
SF2930 Regression Analysis
Exam Generator

Version for the re-exam 2023-06-07

Timo Koski

Inneh̊all

1 Introduction 3
1.1 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Linear Algebra for Warm-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Matrix Tricks and Linear Regression 4

3 Covariance Matrices, Random Vectors, Minimum Mean Square Estimation 6

4 Linear Regression 9
4.1 Simple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Estimability and the Gauss-Markov Theorem . . . . . . . . . . . . . . . . . . . . 20
4.4 Normal Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Properties of the Hat Matrix and Diagnostics of Regression Models 26

6 Choice of Regression Models 32

7 Generalized Linear Regression 36

8 The Woodbury Matrix Identity & Ridge Regression 38

1



9 Collections of Formulas and Auxiliary Results 39
9.1 Matrices and Matrix Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.2 The Range Space (=Column Space) of a Matrix . . . . . . . . . . . . . . . . . . 39
9.3 Projection Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.4 Trace of a Square Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.5 Factorization and Square Root of Covariance Matrices . . . . . . . . . . . . . . 40
9.6 Linear Transformations of Covariance Matrices . . . . . . . . . . . . . . . . . . 41
9.7 Generalized Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.8 Rules of Computation with Finite Sums . . . . . . . . . . . . . . . . . . . . . . 42
9.9 Simple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

9.9.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.9.2 LSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9.10 Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.11 Normal Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.12 Distribution of Quadratic Forms of Normal Vectors . . . . . . . . . . . . . . . . 44
9.13 Sherman-Morrison-Woodbury Theorem . . . . . . . . . . . . . . . . . . . . . . 45
9.14 Fundamental Analysis of Variance Identity . . . . . . . . . . . . . . . . . . . . 45
9.15 Matrix Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.16 Solution of (20) (for all interested) . . . . . . . . . . . . . . . . . . . . . . . . . 46

2



1 Introduction

1.1 Instructions

This is the final version. Errors and typos and bad formulations will sought for and corrected,
whenever detected.

In the Exam the students will be provided with two docu-
ments:

1. First: an A4 sheet pointing out by problem number
(e.g., 4.11) those problems in this generator to be
solved in the Exam hall.

2. Second: The complete Exam generator (incl. Ap-
pendices, that is section section 9) WILL BE AVAI-
LABLE IN THE EXAM. When solving a problem
in the exam, one may refer to formulas and state-
ment in problems in the generator NOT included
in the exam without deriving or proving them.

The formulas in section 9 can be used in the solutions of any exam problems without proof or
derivation.

1.2 Linear Algebra for Warm-Up

The problems in section are not very likely to appear as exam questions, but can be useful in
more serious candidates for exam assignments.

Problem 1.1.

The ON-basis of Rn is

E1 =


1
...
0
...
0

 . . . Ej =


0
...
1
...
0

 . . . En =


0
...
0
...
1

 . (1)

Let A be any n× n matrix. Then
ET
i A (2)

is the ith row of A.

� Express in words the meaning of the following expressions:

AEi, ET
i AEi ET

i AEj ET
j AEi. (3)
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Problem 1.2.

Let AT = (a1, a2, . . . , an) where ai is the ith column vector of the k × n matrix AT . Thus
aT
i is the ith row vector of A (an n× k matrix), i.e.,

A =


aT
1

aT
2
...
aT
n

 .

Let B be a k × k matrix. Check that

ABAT =


aT
1Ba1 aT

1Ba2 · · · aT
1Ban

aT
2Ba1 aT

2Ba2 · · · aT
2Ban

...
...

. . .
...

aT
nBa1 aT

nBa2 · · · aT
nBan

 . (4)

2 Matrix Tricks and Linear Regression

Problem 2.1.

Consider the k × k matrix

S :=
1

n− 1
XT

c Xc. (5)

where Xc is given in (64).

a) Is S positive definite? Justify your answer. Aid: Slide 22/81 in Lecture 3.

b) Check that

sjk = ET
j SEk =

1

n− 1

n∑
i=1

(xij − x̄j) (xik − x̄k) , (6)

(c.f. (3)), where Ej and Ek are now column vectors in the ON-basis of Rk, see (1).

sjk in (6) is an estimate of the covariance between the regressor j and regressor number k in

the population underlying the rows in the matrix XR =
(
xT
1 . . .xT

n

)T
, see also (63). Hence the

matrix S is called the sample covariance matrix.

Problem 2.2.

The centering matrix is

Cce = In −
1

n
1n1

T
n .

See section 9.1 and (97) for the detailed definition.

a) Check that Cce is a projection matrix, c.f. section 9.3.
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b) Show that

yTCceCcey =
n∑

i=1

(yi − ȳ)2 (7)

c) Is the centering matrix invertible? Your answer should contain an explanation, not merely
one of Yes or No.

Problem 2.3.

A training set of observed responses y = (y1, y2, . . . , yn)
T and the corresponding n× (k+1)

data matrix X are available. We fit a multiple least squares model to the training set and obtain
the LSE β̂. Then

ŷ = Xβ̂ = Hy

is the predictor vector, where H is the hat matrix and ŷ = (ŷ1, ŷ2, . . . , ŷn)
T .

a) êi = yi − ŷi, i = 1, . . . , n are the LS residuals. Show that

n∑
i=1

êi = 0

by studying
êT1n,

where ê = (ê1, ê2 . . . ên)
T is an n× 1 vector.

b) ŷi are the LS-predictors of yi, respectively, for i = 1, . . . , n. Show that

1

n

n∑
1=

ŷi = ȳ

by studying
ŷT1n,

where ŷ = (ŷ1, ŷ2 . . . ŷn)
T is an n× 1 vector.

c) Show that
n∑

i=1

(yi − ȳ)2 = min
β

∥y − 1nβ∥2

where y = (y1, y2 . . . yn)
T is an n× 1 vector and β is a scalar.

Problem 2.4.

x and y are two column vectors in Rn. Then we define
the (sample) correlation coefficient cor (x,y) by

cor (x,y) :=
xTCcey√

xTCcex
√
yTCcey

(8)
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A training set of observed responses y = (y1, y2, . . . , yn)
T and the corresponding n×(k+1) data

matrix X are available. We fit a multiple least squares model to the training set and obtain the
LSE β̂. Then

ŷ = Xβ̂ = Hy

is the predictor vector, where H is the hat matrix. Show by means of (8) that

cor (y, ŷ) =

√
SSR

SST

.

Aid: Use the hat matrix formula for ŷ.

Problem 2.5.

a) Set, see (96) in section 9.1 for details,

P1n =
1

n
1n1

T
n .

Check that P1n is a projection matrix, see section 9.3.

b) Show that the range space, see (98), of P1n is

R (P1n) = {v ∈ Rn|v = v̂1n} ,

where

v̂ =
vT1n

∥ 1n ∥2
.

In other words, R (P1n) is the subspace of vectors proportional to the vector 1n.

c) We have that the centering matrix, see (97) in section 9.1 is also written as

Cce = In − P1n .

We know that Cce is a projection matrix. What is the range space of Cce? c) How are the
range spaces of P1n and Cce related to each other?

3 Covariance Matrices, Random Vectors, Minimum Me-

an Square Estimation

Problem 3.1.

An n × 1 random vector X has expectation µX = E [X], and An n × 1 random vector Y
has expectation µY = E [Y]. Define their cross-covariance matrix as

Cov(X,Y) := E
[
(X− µX) (Y − µY)

T
]
.
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It is easily seen that (you need not prove this)

Cov(Y,X) = Cov(X,Y)T . (9)

Clearly
CX = Cov(X,X). (10)

a) Show that
Cov(X,Y) = E

[
XYT

]
− µXµ

T
Y.

b) A and B are matrices of suitable dimensions. Show that

Cov(AX, BY) = ACov(X,Y)BT . (11)

c) A,B and C are matrices of suitable dimensions. Z is an n× 1 random vector. Show that

Cov(AX, BY + CZ) = Cov(AX, BY) + Cov(AX, CZ). (12)

Problem 3.2.

X is an n× 1 random vector with µ as mean vector and Σ as a positive definite covariance
matrix. The Mahalanobis distance between a vector x ∈ Rn and the mean µ is defined as

dM (x,µ; Σ) :=

√
(x− µ)T Σ−1 (x− µ). (13)

a) Find
E
[
d2M (X,µ; Σ)

]
.

Aid: Use E
[
(X− µ)T Σ−1 (X− µ)

]
= TrE

[
(X− µ) Σ−1 (X− µ)T

]
and and a linear

change of variable a factorization Σ = AAT , where A is invertible. See the statements in
section 9.12.

b) If v ∈ Rn and A is a real, symmetric, positive-definite n× n matrix, then the set

D(v, h) = {x ∈ Rn|(x− v)TA(x− v) ≤ h}

is an ellipsoid with radius h centered at v. The eigenvectors of A are the principal axes
of D. Consider the Mahalanobis ellipsoid

DM(µ, h) = {x ∈ Rn|(x− µ)TΣ−1 (x− µ) ≤ h} (14)

Assume that X ∼ Nn (µ,Σ). Find h0.05 such that

P (X ∈ DM(µ, h0.05)) = 0.95.

Aid: See section 9.12.
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Problem 3.3.

X is n× k and rankX = r ≤ n < k. The BMP - inverse of X is

X− =
(
XTX

)−
XT . (15)

Consider the OLS
Y = Xβ∗ + ϵ,

where rankX = r ≤ n ≤ k. β̂
†
=
(
XTX

)−
XTy. We have ∥ x ∥=

√
xTx =

√∑n
i=1 x

2
i . Show

that
1

n
E ∥ Xβ̂

†
−Xβ∗ ∥2=

σ2

n
r.

You can use the facts that
((

XTX
)−)T

=
((

XTX
)T)−

and TrXX− = r without proving

these.

Problem 3.4.

This assignment deals with Linear Minimal Mean Square Estimation. We have two
n×1 random vectorsX andY with zero expectation vectors. We consider a situation, whereY is
a hidden andX is an observed measurement. We know the cross covariance matrix Cov(Y,X) =
E
[
YXT

]
and the covariance matrix CX, where we assume that C−1

X exists. The goal is to find
a linear estimator AX of Y such that the mean square error

MSE = E ∥ Y − AX ∥2

is minimized. We have

E ∥ Y − AX ∥2= E
[
(Y − AX)T (Y − AX)

]
= TrE

[
(Y − AX) (Y − AX)T

]
We find the linear minimal mean square estimator by the following steps.

a) Check that if
A = Cov(Y,X)C−1

X , (16)

then we have the orthogonality condition

Cov(Y − AX,X) = E
[
(Y − AX)XT

]
= 0n. (17)

b) Let B be any n× n matrix. Write

(Y −BX) (Y −BX)T = ((Y − AX) + (A−B)X) (Y − AX) + (A−B)X)T

where A is given by (16). Then we get by a direct expansion that

(Y −BX) (Y −BX)T = (Y − AX)(Y − AX)T
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−(A−B)X(Y − AX)T − (Y − AX)((A−B)X)T + (A−B)X ((A−B)X)T .

(you need not re-check this, in case you think this is correct). Then show that

E
[
(Y −BX) (Y −BX)T

]
= E

[
(Y − AX)(Y − AX)T

]
(18)

+E
[
(A−B)X ((A−B)X)T

]
.

Aid: You will need (9) in the form

Cov((A−B)X, (Y − AX)) = Cov(Y − AX), (A−B)X))T .

and certain rules of covariance matrices of linear transformations.

c) Now show that

E ∥ Y −BX ∥2= E ∥ Y − AX ∥2 +E ∥ (A−B)X ∥2

and draw the conclusion that A as in (16) gives the linear minimal mean square estimator
AX.

Problem 3.5.

We continue with Minimal Linear Mean Square Estimation. X and Y are n × 1 random
vectors with zero expectation vectors. We have the cross covariance matrix Cov(Y,X) =
E
[
YXT

]
and the covariance matrix CX, where we assume that C−1

X exists. By the preceding
assignment above we have that

A = Cov(Y,X)C−1
X , (19)

minimizes the mean square error of estimating Y by a linear map of X.
Find that the Linear Minimal Mean Square Error (LMME) is

LMME = E ∥ Y − AX ∥2= Tr
[
CY − Cov(Y,X)C−1

X Cov(X,Y)
]
. (20)

Aid: Start with

E ∥ Y − AX ∥2= E
[
(Y − AX)T (Y − AX)

]
= TrE

[
(Y − AX) (Y − AX)T

]
,

expand, compute the expectations and use the rules for traces in section 9.4.
A Solution to this Problem is found in Section 9.16.

4 Linear Regression

4.1 Simple Linear Regression

Problem 4.1.
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In the left hand field you see a plot of a training set with predictor x =body height (in
feet and inches) and y = score in mathematics exams in an US elementary school and a least
squares regression line fitted to it. One might conclude that taller students perform better in
mathematics. In the right hand field we see the same data and regression line after an additional
analysis. Explain what is found now! What is the phenomenon known as?

Problem 4.2.

In (109) we have the LSE of the regression coefficient as

β̂1 =

∑n
i=1 (yi − y)xi∑n
i=1 (xi − x)xi

.

Rewrite this as

β̂1 =

∑n
i=1 (yi − y) (xi − x)∑n

i=1 (xi − x)2

by means of the rules in section 9.8.

Problem 4.3.

β̂0 and β̂1 are the LSE of β0 and β1 in simple linear regression. β∗
0 , β

∗
1 denote the true

poulation values of the intercept and the regression coefficient.

a) Show that

Cov
(
β̂0, β̂1

)
=

−x̄σ2∑n
i=1 (xi − x̄)2

(21)

What does this mean in terms of the estimated regression line?
Aid (1): the definition of Cov is

Cov
(
β̂0, β̂1

)
= E

[(
β̂0 − β∗

0

)(
β̂1 − β∗

1

)]
10



Aid (2): You can use the means and variances in (110) even if we are not assuming normal
regression.

b) Let us assume normal linear regression. What is the joint distribution of bivariate random
variable (

β̂0, β̂1

)
.

Recapitulate explicitly the mean vector and the covariance matrix.

Problem 4.4.

We consider simple linear regression in the equivalent centered form:

Yi = α + β1 (xi − x̄) + εi, i = 1, . . . , n (22)

where x̄ = 1
n

∑n
i=1 xi and

α = β0 + β1x̄. (23)

In the matrix form this involves

y =


y1
y2
...
yn

 , Xc =


1 x1 − x̄
1 x2 − x̄
...
1 xn − x̄

 ,βc =

(
α
β1

)
.

The least square criterion (cost function) to be minimized is

Q (βc) = ∥y −Xcβc∥2.

Hence we know that
β̂c = (XT

c Xc)
−1XT

c y.

a) Show by a direct computation that

XT
c Xc =

(
n 0

0
∑n

i=1 (xi − x̄)2

)
.

b) It is now clear how to find (XT
c Xc)

−1, if we assume that not all xi are equal. Show under
this assumption that the LSE of the parameters of the centered model are

β̂c =

(
α̂

β̂1

)
=

(
ȳ∑n

i=1(xi−x̄)yi∑n
i=1(xi−x̄)2

)
. (24)

c) Derive the predictor equation for ŷc in the centered simple linear regression. Is this equi-
valent to the predictor ŷ in the uncentered model?

Problem 4.5.
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Let α̂ and β̂1 be given as in (24).

a) Show that

Cov
(
α̂, β̂1

)
= 0 (25)

b) Suppose that ε = (ε1, . . . , εn)
T in (22) is a normal random vector, i.e.,

ε ∼ Nn

(
0n, σ

2In
)
. (26)

What does (25) imply in this case?

Problem 4.6.

Sometimes, with regards to content, it can be reasonable to assume that the regression line
passes through the origin (β0 = 0). The corresponding regression model is

yi = β1xi + εi, i = 1, . . . , n

with the following assumptions:

E[εi] = 0, i = 1, . . . , n

Var(εi) = σ2, i = 1, . . . , n

{εi | i = 1, . . . , n} stochastically independent

εi ∼ N(0, σ2), i = 1, . . . , n

a) Derive the LS-estimator β̂1 for β1. Is β̂1 also the ML-estimator?

b) Show that the residuals in general do not sum up to zero. However, why does this hold
in the linear regression model including the intercept β0? Explain the difference.

Problem 4.7.

Suppose that the components of the random vector ε = (ε1, . . . , εn)
T are independent with

means = 0, but that

Cε = σ2


1
w1

0 0 . . . 0

0 1
w2

0 . . . 0

0
. . .

... . . . 0
0 0 0 . . . 1

wn

 . (27)

where the wi = w (xi) are the values of some known positive weight function evaluated at the
regressor values.

We consider simple theoretic linear regression in a centered form:

E [Yi] = β0 + β1 (xi − x̄(w)) , i = 1, 2, . . . , n,

12



where

x̄(w) =

∑n
i=1wixi∑n
i=1 wi

is the weighted mean. We minimize the weighted LS-criterion

QW (β0, β1) =
n∑

1=1

wi (yi − (β0 + β1 (xi − x̄(w)))2 .

a) Check first that ∑n
i=1wi (xi − x̄(w))∑n

i=1wi

= 0. (28)

This can be useful in b), c) and/or d) below. You are allowed to use (28) there, even if
you have failed to establish (28).

b) Check that the weighted LSE is

β̂ =

(
β̂0

β̂1

)
=

( ∑n
i=1 wiyi∑n
i=1 wi∑n

i=1 wi(xi−x̄(w))yi∑n
i=1 wi(xi−x̄(w))2

)
. (29)

c) Show that

β̂0 =

∑n
i=1 wiYi∑n
i=1wi

and

β̂1 =

∑n
i=1wi (xi − x̄(w))Yi∑n
i=1 wi (xi − x̄(w))2

are unbiased.

d) Show that

Var[β̂0] =
σ2∑n
i=1 wi

and determine in similar manner Var[β̂1]. Remember to justify your calculations.

Problem 4.8.

Suppose that the components of the random vector ε = (ε1, . . . , εn)
T are independent with

means = 0, but that

Cε = σ2


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 , (30)
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where λi > 0. We observe outcomes y1, . . . , yn of the true model (a constant with noise)

Y = 1nβ0 + ε.

Now we minimize the weighted least squares criterion

Qλ (β0) :=
n∑

i=1

1

λi

(yi − β0)
2 (31)

as a function of β0.

a) Check that the weighted LSE is

β̂0 =
1∑n

i=1
1
λi

n∑
i=1

1

λi

yi. (32)

b) Show that

β̂0 =
1∑n

i=1
1
λi

n∑
i=1

1

λi

Yi

is unbiased.

c) Show that

Var
[
β̂0

]
=

σ2∑n
i=1

1
λi

.

Remember to justify your calculations.

Problem 4.9.

The phenomenon of fatigue was observed by engineers in metal materials in the mid-19th
century, due to the shortcomings of the railway wagons after a short period of work. In the
1850s, August Wöhler, a railway engineer, conducted the first experimental fatigue program,
testing wagon shafts for failure under alternating stress. The developed loads were recorded
together with the number of rotations until failure, so it was possible to formulate the first
S-N diagram (S = Stress, N = Number of Cycles) or Wöhler-curve. This assignment deals with
what is called the statistical recalibration of the Wöhler curve. Let

Y = Number of life cycles to failure, X = stress.

The linear part of the curve is stated in log-log terms as follows. We assume that Y , given
X = x, has the lognormal distribution

(Y |X = x) ∼ LN
(
β0 + β1 ln(x), σ

2
)

where x is greater than some x0 > 0. There is a recorded set of data, n pairs of stress and
life-cycles, Dtr = {xi, yi}ni=1.

14



a) Find simple linear regression equations for this training set, where β0 is the intercept and
β1 is the slope.

b) Write down the LSEs β̂0 and β̂1.

c) What are the distributions of β̂0 and β̂1?

e) What is now Ê [Y |X = x], your estimate of the expected number of life cycles given the
stress x?

References:

1. Barbosa, Joelton Fonseca and Correia, José AFO and Freire Junior, RCS and Zhu, Shun-
Peng and De Jesus, Ab́ılio MP: Probabilistic SN fields based on statistical distributions
applied to metallic and composite materials: State of the art. Advances in Mechanical
Engineering, 11, 8, 2019.

2. A positive random variable X is log-normally distributed, written as

X ∼ LN(µ, σ2),

if the natural logarithm of X is normally distributed with mean µ and variance σ2, i.e.,

ln(X) ∼ N(µ, σ2)

4.2 Multiple Linear Regression

In every problem in this section and elsewhere, unless
explicitly stated otherwise, it is assumed that the design
matrix X has full column rank = k + 1 (< n).
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Problem 4.10.

In the OLS model,
Ŷ = Xβ̂ = HY

is the predictor vector, where H is the hat matrix. Show that

Cov
(
Y,Y − Ŷ

)
= σ2 (In −H) .

Aid: Recall (10) and (12).

Problem 4.11.

In the OLS model,
Ŷ = Xβ̂ = HY

is the predictor vector, where H is the hat matrix. Show that

Cov
(
Ŷ,Y − Ŷ

)
= 0n.

Aid: Recall (10) and (12).

Problem 4.12.

We have the OLS
Y = Xβ + ε, ε̂ = Y − Ŷ,

and
eLSE = y −Xβ̂ = y −Hy = y − ŷ.

Explain the differences of concept in the OLS model between ε, ε̂ and eLSE.

Problem 4.13.

a) The hat matrix H is defined by

H = X
(
XTX

)−1
XT .

Check that H is a projection matrix, see section 9.3.

b) We have
eLSE = y −Hy

Show now that
eTLSEHy = 0.

Aid: You may need the idempotency of H.

c) Why is H called the hat matrix ?
Answer: It puts a hat on y, i.e.,

ŷ = Hy.
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d) Show that
∥y∥2 = ∥ŷ∥2 + ∥eLSE∥2. (33)

How can this be interpreted geometrically?

Problem 4.14.

A training set of observed responses y = (y1, y2, . . . , yn)
T and the corresponding n× (k+1)

data matrix X are available from some source with the true model

Y = Xβ∗ + ε.

Here ε has he mean vector = 0n and covariance matrix σ2In. We fit a multiple least squares
model to the training set and obtain the LSE β̂.

The m× 1 random vector Yo is the response vector given by

Yo = Xoβ∗ + εo

where ε0 has mean vector = 0m and covariance matrix σ2Im. ε0 is independent of ε. Xo is a
m× (k + 1) matrix of full column rank.

Before observing Yo, we want to predict Yo by the predictor

Ŷo = Xoβ̂.

a) Show that E
[
Yo − Ŷo

]
= 0m.

b) Find the covariance matrix Cεpr of the prediction error εpr := Yo − Ŷo.
Answer : Cεpr = σ2

(
Xo(X

TX)−1XT
o + Im

)
.

Aid: You can have use of (54) even if no normal distribution is involved here.

Problem 4.15.

We consider the OLS model with the following generalizations:

1) Correlated noise: The covariance matrix Cε of ε = (ε1, . . . , εn)
T is

Cε = σ2C, (34)

where C is a known positive definite matrix.

2) Neither σ2 nor C depend on X.

Questions:

a) Introduce a new random vector
Z := C−1/2Y

Why is this possible? Quote briefly some relevant facts from linear algebra.
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b) Show that we have the multiple regression

Z =
(
C−1/2X

)
β + ε†, (35)

where ε† is a random vector satisfying E
[
ε†
]
= 0n, Cε† = σ2In.

c) The response data in your training set are now zi = C−1/2yi, i = 1, . . . , n,

z =


z1
z2
...
zn

 .

Show (justify your solution carefully) now that LSE using (35) is

β̂ =
(
XTC−1X

)−1
XTC−1y. (36)

d) The covariance matrix in (30) is a special case of (34). Check that you get (32) from (36).

Problem 4.16.

In ridge regression, the ordinary LSE is replaced by β̂λ defined by

β̂λ := argminβ

(
∥y −Xβ∥2 + λ∥β∥2

)
.

Using the rules of gradients for vector and matrix expressions found in Appendix 9.15, show
that (p = k + 1)

β̂λ =
(
XTX + λIp

)−1
XTy. (37)

Whenever relevant, refer to the number of the rule you are evoking.

Problem 4.17.

The k regressors of an ordinary LS model as defined in section 9.10

Y = Xβ + ε (38)

are rescaled as follows. The ith row in X is xT
i = (1, xi1, xi2, . . . , xik) and the rescaled row is zTi

= (1, c1xi1, c2xi2, . . . , ckxik), where ci ̸= 0 for i = 1, 2, . . . , k.. Let us define the (k+ 1)× (k+ 1)
diagonal matrix

D =


1 0 · · · 0
0 c1 · · · 0
...

...
. . .

...
0 0 · · · ck

 .
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Then it follows that

Z =


zT1
zT2
...
zTn

 = XD. (39)

Next you regress the response data y = (y1, . . . , yn)
T on Z and obtain

β̂z =
(
ZTZ

)−1
ZTy (40)

a) Show that

β̂z = D−1β̂,

where β̂ is the LSE for regressing the response data y = (y1, . . . , yn)
T on X.

Aid: Use (39) in (40) and simplify.

b) Show that the hat predictor is invariant w.r.t. the rescaling above in the sense that

ŷz = ŷ.

Here ŷz is the predictor of y based on β̂z and ŷ is the predictor of y based on β̂.

Problem 4.18.

eLSE = y −Xβ̂ = y −Hy = y − ŷ

is the vector of LSE residuals.
eLSE = (ê1, ê2, . . . , ên)

T .

a) Show that XTeLSE = 0k.
When you look at the scalar product of the first row in XT and eLSE this means

n∑
i=1

êi = 0. (41)

b) Show now that

1

n

n∑
i=1

ŷi = ȳ. (42)

c) At a certain moment in the lectures it was obtained that

yTCceCcey = ŷTCceŷ + ŷTeLSE + eTLSEŷ + eTLSEeLSE.

We know that yTCceCcey =
∑n

i=1 (yi − ȳ)2 = SST by (7) and section 9.14. Show no that

SSR + SSRes = ŷTCceŷ + ŷTeLSE + eTLSEŷ + eTLSEeLSE.

Thus we have established the identity (117).
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4.3 Estimability and the Gauss-Markov Theorem

The Gauss-Markov theorem states that LSE is best linear unbiased estimate of the regresssion
coefficients. In this subsection the Gauss-Markov theorem is studied by an approach different
from the one applied in Lecture 4 slides and in MVP. The material below is found in Chapter 2.8
of Julian R. Faraway: Practical regression with R, 2002, which is downloadable from canvas via
the page SF2930 Course Plan. The proof is based on the notion of estimable linear combinations.

Problem 4.19.

An ordinary LS model as defined in section 9.10

Y = Xβ + ε (43)

where β is (k + 1)× 1. We let c be an arbitrary (k + 1)× 1 vector in Rk+1. Next we introduce
the 1× n vector aT by

aT := cT (XTX)−1XT . (44)

a) Show that
E
[
aTY

]
= cTβ. (45)

One says that cTβ is estimable, since there is an unbiased estimator aTY of it.

b) Check that we also have
E
[
aTY

]
= aTXβ. (46)

Problem 4.20.

Here you need the notion of the column space or range R (X) of a matrix X, as presented
in the Appendix 9.2.

a) Verify that if (45) and (46) are valid for every β, then

c ∈ R
(
XT
)

b) X is an n× (k + 1) matrix with full column rank = k + 1. Show now that

c ∈ R
(
XTX

)
. (47)

Aid: In other words, you are through with this, once you have verified that

R
(
XT
)
⊂ R

(
XTX

)
.

This is the second part of the proof of the statement in Proposition 9.1. We give a stepwise
guide for this.
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1. Take any w ∈ R
(
XT
)
. Thus there exists a b ∈ Rn such that

w = XTb.

Define by use of the hat matrix the projected vector b̂ ∈ R (X) by

b̂ = Hb.

Check now that
XT b̂ = XTb. (48)

2. Since b̂ ∈ R (X), there exists v such that b̂ = Xv. Now compute

XTXv

and draw the desired conclusion.

Problem 4.21.

Now we prove the first part of the Gauss-Markov theorem. We are relying on (47), which
you can invoke without a successfull proof thereof. We have seen in the first Problem of this
subsection that cTβ is estimable, if X has full column rank. Let thus aTY be any unbiased
estimator of cTβ. By the preceding problems, (45) and (46) hold and imply (47). By definition
of R

(
XTX

)
, (47) implies that there exists a (k + 1)× 1 vector z such that

c = XTXz. (49)

If β̂ is the LSE of (43), then (49) implies

cT β̂ = zTXTXβ̂ = zTXTY. (50)

Then we get

Var
[
aTY

]
= Var

[
aTY − cT β̂ + cT β̂

]
= Var

[(
aTY − cT β̂

)
+ cT β̂

]
= Var

[
aTY − cT β̂

]
+Var

[
cT β̂

]
+ 2Cov

(
aTY − cT β̂, cT β̂

)
.

where we used a familiar formula for the variance of a sum of two random variables from the
first course.

a) Use to (50) to write

Cov
(
aTY − cT β̂, cT β̂

)
= Cov

(
aTY − zTXTY, zTXTY

)
Then show that

Cov
(
aTY − zTXTY, zTXTY

)
= 0.

Aid: You may need the standard rule of covariance computation (11) and (47).
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b) Hence we have

Var
[
aTY

]
= Var

[
aTY − cT β̂

]
+Var

[
cT β̂

]
. (51)

Now draw the conclusion in the Gauss-Markov theorem.

c) We need to establish the uniqueness of β̂ as the minimum variance unbiased linear esti-

mator. This means that if Var
[
aTY

]
= Var

[
cT β̂

]
, then aTY = cT β̂.

Aid: See what happens in (51), if Var
[
aTY

]
= Var

[
cT β̂

]
.

Problem 4.22.

If X has full column rank, rankX = k + 1 < n, check that

X+ = (XTX)−1XT

is the BMP inverse of X by verifying the conditions MP1-MP4 in section 9.7.

Problem 4.23.

In this problem X has full row rank n < k + 1.

If X has full row rank, rankX = n < k + 1, then

X+ = XT (XXT )−1

is the BMP inverse of X.

a) We know the normal equations:
XTXβ = XTy. (52)

For X with full row rank we define

β+ = X+y.

Check now that β+ is a solution to (52).

b) We have the BMP predictor
ŷ+ = Xβ+ = XX+y

Show that ŷ+ is an interpolation of the training set.

Problem 4.24.

Y = Xβ∗ + ε

and
E [ε] = 0n, Cε = σ2In.
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Ŷ = HY, ε̂ = Y − Ŷ.

Let the variance σ2 be estimated by

σ̂2 =
1

n− k − 1
ε̂T ε̂.

Show that σ̂2 is unbiased.
Aid: Insert ε̂ = Y− Ŷ compute the required expectetion and use the rules for traces in section
9.4.

4.4 Normal Linear Regression

Problem 4.25.

Prove in formal detail:
Y ∼ Nn

(
Xβ∗, σ

2In
)
.

Problem 4.26.

The LSE of the regressor parameters is

β̂ = (XTX)−1XTY.

a) Show that

β̂ = β∗ + (XTX)−1XTε. (53)

b) Show that

β̂ ∼ Nk+1

(
β∗, σ

2(XTX)−1
)
.

Remember to justify carefully.

Problem 4.27.

Ŷ = HY,

where H is the hat matrix.

a) Show that

Ŷ ∼ Nn

(
Xβ∗, σ

2H
)
. (54)

b)

ε̂ = Y − Ŷ.

Show (with appropriate justification) that

ε̂ ∼ Nn

(
0n, σ

2 (In −H)
)

(55)
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Problem 4.28.

Y = Xβ + ε,

where
ε ∼ Nn

(
0, σ2In

)
.

Thus
Y ∼ Nn

(
Xβ, σ2In

)
and the p.d.f .is

fY (y) =
1√

(σ22π)n
e−

1
2σ2 ∥y−Xβ∥2 .

We have the −1· loglikelihood function

ly
(
β, σ2

)
:= − ln fY (y) =

n

2
ln(2π) +

n

2
ln(σ2) +

1

2σ2
∥ y −Xβ ∥2 (56)

For j = 0, 1, . . . , k it holds that

∂

∂βj

ly
(
β, σ2

)
=

1

2σ2

∂

∂βj

∥ y −Xβ ∥2= 1

2σ2

∂

∂βj

Q (β)

Hence the maximum likelihood estimate (MLE) β̂ML can be found by solving first w.r.t. β
the equations

1

2

∂Q (β)

∂β
= 0k

Since yTXβ = βTXTy we get

Q (β) = βTXTXβ − 2βTXTy + yTy. (57)

a) Show now that
1

2

∂Q (β)

∂β
|β̂ML

= 0k ⇔ XTXβ̂ML = XTy

Aid: Use the rules in section 9.15.

b) Hence, if X has full column rank, β̂ML equals the LSE β̂ and the LSE residuals are

eLSE = y −Xβ̂ML.

Therefore
Q
(
β̂ML

)
=∥ y −Xβ̂ML ∥2= eTLSEeLSE.

When we substitute this in (56) we get

ly

(
β̂ML, σ

2
)
=

n

2
ln(2π) +

n

2
ln(σ2) +

1

2σ2
eTLSEeLSE.

Find now the MLE σ̂2
ML of σ2.
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c) Test the correctness of your result in b) by verifying that

ly

(
β̂ML, σ̂

2
ML

)
=

n

2
ln(2π) +

n

2
ln(σ̂2

ML) +
n

2
(58)

Problem 4.29.

Y = Xβ∗ + ε ε ∼ Nn

(
0, σ2In

)
.

We have used a training data set

Dtr = {
(
yi,x

T
i

)n
i=1

}

to find the LSE β̂, which determines the hat matrix so that

Ŷ = HY, ε̂ = Y − Ŷ.

a) Show that
ε̂ = (In −H)ε. (59)

b) Set

Z :=
ε

σ
. (60)

Check that Z ∼ Nn (0n, In), i.e., Z is a standard normal vector. Check that now that

ε̂T ε̂

σ2
= ZT (In −H)Z. (61)

Justify in detail. Aid: The formula in (59) may be useful here.

c) The unbiased estimate of variance σ2 is

σ̂2 =
1

n− k − 1
ε̂T ε̂.

Show now that

(n− k − 1)
σ̂2

σ2
∼ χ2 (n− k − 1) . (62)

Aid: Check proposition 9.3 and the section 9.4 for rules on traces.
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5 Properties of the Hat Matrix and Diagnostics of Regres-

sion Models

Let

XR :=


x11 · · · x1k

x21 · · · x2k
...

...
...

xn1 · · · xnk

 (63)

so that the design matrix is partitioned as

X = (1n XR) .

Note that

CceXR =

(
XR − 1

n
1n1

T
nXR

)
=


x11 − x̄1 · · · x1k − x̄k

x21 − x̄1 · · · x2k − x̄k
...

...
...

xn1 − x̄1 · · · xnk − x̄k

 ,

where x̄j =
1
n

∑n
i=1 xij, j = 1, . . . , k. We set

Xc :=


x11 − x̄1 · · · x1k − x̄k

x21 − x̄1 · · · x2k − x̄k
...

...
...

xn1 − x̄1 · · · xnk − x̄k

 (64)

This is the matrix of centered regressor/covariate values.

The exam questions in this subsection are based on the
material in the slides of Lecture 6. We provide a summary
for convenience of reference.

Multiple regression in component form is:

Yi = β0 + β1xi1 + · · ·+ βkxik + εi, i = 1, . . . , n, n > k + 1.

The centered model is

Yi = α + β1 (xi1 − x̄1) + · · ·+ βk (xik − x̄k) + εi, i = 1, . . . , n (65)

where x̄j =
1
n

∑n
i=1 xij, j = 1, . . . , k, and

α = β0 + β1x̄1 + · · ·+ βkx̄k. (66)

Now we can write the equations in (65) in matrix form using (64) as

Y = (1n, Xc)

(
α
βR

)
+ ε. (67)
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where

βR =


β1

β2
...
βk

 , ε =


ε1
ε2
...
εn

 ,

and Xc is given in (64).
It is shown in Lecture 6 that the LSE of the centered model are

α̂ = ȳ

(68)

β̂R =
(
XT

c Xc

)−1
XT

c y

Next, advance from Lecture 6 to the exam questions.

First write (67) as
Y = 1nα +XcβR + ε.

Then the predictor (as a function of the training data) is

ŷ = 1nα̂ +Xcβ̂R

Hence the corrresponding hat matrix is

Hc = Xc

(
XT

c Xc

)−1
XT

c (69)

Problem 5.1.

In view of (68) we have
ŷ = 1nȳ +Xcβ̂R

a) Do some simple steps of matrix calculus to derive the identity

ŷ =

(
1

n
1n1

T
n +Hc

)
y. (70)

(Aid: ȳ = 1
n
1T
ny).

b) Show by (70) that the hat matrix of the non-centered model is

H =
1

n
1n1

T
n +Xc

(
XT

c Xc

)−1
XT

c . (71)

c) Show that the elements hii on the main diagonal of H are given as

hii =
1

n
+ (xi − x̄)T

(
XT

c Xc

)−1
(xi − x̄) . (72)
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where
xT
i = (xi1, xi2 . . . , xik)

is the ith row in XR and
x̄T = (x̄1, x̄2 . . . , x̄k)

is the 1× k vector of means of columns in XR.
Aid: The equation (72) follows from (71), when one takes A = Xc and B =

(
XT

c Xc

)−1
in

(4).

d) Show that hii ≥ 1
n
.

Problem 5.2.

The hat matrix H plays an important part in the diagnostics of linear regression. This is
due to the fact that it determines, as has been shown, the variances and covariances of Ŷ and
the residuals ε̂ (recall (54) and (55).

a)

ŷ =

ŷ1
...
ŷn

 = H

y1
...
yn

 .

We have
ŷi = ET

i ŷ.

Use (2) to write the right hand side of

ET
i ŷ = ET

i Hy

as a finite sum (display the sum) and compute by means of this sum the partial derivative

∂ŷi
∂yi

and interpret hii by this.

b) Show that (6.2)
hii = xT

i (X
TX)−1xi

is the generic element in the main diagonal of the hat matrix H. Aid: The expression (4)
may be useful.

c) In (72) we have shown that the elements hii on the main diagonal of H can also be written
as

hii =
1

n
+ (xi − x̄)T

(
XT

c Xc

)−1
(xi − x̄) . (73)
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In this expression the vector of means x̄ can be regarded as a centroid. Check that for
the simple centered linear regression model the elements of the hat matrix Hc are

hij(c) =
(xi − x̄)(xj − x̄)

Sxx

and hii(c) =
(xi − x̄)2

Sxx

.

Here you start with

Xc :=


x1 − x̄
x2 − x̄

...
xn − x̄

 , (74)

where x̄ = 1
n

∑n
i=1 xi. Check now using (73) that for the simple linear regression

1

n
≤ hii < 1.

Problem 5.3.

This exam item deals with hidden extrapolation on pp. 107− 110 of MPV. On page 110 we
read the following:

a) We have used a training set to find the LSE β̂ regarded as n outcomes of the true model

Y = Xβ∗ + ε

We are predicting the value of the response Y at xT
o = (1, xo1 . . . , xok) by

Ŷ = xT
0 β̂,
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when
Y = xT

0 β∗ + ε.

How does hmax in the quote of MPV above reflect the mean square error of the the random
variable Y − Ŷ ?

b) Explain the problem of hidden extrapolation in predicting new responses and estimating
the mean response at given point x0 in the multiple linear regression. Justify your ex-
planations by sketching the graph and explain how to detect this problem by using the
properties of the hat matrix H = X(X⊤X)−1X⊤.

Problem 5.4.

Leverage is a technical term for the measurement of how far away a 1× k regressor vector
xT
i is from the rest of the regressor vectors in X, i.e., far away in Rk. High-leverage points, if

any, are outliers with respect to the RVH. This makes the predictor likely to pass close to a high
leverage observation. Hence high-leverage points have the potential to cause large changes in
the predictors if they are deleted: if this happens, then they are said to be influential points.
The hii, i.e., the elements of the main diagonal of H, are used as the measures of leverage of
the correspoding vector xi.

a) The distance related to hii reflects basically on the squared and sample based Mahalanobis
distance. By the squared and sample based Mahalanobis distance between a vector xi in
finite set of vectors and its centroid we mean the squared Mahalanobis distance in (13),
when the sample covariance matrix S in (5) is used in place of Σ. We write

d2M (xi, x̄;S) = (xi − x̄)T S−1 (xi − x̄) .

Show that

(n− 1)

(
hii −

1

n

)
= d2M(xi, x̄;S).

b) The predicted residual error sum of squares (PRESS) is one of the techniques of cross-
validation used in linear regression analysis for detecting influential observations.

The PRESS statistic is

PRESS =
n∑

i=1

(yi − ŷ(i))
2.

How is this obtained?

c) Use the formula (derived by Sherman-Morrison-Woodbury theorem, which you need not
to recapitulate or invoke here)

ŷi = hiiyi + (1− hii)ŷ(i),

where hii is the element on the main diagonal of H, to rewrite PRESS so that you only
need to use predictors from full data linear regression. What important property of hiis
is crucial here?
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Problem 5.5.

a) Consider

Ho: β1 = β2 = . . . = βk = 0

and the alternative hypothesis

H1: βj ̸= 0 for at least one βj

What null hypothesis about multiple linear regression are we testing here ?

b) We assume normal multiple linear regression for the hypothesis testing. To test this we
need Hc in the centered model. It has been shown in another problem in this exam
generator that, if Ho is true,

ε̂T ε̂

σ2
∼ χ2 (n− k − 1) . (75)

This is valid even for the centered model. In the same manner we can show that for the
model component of variance that

SSR

σ2
=

ŷTCceŷ

σ2
∼ χ2(k). (76)

This is valid even for the centered model. It has been found that these two quadratic
forms σ̂2 and SSR are independent. It has been shown in another problem that

S1 ∼ χ2 (d1) and S2 ∼ χ2 (d2) are independent. Set

V :=
S1/d1
S2/d2

.

What is the distribution of V ?

c) Explain how the following ANOVA table for multiple linear regression is used to test the
hypotheses above at a significance level α. Remember to state explicitly the test statistic
and its distribution, if Ho is true.
Source df Sum of Squares MSS
Regression k SSR SSR/k
Residual n− k − 1 SSRes SSRes/(n-k-1)

Total n− 1 SST

Source = source of variation, df= degrees of freedom, SS= sum of squares, MSS= mean
sum of squares.
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6 Choice of Regression Models

Problem 6.1.

Consider two models

M1 : E [Y|X1] = X1β1 and M2 : E [Y|X2] = X2β2,

where X1 is n× (k1 + 1), X2 is n× (k2 + 1), β1 is (k1 + 1)× 1, and β2 is (k2 + 1)× 1.
We suppose that the models are nested so that M1 ⊂ M2: more explicitly, X2 = [X1 X̃2],

where X̃2 is n × (k2 − k1). In other words, the first (k1 + 1) columns of X2 are equal to those
of X1.

Denote by β̂1 and β̂2 the least squares estimates of M1 and M2, respectively. Recall that
the LSE errors are

Q(i)
o (β̂i) = ∥y −Xiβ̂i∥2, i = 1, 2.

The question is whether the larger, more flexible model M2 is significantly better than the
more restricted model M1. It has been shown that an F -statistic to decide this question is

FM =

(
Q

(1)
o

(
β̂1

)
−Q

(2)
o

(
β̂2

))
/(k2 − k1)

Q
(2)
o

(
β̂2

)
/(n− k2)

.

In this problem we study the relationship between the F -test and likelihood ratio test of the
the null hypothesis that the true model lies in M1. We have the likelihood functions

Ly

(
βi, σ

2
)
=

1√
(σ22π)n

e−
1

2σ2 ∥y−Xiβi∥2 , i = 1, 2.

The likelihood ratio (LR) statistic is

LR =
maxβ2,σ

2 Ly (β2, σ
2)

maxβ1,σ
2 Ly (β1, σ

2)
. (77)

a) Why does it always hold that LR ≥ 1?

b) The MLEs of σ2 are (you do not need to show this here)

σ̂2
1 =

∑n
j=1 e

2
1,j

n
, σ̂2

2 =

∑n
j=1 e

2
2,j

n

in the models in M1 and M2, respectively. Here (ei,1, . . . , ei,n) are the least squares
residuals w.r.t. model Mi, i = 1, 2. Why does it always hold that

σ̂2
1 ≥ σ̂2

2?
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c) Show that

LR =

(
σ̂2
1

σ̂2
2

)n/2

.

Aid: Use (77) and (58) in an approriate way.

d) Show that FM is a monotone function of LR.

e) The LR test rejects the null hypothesis that the true model lies in M1 if
σ̂2
1

σ̂2
2
> c for a

chosen constant c. The F -test rejects the null hypothesis that the true model lies in M1,
if FM > Fα(k2 − k1, n − k2), the α-percentile. In view of the finding in d) above, what
is the relationship between the F -test and the LR test for the choice of nested multiple
regression models?

Problem 6.2.

This problem deals with Mallows’ Cp criterion for the choice of model dimension in multiple
regression. The main statements below are recapitulated without proof in MPV on pp. 334-335.
The symbol p in MPV is p = k + 1 in this document.

We are faced with multiple regression models Mk, where k is the number of predictors in
the model. The intercept is included in every model; hence M0 is the model with only the
intercept. M is the maximum number of possible predictors in a model. The true model for n
observations of a response variable Y is OLS as in section 9.10 satisfying

Y = Xβ∗ + ε,

where β∗ is a (k∗+1)×1 vector and X is a n×(k∗+1) matrix. The true number of predictors k∗
is unknown. The purpose of developing Mallows’ Cp is to estimate k̂ on the basis of n samples
of Y so that overfitting is avoided.

Fix now any k ∈ {1, . . . ,M}. Then

Ŷ =

Ŷ1
...

Ŷn

 = Hk

Y1
...
Yn

 ε̂ =

ε̂1
...
ε̂n

 = Y −HkY

where Hk is the hat matrix for the model Mk. Thus Hk is

Hk = Xk

(
XT

k Xk

)−1
XT

k ,

where XT
k is a (k + 1)× n matrix. Hence XT

k X is a well-defined (k + 1)× (k∗ + 1) matrix and
HkXβ∗ is a well-defined n× 1 matrix. ε̂ is the vector of LSE residuals computed in the model
Mk, i.e. ε̂(k), but we use a simpler notation for ease of writing.

a) Verify that

E
[
Ŷ
]
= HkXβ∗

Hence
E
[
Ŷi

]
̸= E [Yi] .

and the decomposition (80) has a useful content.
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b) Show that
CŶ = σ2Hk. (78)

c) We have that
E [ε̂] = (In −Hk)Xβ∗.

Show now that
Cε̂ = σ2 (In −Hk) . (79)

d) Check that

E

[(
Ŷi − E [Yi]

)2]
=
(
E
[
Ŷi

]
− E [Yi]

)2
+Var

[
Ŷi

]
. (80)

Aid: Start with E

[(
Ŷi − E [Yi]

)2]
=E

[(
Ŷi − E

[
Ŷi

]
+ E

[
Ŷi

]
− E [Yi]

)2]
. Next, expand

the sum inside the expectation, and then compute the expectation.

e) Show that
n∑

i=1

Var
[
Ŷi

]
= (k + 1)σ2.

Aid: Note that the variances Var
[
Ŷi

]
are the diagonal elements of the covariance matrix

of Ŷ, note (78), and recall Appendix C in the slides of Lecture 3.

f) Show that

E

[
n∑

i=1

ε̂2i

]
=

n∑
i=1

(
E
[
Ŷi

]
− E [Yi]

)2
+ (n− (k + 1))σ2.

Aid: Use a well known formula from the first course for E [ε̂2i ]. Then note (79) and use
the results on slide 58/79 in Lecture 4 as in b) above.

g) Then show that

Γk :=
1

σ2
E

[(
Ŷi − E [Yi]

)2]
=

1

σ2

[
n∑

i=1

(
E
[
Ŷi

]
− E [Yi]

)2
+

n∑
i=1

Var
[
Ŷi

]]

=
1

σ2
E

[
n∑

i=1

ε̂2i

]
− n+ 2(k + 1).

Now Mallows replaces the mean with the sum of residual squares to define the (almost)
final criterion of choice of model dimension as

Ck :=
1

σ2

n∑
i=1

ε̂i(k)
2 − n+ 2(k + 1)
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where ε̂i = ε̂i(k) are the LSE residuals computed in the model Mk, k ∈ {1, . . . ,M}. How
should one estimate σ2 ?

Problem 6.3.

a) Let X be n× (k + 1) and β∗ be (k + 1)× 1 and

Y = Xβ∗ + ε, ε ∼ Nn

(
0, σ2In,

)
Z = Xβ∗ + ν, ν ∼ Nn

(
0, σ2In

)
.

In this ε and ν are independent.

We use a training data set on the responses in Y

Dtr = {
(
yi,x

T
i

)n
i=1

}

to find the LSE β̂. Next we wish to estimate Z by means of

Ẑ = Xβ̂ = HY.

Compute the mean square error per sample of Ẑ as

1

n
E

[(
Z− Ẑ

)T (
Z− Ẑ

)]
= σ2

(
1 +

k + 1

n

)
. (81)

Aid: Expand, use the properties of H, the rule (11) may be useful, too. Compute the
involved traces.

b) The AIC (=Akaike Information Criterion) for model choice in a model family defined by
the p.d.f.s fY (y; θ), where p = dim (θ) is generally given by

AICp = −2 ln fY

(
y; θ̂MLE

)
+ 2 · p. (82)

The best model in the sense of AIC is found by

pAIC = argminp

{
−2 ln fY

(
y; θ̂MLE

)
+ 2 · p

}
.

The assignment here is to apply AIC in multiple linear regression. Consider a family M
of K normal multiple regression models

Mk : E [Y|Xk] = Xkβk, k = 1, 2, . . . , K,

where Xk is n× (k + 1), βi is (k + 1)× 1.

Show that AIC for model choice inM given training setsDtr = {(yi)ni=1 , Xk =
(
xT
(1), . . . ,x

T
(k)

)T
},

xT
(l) =

(
x
(l)
i

)n
i=1

is

AICk = Cn + n ln
(
σ̂2
MLE

)
+ 2 · (k + 1). (83)

4.4 where Cn = n ln(2π) + n. We do not include the variance σ2 in the number of para-
meters, as it is shared by all models.
Aid: You allowed to use, without working out or presenting the details, the relevant results
in Problem 4.28 in section 4.4.
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c) Some statisticians/ data analysts take (81) as a starting point and define an approximate
AIC by

AIC∗
k = σ̂2

MLE

(
1 +

k + 1

n

)
. (84)

Describe concisely how AIC∗
k might incorporate the idea of parsimony, i.e., of optimal

model fit and model complexity underlying the Akaike Information Criterion.

d) Give an approximate relation betweenAICk

n
and a certain function of AIC∗

k. Aid: Approx-
imation ln(1 + x) ≈ x.

7 Generalized Linear Regression

In the problems of this section

xTβ = β0 +

p∑
i=1

βixi

Problem 7.1.

ϵ ∼ Logistic(0, 1), iff its probability density function (pdf) is

σ
′
(x) =

d

dx
σ(x) =

e−x

(1 + e−x)2
.

a) Verify the primitive function ∫
σ

′
(t)dt =

1

1 + e−x
+ C (85)

and determine C. Set

σ(x) :=
1

1 + e−x
.

b) Show that
P (−ε ≤ x) = P (ε ≤ x) . (86)

You may use (85) even if you have failed to show it.

c) Define
Y ∗ = xTβ + ε (87)

and construct

Y =

{
1 if Y ∗ > 0

0 otherwise.

Verify that
P (Y = 1 | x) = σ

(
xTβ

)
.

You may use (86) even if you have failed to show it.
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d) The r.v. Y in this assignment is a special case of generalized linear regression (GLM). The
way to construct a GLM goes via a link function. Present and justify the link function in
this assignment.

Problem 7.2.

Consider the normal multiple least squares model,

Y ∗ = xTβ + ε, (88)

where xT = (1, x1, x2, . . . , xp), β
T = (β0, β1, . . . , βp) and ε ∼ N(0, 1), and is independent of x.

a) Explain why we have
P (−ε ≤ x) = P (ε ≤ x) . (89)

Aid: Let Φ(x) be the cumulative distribution function of N(0, 1) and ϕ(x) be the corre-
sponding pdf. Since ϕ(x) = ϕ(−x), we have

Φ(−x) = 1− Φ(x).

b) Construct

Y =

{
1 if Y ∗ > 0,

0 otherwise.

Verify that
P (Y = 1 | x) = Φ

(
xTβ

)
,

You may use (89) even if you have failed to show it.

c) The r.v. Y in this assignment is a special case of generalized linear regression (GLM). The
way to construct a GLM goes via a link function. Present and justify the link function in
this assignment.

Problem 7.3.

Y is an exponentially distributed random variable with parameter λ > 0, we write Y ∼
Exp(λ), if its probability density function is

f(y;λ) =

{
λe−λy y ≥ 0,

0 y < 0.

λ is sometimes called the rate parameter. We want to construct a generalized linear model
(exponential regression). We know that E [Y ] = 1/λ, this need not be derived here.

a) Find the canonical link function relating xTβ to the mean. What does this require from
xTβ?

b) Write down the probability density function

f(y;xTβ).

c) What is E [Y |x] in exponential regression?
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8 The Woodbury Matrix Identity & Ridge Regression

Problem 8.1.

Woodbury matrix identity is a generalization of the Sherman-Morrison-Woodbury theorem,
and says that

(A+ UCV )−1 = A−1 − A−1U
(
C−1 + V A−1U

)−1
V A−1, (90)

where A, U , C and V are conformable matrices and the required inverses exist. You are not
asked to prove this. By (37) we have the ridge regression estimate

β̂λ =
(
XTX + λIp

)−1
XTy. (91)

Now, apply the Woodbury matrix identity with A = XTX, X has full column rank p = k + 1,
λIp = C, V = U = Ip to express β̂λ as in the right hand side of (90). Or, we find that

β̂λ =
(
XTX

)−1
XTy − CORR (92)

a) What is the expression for CORR?

b) Let next λ → 0. By (91), if X has full column rank,

β̂λ →
(
XTX

)−1
XTy.

Find the limit for β̂λ by means of (92), when λ → 0.
Hint: Use (90) once more in CORR.
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9 Collections of Formulas and Auxiliary Results

9.1 Matrices and Matrix Rules

� A and B conformal, (AB)T = BTAT . A and B invertible, (AB)−1 = B−1A−1.(AT )T = A.

� A and B conformal, (A+B)T= AT +BT

� A is n× n and invertible. (
AT
)−1

=
(
A−1

)T
. (93)

Proof: AT (A−1)
T
= (A−1A)

T
= ITn = In and (A−1)

T
AT = (AA−1)

T
= ITn = In.

Hence, as XTX is k × k, and symmetric(
(XTX)−1

)T
= (XTX)−1 (94)

The n× n identity matrix is

In =


1 0 0 . . . 0
0 1 0 . . . 0

0
. . .

... . . . 0
0 0 0 . . . 1

 . (95)

The n× 1 vector of ones is denoted by

1n =


1
1
...
1

 ∈ Rn. (96)

The centering matrix is

Cce := In −
1

n
1n1

T
n . (97)

9.2 The Range Space (=Column Space) of a Matrix

Let A be any n× p matrix. Then the range space of A is defined by

R (A) = {x ∈ Rn|there exists a b ∈ Rp such that x = Ab} . (98)

Then we have the following statement.

Proposition 9.1. X is an n× (k + 1) matrix with full column rank = k + 1. Then

R
(
XT
)
= R

(
XTX

)
. (99)
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Proof: We show only half of the assertion, namely that

R
(
XTX

)
⊂ R

(
XT
)
. (100)

For that purpose take any w ∈ R
(
XTX

)
. Thus there exists a b ∈ Rk+1 such that

w = XTXb = XT (Xb) = XTc,

where c = Xb ∈ Rn. Thereforew ∈ R
(
XT
)
by definition ofR

(
XT
)
. Hence we have established

(100).

9.3 Projection Matrix

Any n × n matrix P from Rn to a subspace (=range space of P ), R (P ) ⊂ Rn, is a called a
projection matrix, if it is idempotent and symmetric, i.e.,

P 2 = P, P T = P.

9.4 Trace of a Square Matrix

Let A be a square matrix. The trace TrA of A is the sum of the entries in main diagonal:

Tr

a11 · · · a1k
...

. . .
...

ak1 · · · akk

 =
∑k

1 ajj

� 1.If A is a k × n-matrix, and B an n× k-matrix, then Tr(AB) = Tr(BA)

� 2. In particular, if a is a column-vector, then aTa = Tr
(
aaT
)
.

� 3. For any real numbers a and b, Tr(aC + bD) = aTrC + bTrD

Exempel 9.2. The hat matrix H is H = X(XTX)−1XT . Set B = XT and A = X(XTX)−1.
Then

TrH = TrX(XTX)−1XT = TrAB = TrBA,

where we used rule 2.. But BA = XTX(XTX)−1 = Ik+1 (How is k + 1 there?). Thus

TrH = Tr Ik+1 = k + 1.

9.5 Factorization and Square Root of Covariance Matrices

If Σ is an n× n symmetric matrix, then Σ can be written as

Σ = ADAT ,
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where A is an orthogonal matrix (ATA = AAT = In) and D is an n × n diagonal matrix,
with the eigenvalues on the main diagonal. If Σ is a covariance matrix, its eigenvalues λi are
non-negative. Then

Σ1/2 = AD1/2AT ,

where D1/2 is an n× n diagonal matrix, with
√
λi on the main diagonal. One checks now that

Σ1/2Σ1/2 = Σ.
When Σ is positive definite, its eigenvalues are positive and we define

Σ−1/2 = AD−1/2AT , (101)

where D−1/2 is an n×n diagonal matrix, with 1/
√
λi on the main diagonal. Σ−1/2 is symmetric,

since D−1/2 is symmetric. Clearly, D−1/2D−1/2 = D−1. Then

Σ−1 = Σ−1/2Σ−1/2. (102)

9.6 Linear Transformations of Covariance Matrices

E [X+Y] = µX + µY (103)

If Z = AX+ b, then
E [Z] = AµX + b, (104)

and
CZ = ACXA

T . (105)

CX = E
[
XXT

]
− µXµ

T
X (106)

Var
[
aTX

]
= aTCXa (107)

9.7 Generalized Inverse

If a generalized inverse G of A satisfies the four conditions below, then G is called the Bjer-
hammar -Moore-Penrose (BMP) inverse.

MP1 AGA = A

MP2 GAG = G

MP3 (AG)T = AG

MP4 (GA)T = GA
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9.8 Rules of Computation with Finite Sums

(1)
∑n

i=1 xi = x1 + x2 + . . .+ xn.

(2)
∑n

i=1 a · xi = a
∑n

i=1 xi.

(3)
∑n

i=1 (xi + yi) =
∑n

i=1 xi +
∑n

i=1 yi.

(4)
∑n

i=1 (axi + byi) = a
∑n

i=1 xi + b
∑n

i=1 yi

(5)
∑n

i=1 (xi + yi)
2 =

∑n
i=1 x

2
i + 2

∑n
i=1 xiyi +

∑n
i=1 y

2
i .

x := 1
n

∑n
i=1 xi.

(6)
∑n

i=1 (xi − x) = 0.

(7)
∑n

i=1 (xi − x) · (yi − y) =
∑n

i=1 (xi − x) yi =
∑n

i=1 xi (yi − y) .

(8)
∑n

i=1 (xi − x) · (yi − y) =
∑n

i=1 xiyi − nxy.

(9)
∑n

i=1 (xi − x)2 =
∑n

i=1 x
2
i − nx2.

9.9 Simple Linear Regression

9.9.1 The Model

Let

Y =


Y1

Y2
...
Yn

 , X =


1 x1

1 x2
...
1 xn

 ,β =

(
β0

β1

)

be an (n×1)-vector, (n×2)-matrix, and (2×1)-vector, respectively. The simple linear regression
is now given by

Y = Xβ + ε,

where ε = (ε1, . . . , εn)
T is an n× 1 random vector. We assume the following:

1) E [ε] = 0n (= the n× 1 zero vector), i.e., 0n ∈ Rn.

2) The errors are uncorrelated: the covariance matrix Cε of ε = (ε1, . . . , εn)
T is

Cε = σ2In.

3) σ2 does not depend on X.

42



9.9.2 LSE

Q(β0, β1) =
n∑

i=1

(yi − β0 − β1xi)
2

{
∂

∂β0
Q(β̂0, β̂1) = 0

∂
∂β1

Q(β̂0, β̂1) = 0.

β̂0 = y − β̂1x. (108)

∂
∂β1

Q(β̂0, β̂1) = 0 ⇔
∑n

i=1

(
yi − β̂0 − β̂1xi

)
xi = 0.

β̂1 =

∑n
i=1 (yi − y)xi∑n
i=1 (xi − x)xi

. (109)

Let β∗
0 , β

∗
1 denote the true poulation values of the intercept and the regression coefficient.

Assume that
ε = (ε1, . . . , εn)

T ∼ Nn

(
0n, σ

2In
)

Then

β̂0 ∼ N

(
β∗
0 , σ

2

(
1

n
+

x2∑n
i=1(xi − x)2

))
(110)

β̂1 ∼ N

(
β∗
1 ,

σ2∑n
i=1(xi − x)2

)
.

9.10 Multiple Linear Regression

The Ordinary Least Squares Model (OLS)

We have the model
Y = Xβ + ε, (111)

where

X =


xT
1

xT
2
...
xT
n

 =


1 x11 · · · x1k

1 x21 · · · x2k
...

...
. . .

...
1 xn1 · · · xnk

 , β =


β0

β1

β2
...
βk

, ε =


ε1
ε2
...
εn


and we assume the following:

1) E [ε] = 0n (= the n× 1 zero vector), i.e., 0n ∈ Rn.

2) The covariance matrix Cε of ε = (ε1, . . . , εn)
T is

Cε = σ2In. (112)
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3) σ2 does not depend on X.

4) n > k + 1 and X has full rank.

9.11 Normal Linear Regression

OLS with
ε ∼ Nn

(
0n, σ

2In
)

Y = Xβ∗ + ε.

Let X ∼ Nn (µ, C) and Y = BX+ b, B is m× n. Then

Y ∼ Nm

(
Bµ+ b, BCBT

)
. (113)

9.12 Distribution of Quadratic Forms of Normal Vectors

1. X ∼ Nn (µ,Σ) is an n × 1 Gaussian vector, where Σ is positive definite. The quadratic
form is

(X− µ)T Σ−1 (X− µ) .

We use the factorization of Σ−1 in (102) to get

(X− µ)T Σ−1 (X− µ) =
(
Σ−1/2 (X− µ)

)T
Σ−1/2 (X− µ) .

Let Z := Σ−1/2 (X− µ). Then our rules of computation give that Z has the mean vector
E [Z] = 0n and Z has the covariance matrix

CZ = Σ−1/2ΣΣ−1/2 = Σ−1/2Σ1/2Σ1/2Σ−1/2 = In.

Z ∼ Nn (0n, In). Hence

(X− µ)T Σ−1 (X− µ) = ZTZ =
n∑

i=1

Z2
i ∼ χ2(n).

This is Thm 9.1. in Gut, Allan: An Intermediate Course in Probability. Second Edition.
Note that zi ∼ N(0, 1) are indepedent and that a finite sum of squares of independent
standard normal r.v.’s has χ2(n) (chi-squared distribution with n degrees of freedom).

2.

Proposition 9.3. If Z ∼ Nn (0n, In), then

ZTAZ ∼ χ2(r) (114)

if and only if A is an idempotent matrix with rankA = r.
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9.13 Sherman-Morrison-Woodbury Theorem

Suppose A is is an invertible square n × n matrix and u,v ∈ Rn are column vectors. Then
A+ uvT is invertible iff 1 + vTA−1u ̸= 0. In this case,

(
A+ uvT

)−1
= A−1 − A−1uvTA−1

1 + vTA−1u
. (115)

9.14 Fundamental Analysis of Variance Identity
n∑

i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

(yi − ŷi)
2 (116)

is known as the Fundamental Analysis of Variance Identity

n∑
i=1

(yi − ȳ)2 ↔ SST

n∑
i=1

(ŷi − ȳ)2 ↔ SSR regression or model sum of squares

n∑
i=1

(yi − ŷi)
2 ↔ SSRes Residual Sum of Squares

SST = SSR + SSRes (117)

Coefficient of determination

R2 =
SSR

SST

= 1− SSRes

SST

. (118)

9.15 Matrix Derivatives

Let A be a k× k matrix of constants, a be a k× 1 vector of constants, and y be a k× 1 vector
of varaibles.

1. If z = a⊤y, then
∂z

∂y
=

∂a⊤y

∂y
= a.

2. If z = y⊤y, then
∂z

∂y
=

∂y⊤y

∂y
= 2y.

3. If z = a⊤Ay, then
∂z

∂y
=

∂a⊤Ay

∂y
= A⊤a.
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4. If z = y⊤Ay, then
∂z

∂y
=

∂y⊤Ay

∂y
= Ay +A⊤y.

If A is symmetric, then
∂y⊤Ay

∂y
= 2Ay.

9.16 Solution of (20) (for all interested)

We expand using rules of transpose and multiplication

(Y − AX) (Y − AX)T = (Y − AX)
(
YT − (AX)T

)
= YYT −Y(AX)T − AXYT + AX(AX)T .

Now we take the expectations

E
[
YYT −Y(AX)T − AXYT + AX(AX)T

]
= E

[
YYT

]
− E

[
Y(AX)T

]
(119)

−E
[
AXYT

]
+ E

[
AX(AX)T

]
.

Since mean vectors are here zero vectors, we use next (11), i.e., Cov(AX, BY) = ACov(X,Y)BT

with
E
[
Y(AX)T

]
= Cov(Y, AX) = Cov(Y,X)AT = E

[
(YXT

]
AT , (120)

and
E
[
AXYT

]
= Cov(AX,Y) = ACov(X,Y) = AE

[
XYT

]
, (121)

and
E
[
AX(AX)T

]
= Cov(AX, AX) = ACov(X,X)AT = ACXA

T . (122)

By definition
E
[
YYT

]
= CY. (123)

When we insert from (120) -(123) in the right hand side of (119) we get

E
[
(Y − AX) (Y − AX)T

]
= CY

−E
[
YXT

]
AT − AE

[
XYT

]
(124)

+ACXA
T .

Here the expression (19) of the optimal matrix A gives

E
[
YXT

]
AT = Cov(Y,X)AT = Cov(Y,X)(C−1

X )TCov(Y,X)T

= Cov(Y,X)C−1
X Cov(X,Y). (125)
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Here we first invoked (9) by Cov(Y,X)T =
(
Cov(X,Y)T

)T
= Cov(X,Y). Second, we used

(93), as well as the fact that the covariance matrix CX is symmetric. Again by (19),

AE
[
XYT

]
= Cov(Y,X)C−1

X Cov(X,Y). (126)

Finally by (19)

ACXA
T = Cov(Y,X) C−1

X CX︸ ︷︷ ︸
=In

(
Cov(Y,X)C−1

X

)T
= Cov(Y,X)

(
C−1

X

)T
Cov(Y,X)T

By (9), Cov(Y,X)T =
(
Cov(X,Y)T

)T
= Cov(X,Y). We note also again (93) and that the

covariance matrix CX is symmetric. Hence we have found that

ACXA
T = Cov(Y,X)C−1

X Cov(X,Y). (127)

Next we substitute (125), (126) and (127) in the right hand side of (124) we obtain

E
[
(Y − AX) (Y − AX)T

]
= CY

−Cov(Y,X)C−1
X Cov(X,Y)− Cov(Y,X)C−1

X Cov(X,Y)

+Cov(Y,X)C−1
X Cov(X,Y).

= CY − Cov(Y,X)C−1
X Cov(X,Y). (128)

Clearly, the rightmost expression in (128) verifies (20).
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