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PART I: REFRESHMENT

Selected Findings from Preceding Lectures Required in this
Lecture.
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EXQ PYTHAGORAS
′
S THEOREM

Show that
∥ y ∥2=∥ ŷ ∥2 + ∥ eLSE ∥2

The data point y is the hypotenuse of the right-angled triangle in
Rn with the base of predicted/fitted values ŷ and the altitude of
the LSE- residual eLSE . This is next illustrated in a Figure.
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By Courtesy of Puntanen, S. and Isotalo, J. and Styan, GPH:
Formulas Useful for Linear Regression Analysis and Related Matrix
Theory. In the Figure ε̂ ↔ eLSE
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PROJECTION GEOMETRICALLY FOR SIMPLE LINEAR

REGRESSION

From Puntanen S., Styan G.P.H., Isotalo J.: Matrix Tricks for Linear
Statistical Models. Springer 2011.
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LINEAR TRANSFORMATIONS

PROPOSITION

Y and X are random vectors, µY = E [Y], µX = E [X], X has
covariance matrix CX, A and B are m × n matrices. a and b are
vectors of suitable dimension. Then we have

E [X + Y] = µX + µY

Z = AX + b,
E [Z] = AµX + b, (1)

CZ = ACXAT . (2)

CX = E
[
XXT

]
− µXµ

T
X

Var
[
aT X

]
= aT CXa (3)
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y = Xβ + ε

y =


y1
y2
...

yn

 ,X =


xT

1
xT

2
...

xT
n

 =


1 x11 · · · x1k
1 x21 · · · x2k
...

...
. . .

...
1 xn1 · · · xnk



β =


β0
β1
β2
...
βk

, ε =


ε1
ε2
...
εn

 .
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THE (ORDINARY) MULTIPLE LINEAR REGRESSION

MODEL. k > 1 COVARIATES/PREDICTORS

β ∈ Rk+1, n ≥ k + 1.

Y = Xβ + ε. (4)

The following assumptions hold:

1) E [ε] = 0 ∈ Rn

2) Cε = E
[
εεT

]
= σ2In (homoscedasticity)

3) X T X is invertible

The model is called ordinary normal regression model, if
additionally the following the following assumption holds:

4) ε ∈ Nn
(
0, σ2In

)
TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION XX-01 2023 9 / 80



LEAST SQUARES ESTIMATION

Q (β) :=∥ y − Xβ ∥2 (5)

and the LSE is the minimizer

β̂ := argminβQ (β) .

PROPOSITION

If X T X is a positive definite matrix, then

β̂ = (X T X)−1X T y. (6)
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HAT MATRIX

H := X(X T X)−1X T . (7)

ŷ = Hy ∈ sp (X) .

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION XX-01 2023 11 / 80



SUMMARY: ORDINARY MULTIPLE REGRESSION

Y = Xβ∗ + ε. True model (8)

β̂ = (X T X)−1X T Y

E
[
β̂
]
= β∗

C
β̂
= σ2(X T X)−1 (9)

eLSE = y − X β̂ = y − Hy

σ̂2 =
1

(n − k − 1)
eT

LSEeLSE
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SUMMARY: NORMAL (GAUSSIAN) MULTIPLE

REGRESSION

ε ∈ N
(
0, σ2In

)
and β∗ such that

Y = Xβ∗ + ε True model (10)

β̂ = (X T X)−1X T Y

β̂ ∼ Nk+1

(
β∗, σ

2(X T X)−1
)

(11)

eLSE = y − X β̂ = y − Hy

σ̂2 =
1

(n − k − 1)
eT

LSEeLSE (12)
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σ̂2 =
1

(n − k − 1)
eT

LSEeLSE (13)

The χ2 distribution of the quadratic form in the LSE residuals
determing σ̂2, eT

LSEeLSE , will be eventually derived for the normal
multiple regression in this Lecture.
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PART II

Gauss-Markov Theorem
Gauss–Markov theorem states that β̂ = (X T X)−1X T Y has
uniquely the lowest variance within the class of linear unbi-
ased estimators
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GAUSS-MARKOV THEOREM

PROPOSITION

Let β̃ be any unbiased linear estimator of β∗. Let
β̂ = (X T X)−1X T Y, i.e. the unbiased ordinary LSE. Then it holds for
an arbitrary (k + 1)× 1 vector a that

Var
[
aT β̃

]
≥ Var

[
aT β̂

]
. (14)

If Var
[
aT β̃

]
= Var

[
aT β̂

]
, then β̃ = β̂.
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Proof: Let β̃ = BY + go be another unbiased linear estimator,
where go is a (k + 1)× 1 vector. Unbiasedness means that
E
[
β̃
]
= β∗. On the other hand, by the rule (1) and the true

model (8) above

E
[
β̃
]
= E [BY + go] = BE [Y] + go = BXβ∗ + go.

For unbiasedness it must hold that

BX = Ik+1,go = 0k+1 (15)

Now we take without loss of generality that

B = (X T X)−1X T + G. (16)

Then
BX = (X T X)−1X T X + GX = Ik+1 + GX . (17)

In view of (15) it holds that

GX = 0k+1. (18)
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Next we find the covariance matrix of β̃. By the rule (2) and the
true model (8)

Cβ̃ = BCYBT = σ2BBT .

Here

BBT =
(
(X T X)−1X T + G

)(
(X T X)−1X T + G

)T

=
(
(X T X)−1X T + G

)(
X(X T X)−1 + GT

)
= (X T X)−1 X T X(X T X)−1︸ ︷︷ ︸

=Ik+1

+(X T X)−1 X T GT︸ ︷︷ ︸
=0T

k+1

+ GX︸︷︷︸
=0k+1

(X T X)−1 + GGT ,

where we used (18) twice, since X T GT = (GX)T = 0T
k+1.
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Thus
Cβ̃ = σ2

(
(X T X)−1 + GGT

)
(19)

Let now a be an arbitrary (k + 1)× 1 vector. By (3) and (19)

Var
[
aT β̃

]
= aT Cβ̃a = σ2aT (X T X)−1a + σ2aT GGT a (20)

Put z = GT a. Then aT GGT a = zT z =∥ z ∥2≥ 0. Hence

Var
[
aT β̃

]
≥ σ2aT (X T X)−1a. (21)

Due to (9) we have σ2aT (X T X)−1a = aT C
β̂

a. Again, by the rule

(2) we have aT C
β̂

a = Var
[
aT β̂

]
. In other words, in (21)

Var
[
aT β̃

]
≥ Var

[
aT β̂

]
,

which is (14).
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Next we prove uniqueness of β̂ as stated in the theorem. We
have found in (20)

Var
[
aT β̃

]
= Var

[
aT β̂

]
+ σ2aT GGT a

Hence if Var
[
aT β̃

]
= Var

[
aT β̂

]
, we have for any a the equality

aT GGT a = 0.

As above we set z = GT a, and then aT GGT a = zT z =∥ z ∥2= 0. But
a norm is point-separating, i.e., ∥ z ∥2= 0 implies that z = 0k+1.
Thus GT a = 0k+1 for every a. Hence, we are allowed to take a as
the standard basis vector Ej = (0, . . . , 0, 1︸︷︷︸

position j

, 0 . . . , 1)T , so that

GTEj is the j:th row of G, which is = 0T
k+1. In this way we recognize

that every row in G is the zero vector 0T
k+1.
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Hence G = 0, = the (k + 1)× n zero matrix, and by (16) it follows
that

B = (X T X)−1X T .

Hence we have shown that Var
[
aT β̃

]
= Var

[
aT β̂

]
, implies β̃ = β̂,

i.e., the asserted uniqueness property.

COROLLARY

For j = 0, . . . , k
Var

[
β̃j

]
≥ Var

[
β̂j

]
.

Proof: Use the standard basis vectors
Ej = (0, . . . ,0, 1︸︷︷︸

position j

, 0 . . . , 1)T in (14) for j = 0, . . . , k .
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REMARK

The preceding proofs of the proposition and its corollary do not
require the multivariate normal distribution, and the
Gauss-Markov theorem is thus valid for any ordinary multiple LSE.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION XX-01 2023 22 / 80



PREDICTION IN REAL TIME
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PREDICTION IN REAL TIME

A common situation is that we want to forecast a new value yn+1

based on the values of the x- covariates. If we have the LSE β̂ of
β∗ , then an unbiased (to be shown) prediction is

ŷn+1 = xT
n+1β̂, where xT

n+1 = (1, xn+11, . . . , xn+1k)

We can think of prediction in real time. We have observed the
responses y1 . . . , yn, up to time n and wish to predict the next
value, yn+1. We assume, of course, that the underlying “true”
mechanism generating data is unchanged in the sense that
yn+1 is an outcome of

Yn+1 = xT
n+1β∗ + ϵn+1.

Note that ϵn+1 is assumed to be independent of ε = (ϵ1 . . . , ϵn)
T .
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PREDICTION IN REAL TIME

In order to simplify writing (and to accomodate to other possible
cases of prediction) we set

ŷ = ŷn+1,x = xn+1, e = ϵn+1,Yn+1 = xTβ∗ + e.
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PREDICTION IN REAL TIME: ERROR

Let us proceed to calculate the prediction error Yn+1 − ŷ . We
have

Yn+1 − ŷ = xTβ∗ + e − xT β̂ = xT
(
β∗ − β̂

)
+ e

We see that the expected prediction error equals zero

E
[
Yn+1 − ŷ

]
= xT E

[(
β∗ − β̂

)]
+ E [e] = 0,

as β̂ is unbiased and e ∼ N(0, σ2). Next apply

β̂ = (X T X)−1X T Y = (X T X)−1X T (Xβ∗ + ε) = β∗ + (X T X)−1X Tε

to get
Yn+1 − ŷ = −xT (X T X)−1X Tε+ e.

Note that e ∼ N(0, σ2) and ε ∼ Nn
(
0, σ2In

)
.
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MEAN SQUARE ERROR (MSE) OF PREDICTION IN

REAL TIME

We strive to compute MSE := E
[
(Yn+1 − ŷ)2

]
. Here xT (X T X)−1X Tε

is a univariate r.v.. We square to get

(Yn+1 − ŷ)2 =
(

xT (X T X)−1X Tε
)2

− 2
(

xT (X T X)−1X T ϵ
)
· e + e2. (22)

ϵ and e are independent, hence

E
[(

xT (X T X)−1X T ϵ
)
· e

]
= xT (X T X)−1X T E [ϵ] · E [e] = 0. (23)
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MEAN SQUARE ERROR (MSE) OF PREDICTION IN

REAL TIME

Since wT x = xT w holds for scalar products

E
[(

xT (X T X)−1X Tε
)2

]
= E

[
xT (X T X)−1X Tε · xT (X T X)−1X Tε

]
= E

[
xT (X T X)−1X Tε ·

(
X(X T X)−1x

)T
ε

]
= E

[
xT (X T X)−1X TεεT

(
X(X T X)−1x

)]
= xT (X T X)−1X T E

[
εεT

]
︸ ︷︷ ︸
=σ2In

(
X(X T X)−1x

)

= σ2xT (X T X)−1x (24)
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MEAN SQUARE ERROR (MSE) OF PREDICTION IN

REAL TIME

Since E
[
e2

]
= σ2, (22), (23) and (24) entail

MSE := E
[
(Yn+1 − ŷ)2

]
= σ2

(
xT

n+1(X
T X)−1xn+1 + 1

)
By (9) and (3)

MSE = xT
n+1C

β̂
xn+1 + σ2 = Var

[
xT

n+1β̂
]
+ σ2.

By the Gauss-Markov Theorem, there is no linear unbiased
one-step predictor in real time with smaller MSE.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION XX-01 2023 29 / 80



AN EXAMPLE OF PREDICTION IN REAL TIME:
QUALITY OF WINE GIVEN WEATHER PREDICTOR

DATA IN THE CURRENT YEAR (n + 1) BEFORE

CRUSHING, EXTRACTION, FERMENTATION E.T.C..

We do ordinary multiple regression with three predicting
variables x1, x2, x3, and Y = quality of wine, observed up to year
n with

x1 = Precipitation during the winter months

x2 = Average temperature during growing season

x3 = Precipitation during harvesting season

These are now the variables xT
n+1 = (1, xn+11, xn+12, xn+13).
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MULTIPLE LINEAR REGRESSION: QUALITY OF

WINE

Statistical predictor (SPR) for prediction of the annual quality of
Bordeaux wine (i.e., before anyone has tasted it) due to Orley
Ashenfelter1 is

ŷn+1 = xT
n+1β̂, where xT

n+1 = (1, xn+11, xn+12, xn+13)

with
β̂ = (12.145, 0.00117, 0.0614, 0.00386)T

Wine Quality = 12.145 + 0.00117x1 + 0.0614x2 − 0.00386x3

This is reported to be a succesful predictor, but is met with resent
and embarrasment by many excellent experts on wine tasting.

1Ashenfelter, Orley: Predicting the quality and prices of Bordeaux wine.
Journal of Wine Economics, 5, 1, 40−52, 2010
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A Pocket Book on SPR

For Orley Ashenfelter,s SPR for the quality of wine see also
I.Ayres:Super Crunchers. How anything can be predicted. John
Murray (Publishers), Paperback edition 2008, London.
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A quote from I.Ayres: Super Crunchers

For a very wide range of prediction problems, statistical pre-
diction rules (SPRs), often rules that are very easy to imple-
ment, make predictions that are as reliable as, and typically
more reliable than, human experts. The success of SPRs forces
us to reconsider our views about what is involved in under-
standing, explanation, and good reasoning.

(AI ?)
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CLIMATE PREDICTION JAPAN METEOROLOGICAL

AGENCY (JMA).

For the setting of JMA2 we think first of

y(t) = β0 + β1x1(t) + · · ·+ βkxk(t) + ε(t)

where t is continuous time. y(t) is the temperature (oC) in Tokyo
at time t . The design: we sample these responses and covariates
at n times t1, . . . , tn (winter) and set yi = y (ti), xij = xj (ti), εi = ε (ti)
for i = 1, . . . , tn j = 1, . . . , k . Hence we obtain the ordinary multiple
regression equations:

yi = β0 + β1xi1 + · · ·+ βkxik + εi , i = 1, . . . ,n,

2Source: Statistical Methods for long-range forecast. By Syunji Takahashi /
Climate Prediction Division/ JMA
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CLIMATE PREDICTION DIVISION JMA
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The confidence intervals in the next figure are to be derived
later.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION XX-01 2023 36 / 80



SOURCE: STATISTICAL METHODS FOR

LONG-RANGE FORECAST. BY SYUNJI TAKAHASHI

CLIMATE PREDICTION DIVISION JMA
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PART III: COEFFICIENT OF DETERMINATION

R2 =
β̂

T
X T y − nȳ2

yT y − nȳ2

R2 is the fraction of response variance that is captured by the
model.
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Auxiliaries on LSE Residuals eLSE

ε = Y − Xβ true residuals, unobservable r.v.

ε̂ = Y − X β̂ observed LSE residuals as a random vector

eLSE = y − X β̂ = y − Hy = y − ŷ observed outcome of ε̂ ,
eLSE = (ê1, ê2, . . . , ên)

T .
X T eLSE = 0k (Check this!). When you look at the scalar
product of the first row in X T and eLSE this means

n∑
i=1

êi = 0. (25)

Since ŷi = yi + êi , (25) gives

1
n

n∑
i=1

ŷi = ȳ . (26)
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Fundamental Analysis of Variance Identity

LEMMA

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

(
ŷi − ȳ

)2
+

n∑
i=1

ê2
i (27)

Proof: Let 1n be the n × 1 vector with all entries equal to 1. We
need first to study the n × n centering matrix Cce defined by

Cce := In − 1
n

1n1T
n.

It has been discussed earlier that Cce is idempotent and
symmetric.
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Fundamental Analysis of Variance Identity

Take next an n × 1 vector a. Then

Ccea = Ina − 1
n

1n1T
na = a −

∑n
i=1 ai

n


1
1
...
1

 =


a1 − ā
a2 − ā

...
an − ā

 . (28)
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Fundamental Analysis of Variance Identity

We compute the quadratic form aT Ccea. Idempotency,
symmetry and (28) entail

aT Ccea = aT CceCcea =
(

CT
cea

)T
Ccea

= (Ccea)T Ccea =
n∑

i=1

(ai − ā)2 ,

that is

aT Ccea =
n∑

i=1

(ai − ā)2 . (29)
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Fundamental Analysis of Variance Identity

We have y = Hy + eLSE , where ŷ = Hy. Thus

Ccey = Cceŷ + CceeLSE .

Since
∑n

i=1 êi = 0, see (25) above, we have

CceeLSE = eLSE − 1
n

1n 1T
neLSE︸ ︷︷ ︸

=
∑n

i=1 êi=0

= eLSE .

i.e.,
CceeLSE = eLSE . (30)

Hence
yT Cce = ŷT Cce + eT

LSE .
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Fundamental Analysis of Variance Identity

yT Cce = ŷT Cce + eT
LSE . Then we multiply and use symmetry,

idempotency and (30)

yT CceCcey =
(

ŷT Cce + eT
LSE

) (
Cceŷ + eLSE

)
= ŷT CceCceŷ + ŷT CceeLSE︸ ︷︷ ︸

=eLSE

+ eT Cceŷ︸ ︷︷ ︸︷ ︸︸ ︷
= (CT

ceeLSE)
T ŷ = (CceeLSE)

T ŷ = eT
LSE ŷ

+eT
LSEeLSE

= ŷT Cceŷ + ŷT eLSE + eT
LSE ŷ + eT

LSEeLSE . (31)
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Fundamental Analysis of Variance Identity : THE

FINAL RESULT

We have found:

yT CceCcey = ŷT Cceŷ + ŷT eLSE + eT
LSE ŷ + eT

LSEeLSE . (32)

yT CceCcey = yT Ccey =
∑n

i=1 (yi − ȳ)2 by idempotency and
(29).

ŷT Cceŷ =
∑n

i=1

(
ŷi − ¯̂y

)2
, again by (29) and by (26).

eT
LSE ŷ = ŷT eLSE = 0, since the LSE residuals are orthogonal to

ŷ = Hy, as found in Lecture 3.
eT

LSEeLSE =
∑n

i=1 ê2
i by definition of the scalar product.

Hence (27) holds, as claimed.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION XX-01 2023 45 / 80



Fundamental Analysis of Variance Identity : THE

QUADRATIC FORMS

The Fundamental Analysis of Variance Identity in (32) is thus also
written as

yT Ccey︸ ︷︷ ︸
=SST

=
n∑

i=1

(
ŷi − ¯̂y

)2

︸ ︷︷ ︸
SSR

+eT
LSEeLSE︸ ︷︷ ︸
=SSRes

. (33)

We have found that

n∑
i=1

(
ŷi − ȳ

)2
=

n∑
i=1

(
ŷi − ¯̂y

)2

The decomposition (33) will turn out to be important in Lecture 5,
once we can represent SSR as a quadratic form, too.
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Fundamental Analysis of Variance Identity :
ILLUSTRATION

By Courtesy of: Puntanen, S. and Isotalo, J. and Styan, GPH
Formulas Useful for Linear Regression Analysis and Related Matrix
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COEFFICIENT OF DETERMINATION, R2

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

(
ŷi − ȳ

)2
+

n∑
i=1

ê2
i

The coefficient of determination R2 is defined by

R2 def
=

∑n
i=1

(
ŷi − ȳ

)2∑n
i=1 (yi − ȳ)2 .

This was defined for simple linear regression in Lecture 1, but we
have now seen that this makes sense for ŷ computed in multiple
regression, roo. We shall now show that

R2 =
β̂

T
X T y − nȳ2

yT y − nȳ2 (34)
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R2 =

∑n
i=1

(
ŷi − ȳ

)2∑n
i=1 (yi − ȳ)2 .

The equality
∑n

i=1 (yi − ȳ)2 = yT y − nȳ2 is rule (9) in Appendix C of
the slides for Lecture 1. By the same rule we get

n∑
i=1

(
ŷi − ȳ

)2
= ŷT ŷ − nȳ2.

We have ŷ = Hy = X β̂. Hence
n∑

i=1

(
ŷi − ȳ

)2
= β̂

T
X T X β̂ − nȳ2

= β̂
T
X T X(X T X)−1X T y − nȳ2

= β̂
T
X T y − nȳ2.

Hence we have (34).
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We can hence write the regression or model sum of squares as

SSR = β̂
T
X T y − nȳ2. (35)
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PART IV: STATISTICAL PROPERTIES OF THE LSE
RESIDUALS

ε = Y − Xβ∗ true residuals, unobservable r.v.

ε̂ = Y − X β̂ observed LSE residuals as a random vector

The statistical properties of ε̂ are studied in this part of the
lecture.
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PART IV: STATISTICAL PROPERTIES OF THE LSE
RESIDUALS: EXPECTATION

PROPOSITION

E [ε̂] = 0n. (36)

Proof: We use the hat matrix to write ε̂ = Y − X β̂ = Y − HY =
(In − H)Y , that is

ε̂ = (In − H)Y . (37)

Then
E [ε̂] = (In − H) E [Y ] =

and the rule (1) with the true model

= (In − H) (Xβ∗ + E [ε])

= (In − H)Xβ∗ = Xβ∗ − HXβ∗

But HX = X(X T X)−1X T X = X . Hence (39) follows.
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PART IV: STATISTICAL PROPERTIES OF THE LSE
RESIDUALS: COVARIANCE MATRIX

PROPOSITION

Cε̂ = σ2 (In − H) . (38)

Proof: By (37) and the rule (2) for covariance matrices of linearly
mapped random vectors

Cε̂ = (In − H)CY (In − H)T

But in the true model, CY = σ2In. Hence

Cε̂ = σ2 (In − H) (In − H)T = σ2 (In − H) (In − H) = σ2 (In − H) ,

where we used the symmetry and idempotency of In − H
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PART IV: STATISTICAL PROPERTIES OF THE LSE
RESIDUALS: MULTIVARIATE NORMAL

DISTRIBUTION
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PROPOSITION

In the normal true model

ε̂ ∼ Nn

(
0n, σ

2 (In − H)
)
. (39)

Proof: The two preceding propositions give the mean vector and
covariance matrix as stated. In the true normal model
Y ∼ Nn

(
Xβ∗, σ

2In
)
. Since ε̂ = (In − H)Y , the random vector ε̂ has

a normal distribution.
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REMARK

Since
ε̂ ∼ Nn

(
0n, σ

2 (In − H)
)
,

we find on the main diagonal that

Var (ε̂i) = σ2 (1 − hii) .

Because a variance is nonnegative, it must hold that hii ≤ 1. It
will be shown later that 0 < hii < 1, since H is idempotent.
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DISTRIBUTIONS OF QUADRATIC FORMS OF

NORMAL VECTORS

We shall next study the statistical properties of the quadratic form

ε̂T ε̂

It is shown below that ε̂ = (In − H)Y = (In − H) ε. We choose now
to continue with

ε̂ = (In − H) ε,

since ε is a normal vector with n independent components. First
we collect some facts about In − H.
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Properties of In − H

In − H is symmetric and idempotent. (Check ! ) Hence In − H
is singular (has no inverse matrix) by an Appendix to Lecture
3.

Set A = X(X T X)−1, B = X T . By the rule 2. in Appendix B,

Tr H = Tr AB = Tr BA = Tr X T X(X T X)−1 = Tr Ik+1 = k + 1.

Hence by rule 3. in Appendix B,

Tr (In − H) = Tr In − Tr H = n − (k + 1). (40)

In − H is positive semidefinite by Appendix XXX below

Since In − H is positive semidefinite, it follows from (40) by a
result in Appendix XXX below that

rank (In − H) = n − (k + 1). (41)
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DISTRIBUTIONS OF QUADRATIC FORM OF NORMAL

VECTORS

X ∼ Nn (µ,Σ) is an n × 1 Gaussian vector, where Σ is positive
definite. The quadratic form is

(X − µ)T Σ−1 (X − µ) .

We use the factorization of Σ−1 in (46) of Appendix XXXX to
get

(X − µ)T Σ−1 (X − µ) =
(
Σ−1/2 (X − µ)

)T
Σ−1/2 (X − µ) .

Let Z := Σ−1/2 (X − µ). Then our rules of computation give
that Z has the mean vector E [Z ] = 0n and Z has the
covariance matrix

CZ = Σ−1/2ΣΣ−1/2 = Σ−1/2Σ1/2Σ1/2Σ−1/2 = In.
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DISTRIBUTIONS OF QUADRATIC FORM OF NORMAL

VECTORS

I.e., Z ∼ Nn (0n, In). Hence

(X − µ)T Σ−1 (X − µ) = ZT Z =
n∑

i=1

Z2
i ∼ χ2(n).

This is Thm 9.1. in Gut, Allan:An Intermediate Course in
Probability. Second Edition. Note that zi ∼ N(0, 1) are
indepedent and that a finite sum of sauares of independent
standard normal r.v.’s has χ2(n) (chi-squared distribution with n
degrees of freedom) (as follows by moment generating
functions, c.f., the textbook by Allan Gut).
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CHI-SQUARE

DEFINITION

X1, . . . ,Xn are i.i.d., Xi ∼ N(0, 1).

W =
n∑

i=1

X2
i .

W has the chi-square distribution with n degrees of freedom,
symbolically W ∼ χ2(n)

The pdf of W is

f (x ; n) =


x

n
2−1e− x

2

2
n
2 Γ

(n
2

) , x > 0;

0, otherwise.

Here Γ(.) is the Gamma function.
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DISTRIBUTIONS OF A QUADRATIC FORM OF OLS
RESIDUALS IN THE NORMAL MULTIPLE

REGRESSION

The purpose of all this is to determine the statistical distribution of
the unbiased estimator of σ2 found earlier as the random
variable3

σ̂2 =
1

(n − k − 1)
ε̂T ε̂.

3σ̂2 in (12) is the outcome of the current quadratic form
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DISTRIBUTION OF THE ESTIMATOR OF VARIANCE

IN THE NORMAL MULTIPLE REGRESSION

(n − k − 1)
σ̂2

σ2 ∼ χ2(n − k − 1) (42)

χ2(n − k − 1) is the chi-squared distribution with n − k − 1
degrees of freedom.

We shall now establish this important fact.

We have by definition of σ̂2

(n − k − 1)
σ̂2

σ2 =
ε̂T ε̂

σ2 .
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DEGREES OF FREEDOM ?

(n − k − 1)
σ̂2

σ2 =
ε̂T ε̂

σ2 ∼ χ2(n − k − 1) (43)

is now our claim to be proved. We start by re-checking from
Lecture 3 that ε̂ = (In − H) ε .
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By the true model and the hat matrix H = X(X T X)−1X T

ε̂ = (In − H)Y = (In − H) (Xβ∗ + ε)

= Xβ∗ + ε− HXβ∗ − Hε = Xβ∗ + ε− X(X T X)−1X T Xβ∗ − Hε

= Xβ∗ + ε− Xβ∗ − Hε

= (In − H) ε
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DISTRIBUTIONS OF A QUADRATIC FORM OF OLS
RESIDUALS IN THE NORMAL MULTIPLE

REGRESSION

Hence

(n − k − 1)
σ̂2

σ2 =
ε̂T ε̂

σ2 =
εT (In − H)T (In − H) ε

σ2 .

The preceding argument about χ-square distribution of
quadratic forms has to be revised, when dealing with

εT (In − H)T (In − H) ε

σ2

for the obvious reason that In − H is not invertible.
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We quote

PROPOSITION

If Z ∼ Nn (0n, In), then
ZT AZ ∼ χ2(r) (44)

if and only if A is an idempotent matrix with rank A = r .

This is Corollary 1 to Theorem 5.5 on pp. 117−118 in Rencher,
Alvin C and Schaalje, G Bruce: Linear Models in Statistics, 2008.
The proof in loc.cit. is based on the moment generating function
of the quadratic form. Details are omitted here.
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DISTRIBUTION OF A QUADRATIC FORM OF OLS
RESIDUALS IN THE NORMAL MULTIPLE

REGRESSION

We apply this with A = In − H and Z := ε
σ . Then (check this)

Z ∼ Nn (0n, In) and

εT (In − H)T (In − H) ε

σ2 = ZT (In − H)T (In − H) Z.

By the proposition 7 above we have by idempotency and the
previous computation of rank(In − H)

1
σ2 ε̂

T ε̂ = ZT (In − H)T (In − H) Z = ZT (In − H) Z ∼ χ2(n − k − 1)

as was to be proved.
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APPENDIX A
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APPENDIX B : TRACE OF A SQUARE MATRIX

Let A be a square matrix. The trace Tr A of A is the sum of the
entries in main diagonal:

Tr

a11 · · · a1k
...

. . .
...

ak1 · · · akk

 =
∑k

1 ajj

The following facts are easily established; the proofs are left as
exercises:

1.If A is a k × n-matrix, and B an n × k-matrix, then
Tr(AB) = Tr(BA)

2. In particular, if a is a column-vector, then aT a = Tr
(
aaT

)
.

3. For any real numbers a and b,
Tr(aC + bD) = a Tr C + b Tr D
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APPENDIX : WONDERINGS
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A WONDERING

We have also the identity Y = Ŷ + ε̂, where Ŷ = HY. Then

ε̂ = (In − H)Y =

= Ŷ + ε̂− HŶ − Hε̂ = Ŷ + ε̂− HHY − Hε̂

= HY + ε̂− HY − Hε̂

= (In − H) ε̂ = ε̂,

as Hε̂ = X(X T X)−1X T ε̂ = 0n, since

X T ε̂ = X T
(

Y − Ŷ
)
= X T (Y − HY)

= X T Y − X T HY = X T Y − X T X(X T X)−1X T Y = X T Y − X T Y = 0k+1.
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FACTORIZATION AND SQUARE ROOT OF

COVARIANCE MATRICES

If Σ is an n × n symmetric matrix, then Σ can be written as

Σ = ADAT ,

where A is an orthogonal matrix (AT A = AAT = In) and D is an
n × n diagonal matrix, with the eigenvalues on the main
diagonal. If Σ is a covariance matrix, its eigenvalues λi are
non-negative. Then

Σ1/2 = AD1/2AT ,

where D1/2 is an n × n diagonal matrix, with
√
λi on the main

diagonal. One checks now that Σ1/2Σ1/2 = Σ.
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FACTORIZATION AND SQUARE ROOT OF

COVARIANCE MATRICES

When Σ is positive definite, its eigenvalues are positive and we
define

Σ−1/2 = AD−1/2AT , (45)

where D−1/2 is an n × n diagonal matrix, with 1/
√
λi on the main

diagonal. Σ−1/2 is symmetric, since D−1/2 is symmetric. Clearly,
D−1/2D−1/2 = D−1. Then

Σ−1 = Σ−1/2Σ−1/2. (46)
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APPENDIX D: ON SYMMETRIC IDEMPOTENT

MATRICES
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For A positive semidefinite,

rank A = the number of positive eigenvalues of A. (47)

For any square A

Tr A = the sum of eigenvalues of A. (48)
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If A is a singular, symmetric and idempotent, then A is positive
semidefinite.

Proof: By symmetry A = AT , and by idempotency A2 = A.
Then

A = A2 = AA = AAT .

But then

xT Ax = xT AAT x =
(

AT x
)T

AT x =∥ Ax ∥2≥ 0.
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EIGENVALUES OF A SYMMETRIC AND IDEMPOTENT

MATRIX

If A is an n × n symmetric and idempotent matrix with rank A = r ,
then A has r eigenvalues equal to 1 and n − r eigenvalues equal
to 0.

Proof: Let x satisfy Ax = λx. Then

A2x = A(Ax) = λAx = λ2x.

Also
A2x = Ax = λx.

That is, λ2x = λx ⇔ (λ− λ2)x = 0. But an eigenvector is not
the zero vector. Hence (λ− λ2) = λ(1 − λ) = 0, which holds
for λ = 0 and λ = 1.
Since A is positive semidefinite, by (47) there are r
eigenvalues equal to 1 and n − r eigenvalues equal to 0.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION XX-01 2023 78 / 80



EIGENVALUES OF A SYMMETRIC AND IDEMPOTENT

MATRIX

If A is an n × n symmetric and idempotent matrix with rank A = r ,
then Tr A = r .

Proof: This follows by (48), as by the preceding statement the
sum eigenvalues of A is r .
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The following can be established without direct reference to
momentgenerating functions, as shown next.

PROPOSITION

If Z ∼ Nn (0n, In) and A is an idempotent matrix with rank A = r ,
then

ZT AZ ∼ χ2(r). (49)

Proof: Söderström -Stoica: System Identification. Prentice Hall,
1986.
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