanoparticle of Ru5PtSn. The example
spectrum was acquired by placing the electron probe on a single
nanoparticle (shown by an arrow). Spectra from eight similar
nanoparticles were averaged to produce a statistically significant
chemical analysis, showing the nanoparticle composition indeed
had, within 10% error, a 5:1:1 ratio as expected from the synthesis.
4. Conclusions

The remarkable physical and chemical properties exhibited by
nanoparticles and nanoclusters can only be understood fully through
a combination of bulk characterisation coupled with microscopic
investigations using electron microscopy and related techniques. In
this short review we have given a number of examples of how
progress in 3D imaging, through developments in microscopy
technique and in novel reconstruction algorithms, can lead to new
insights into structure and composition at the nanoscale. The advent
of aberration-corrected electron optics has revolutionised the way in
which the atomic structure of nanoparticles can be visualised in a
direct manner. Examples have been given of how the structure of
nanoparticles can be elucidated in exquisite detail, revealing twin
boundaries, re-entrant facets and surface-related structral re-
arrangement. Individual atoms can be identified with aberration-
corrected STEM and, coupled with analytical techniques such as X-
ray emission spectroscopy, provides a remarkably powerful instru-
ment for the investigation of nanostructures and a better under-
standing of their physico–chemical behaviour.

Acknowledgements

CD acknowledges financial support from the Royal Society. PAM
acknowledges financial support from the ERC, Reference 291522
3DIMAGE.

References

[1] P.A. Midgley, E.P.W. Ward, A.B. Hungria, J.M. Thomas, Nanoto-
mography in the chemical, biological and materials sciences,
Chemical Society Reviews 36 (2007) 1477–1494.

[2] G.-C. Yin, M.-T. Tang, Y.-F. Song, F.-R. Chen, K.S. Liang, F.W.
Duewer, et al., Energy-tunable transmission X-ray microscope for
differential contrast imaging with near 60 nm resolution tomography,
Applied Physics Letters 88 (24) (2006) 241115.

[3] M.A. Le Gros, G. McDermott, C.A. Larabell, X-ray tomography of whole
cells, Current Opinion in Structural Biology 15 (5) (2005) 593–600.

http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref1
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref1
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref1
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref2
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref2
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref2
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref2
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref3
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref3


Nanoscale electron tomography and atomic scale high-resolution electron microscopy of nanoparticles and nanoclusters: A short survey 233
[4] J. Radon, Über die Bestimmung von Funktionen durch ihre Inte-
gralwerte langs gewisser Mannigfaltigkeiten, Ber Verh K Sachs Ges
Wiss Leipzig Math-Phys Kl 69 (1917) 262–277.

[5] S.R. Deans, The Radon Transform and Some of its Applications,
Wiley, New York; Chichester, 1983.

[6] G.N. Ramachandran, A.V. Lakshminarayanan, Three-dimensional
reconstruction from radiographs and electron micrographs: applica-
tion of convolutions instead of fourier transforms, Proceedings of the
National Academy of Sciences 68 (9) (1971) 2236–2240.

[7] D.J. De Rosier, A. Klug, Reconstruction of three dimensional structures
from electron micrographs, Nature 217 (5124) (1968) 130–134.

[8] R.A. Crowther, D.J. DeRosier, A. Klug, The reconstruction of a three-
dimensional structure from projections and its application to electron
microscopy, Proceedings of the Royal Society of London A 317
(1530) (1970) 319–340.

[9] W. Hoppe, R. Langer, G. Knesch, C. Poppe, Protein-Kristallstruktur-
analyse mit Elektronenstrahlen, Naturwissenschaften 55 (7) (1968)
333–336.

[10] M. Radermacher, Weighted back-projection methods, in: J. Frank
(Ed.), Electron Tomography: Methods For Three-Dimensional Visua-
lization of Structures In The Cell, Springer, New York; London,
2006, pp. 245–273.

[11] Z. Saghi, D.J. Holland, R. Leary, A. Falqui, G. Bertoni, A.J. Sederman,
et al., Three-dimensional morphology of iron oxide nanoparticles with
reactive concave surfaces. a compressed sensing-electron tomography
(CS-ET) approach, Nano Letters 11 (11) (2011) 4666–4673.

[12] M.C. Scott, C.-C. Chen, M. Mecklenburg, C. Zhu, R. Xu, P. Ercius,
et al., Electron tomography at 2.4 Å resolution, Nature 483 (7390)
(2012) 444–447.

[13] A.C. Kak, M. Slaney, Principles of computerized tomographic imaging.
Philadelphia: Society for Industrial and Applied Mathematics, SIAM,
Philadelphia, 2001.

[14] G.T. Herman, Fundamentals of Computerized Tomography: Image
Reconstruction from Projections Dordrecht, Springer, Heidelberg;
London; New York, 2009.

[15] P.A. Penczek, J.J. Grant, Fundamentals of Three-Dimensional
Reconstruction from Projections, in: G.J. Jenson (Ed.), Methods in
Enzymology, Academic Press, Amsterdam, 2010, pp. 1–33.

[16] J. Frank, Electron Tomography: Methods for Three-Dimensional Visua-
lization of Structures in the Cell, Springer, New York; London, 2006.

[17] P.F.C. Gilbert, The reconstruction of a three-dimensional structure from
projections and its application to electron microscopy. II. Direct methods,
Proceedings of the Royal Society B 182 (1066) (1972) 89–102.

[18] S.H. Bellman, R. Bender, R. Gordon, J.E. Rowe, ART is science being
a defense of algebraic reconstruction techniques for three-dimensional
electron microscopy, J Theor Biol 32 (1) (1971) 205–216.

[19] R.A. Crowther, A. Klug, ART and science or conditions for three-
dimensional reconstruction from electron microscope images, Journal
of Theoretical Biology 32 (1) (1971) 199–203.

[20] P. Gilbert, Iterative methods for the three-dimensional reconstruction
of an object from projections, Journal of Theoretical Biology 36 (1)
(1972) 105–117.

[21] M.I. Sezan, An overview of convex projections theory and its application
to image recovery problems, Ultramicroscopy 40 (1) (1992) 55–67.

[22] J.-M. Carazo, G.T. Herman, C.O.S. Sorzano, R. Marabini, Algorithms
for three-dimensional reconstruction from the imperfect projection
data provided by electron microscopy, in: J. Frank (Ed.), Electron
Tomography: Methods for Three-Dimensional Visualization of Struc-
tures in the Cell, Springer, New York; London, 2006, pp. 217–244.

[23] K.J. Batenburg, S. Bals, J. Sijbers, C. Kübel, P.A. Midgley,
J.C. Hernandez, et al., 3D imaging of nanomaterials by discrete
tomography, Ultramicroscopy 109 (6) (2009) 730–740.

[24] B. Goris, W. Van den Broek, K.J. Batenburg, H. Heidari Mezerji,
S. Bals, Electron tomography based on a total variation minimization
reconstruction technique, Ultramicroscopy 113 (2012) 120–130.

[25] G.T. Herman, A. Kuba, Advances in Discrete Tomography and Its
Applications, Birkhauser, Boston, 2007.
[26] R. Leary, P.A. Midgley, J.M. Thomas, Recent advances in the application
of electron tomography to materials chemistry, Accounts of Chemical
Research 45 (10) (2012) 1782–1791.

[27] M. Lustig, D. Donoho, J.M. Pauly, M.R.I. Sparse, The application of
compressed sensing for rapid MR imaging, Magnetic Resonance in
Medical Sciences 58 (6) (2007) 1182–1195.

[28] E.Y. Sidky, C.-M. Kao, X. Pan, Accurate image reconstruction from
few-views and limited-angle data in divergent-beam CT, Journal of
X-Ray Science and Technology 14 (2006) 119–139.

[29] E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information,
IEEE Transactions on Information Theory 52 (2) (2006) 489–509.

[30] D.L. Donoho, Compressed sensing, IEEE Transactions on Informa-
tion Theory 52 (4) (2006) 1289–1306.

[31] C. George, D. Dorfs, G. Bertoni, A. Falqui, A. Genovese, T. Pellegrino,
et al., A cast-mold approach to iron oxide and Pt/Iron oxide nanocontai-
ners and nanoparticles with a reactive concave surface, Journal of the
American Chemical Society 133 (7) (2011) 2205–2217.

[32] R. Leary, Z. Saghi, P.A. Midgley, D.J. Holland, Ultramicroscopy, (2013),
http://dx.doi.org/10.1016/j.ultramic.2013.03.019.

[33] O. Nicoletti, F. de la Peña, R.K. Leary, D.J. Holland, C. Ducati, P.A.
Midgley, under review.

[34] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and
properties of nanocrystals of different shapes, Chemical Reviews 105
(4) (2005) 1025–1102.

[35] E.M. Perassi, J.C. Hernandez-Garrido, M.S. Moreno, E.R. Encina, E.A.
Coronado, P.A. Midgley, Using highly accurate 3d nanometrology to
model the optical properties of highly irregular nanoparticles: a powerful
tool for rational design of plasmonic devices, Nano Lettrs 10 (6) (2010)
2097–2104.

[36] J.M. Thomas, B.F.G. Johnson, R. Raja, G. Sankar, P.A. Midgley, High-
performance nanocatalysts for single-step hydrogenations, Accounts of
Chemical Research 36 (1) (2003) 20–30.

[37] J.M. Thomas, R. Raja, D.W. Lewis, Single-site heterogeneous catalysts,
ChemInform 37 (2) (2006), http://dx.doi.org/10.1002/chin.200602238.

[38] W.Z. Zhou, J.M. Thomas, D.S. Shephard, B.F.G. Johnson, D.
Ozkaya, T. Maschmeyer, et al., Ordering of ruthenium cluster
carbonyls in mesoporous silica, Science 280 (5364) (1998) 705–708.

[39] E.P.W. Ward, I. Arslan, P.A. Midgley, A. Bleloch, J.M. Thomas,
Direct visualisation, by aberration-corrected electron microscopy, of
the crystallisation of bimetallic nanoparticle catalysts, Chemical
Communications 46 (2005) 5805–5807.

[40] P.A. Midgley, J.M. Thomas, L. Laffont, M. Weyland, R. Raja, B.F.G.
Johnson, et al., High-resolution scanning transmission electron tomography
and elemental analysis of zeptogram quantities of heterogeneous catalyst,
Journal of Physical Chemistry B 108 (15) (2004) 4590–4592.

[41] T.J.V. Yates, J.M. Thomas, J.-J. Fernandez, O. Terasaki, R. Ryoo, P.
A. Midgley, Three-dimensional real-space crystallography of MCM-
48 mesoporous silica revealed by scanning transmission electron
tomography, Chemical Physics Letters 418 (4–6) (2006) 540–543.

[42] Y. Sakamoto, T.-W. Kim, R. Ryoo, O. Terasaki, Three-dimensional
structure of large-pore mesoporous cubic Ia$\bar 3$d silica with com-
plementary pores and its carbon replica by electron crystallography,
Angewandte Chemie International Edition 43 (39) (2004) 5231–5234.

[43] I. Arslan, J.R. Tong, P.A. Midgley, Reducing the missing wedge: high-
resolution dual axis tomography of inorganic materials, Ultramicroscopy
106 (11–12) (2006) 994–1000.

[44] R. Brydson, Aberration-Corrected Analytical Transmission Electron
Microscopy, RMS-Wiley, Chichester, 2011.

[45] O.L. Krivanek, M.F. Chisholm, M.F. Murfitt, N. Dellby, Scanning
transmission electron microscopy: Albert Crewe's vision and beyond,
Ultramicroscopy, 123, 90–98.

[46] S.J. Pennycook, Seeing the atoms more clearly: STEM imaging from
the Crewe era to today, Ultramicroscopy 123 (0) (2012) 28–37.

[47] S.J. Pennycook, P.D. Nellist, Scanning Transmission Electron Micro-
scopy, Springer, New York, 2011.

[48] L.D. Marks, Surface structure and energetics of multiply twinned
particles, Philosophical Magazine A 49 (1) (1984) 81–93.

http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref4
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref4
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref4
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref5
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref5
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref6
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref6
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref6
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref6
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref7
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref7
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref8
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref8
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref8
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref8
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref9
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref9
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref9
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref10
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref10
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref10
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref10
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref11
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref11
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref11
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref11
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref12
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref12
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref12
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref13
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref13
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref13
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref14
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref14
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref14
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref15
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref15
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref15
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref16
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref16
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref17
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref17
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref17
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref18
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref18
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref18
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref19
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref19
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref19
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref20
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref20
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref20
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref21
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref21
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref22
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref22
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref22
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref22
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref22
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref23
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref23
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref23
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref24
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref24
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref24
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref25
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref25
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref26
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref26
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref26
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref27
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref27
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref27
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref28
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref28
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref28
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref29
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref29
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref29
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref30
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref30
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref31
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref31
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref31
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref31
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref32
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref32
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref32
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref33
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref33
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref33
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref33
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref33
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref34
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref34
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref34
dx.doi.org/10.1002/chin.200602238
dx.doi.org/10.1002/chin.200602238
dx.doi.org/10.1002/chin.200602238
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref36
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref36
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref36
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref37
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref37
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref37
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref37
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref38
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref38
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref38
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref38
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref39
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref39
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref39
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref39
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref40
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref40
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref40
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref40
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref41
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref41
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref41
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref42
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref42
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref43
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref43
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref43
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref44
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref44
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref45
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref45
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref46
http://refhub.elsevier.com/S1002-0071(13)00063-4/sbref46


J.M. Thomas et al.234
[49] S. Ino, Stability of multiply-twinned particles, Journal of the Physical
Society of Japan 27 (4) (1969) 941–953.

[50] V.G. Gryaznov, J. Heydenreich, A.M. Kaprelov, S.A. Nepijko, A.E.
Romanov, J. Urban, Pentagonal symmetry and disclinations in small
particles, Crystal Research and Technology 34 (9) (1999) 1091–1119.

[51] H. Hofmeister, Forty years study of fivefold twinned structures in
small particles and thin films, Crystal Research and Technology 33
(1) (1998) 3–25.

[52] L.D. Marks, Experimental studies of small particle structures, Reports
on Progress in Physics 57 (6) (1994) 603.

[53] A. Mayoral, H. Barron, R. Estrada-Salas, A. Vazquez-Duran, M.
Jose-Yacaman, Nanoparticle stability from the nano to the meso
interval, Nanoscale 2 (3) (2010) 335–342.

[54] M.J. Walsh, K. Yoshida, A. Kuwabara, M.L. Pay, P.L. Gai, E.D.
Boyes, On the structural origin of the catalytic properties of inherently
strained ultrasmall decahedral gold nanoparticles, Nano Letters 12 (4)
(2012) 2027–2031.

[55] C. Ducati, D.H. Dawson, J.R. Saffell, P.A. Midgley, Ruthenium-
coated ruthenium oxide nanorods, Applied Physics Letters 85 (22)
(2004) 5385–5387.

[56] R. Ferrando, J. Jellinek, R.L. Johnston, Nanoalloys: from theory to
applications of alloy clusters and nanoparticles, Chemical Reviews
108 (3) (2008) 845–910.

[57] J.K. Norskov, T. Bligaard, J. Rossmeisl, C.H. Christ1ensen, Towards
the computational design of solid catalysts, Nature Chemistry 1 (1)
(2009) 37–46.

[58] J.H. Sinfelt, Bimetallic Catalysts: Discoveries, Concepts and Applica-
tions, Wiley, New York, 1983.

[59] M. Armbrüster, M. Behrens, F. Cinquini, K. Föttinger, Y. Grin,
A. Haghofer, et al., How to control the selectivity of palladium-based
catalysts in hydrogenation reactions: the role of subsurface chemistry,
ChemCatChem 4 (8) (2012) 1048–1063.
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