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SEAL, HILARY L: STUDIES IN THE HISTORY OF

PROBABILITY AND STATISTICS. XV THE

HISTORICAL DEVELOPMENT OF THE GAUSS LINEAR

MODEL, BIOMETRIKA, 1967

Regression analysis is regarded as one of the oldest and most
time-tested topics in mathematical statistics. The earliest form of
the linear regression was the least squares method, which was
published by Adrien-Marie Legendre, in 1805, and by Georg
Friedrich Gauss in 1809. Legendre and Gauss both applied the
method to the problem of determining, from astronomical
observations, the orbits of bodies about the sun.
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Nowadays, linear regression plays an important role, e.g., in
machine learning. The linear regression algorithm is one of the
fundamental supervised machine-learning algorithms due to its
relative simplicity and well-known properties.

Multiple Linear Regression is a special instance of
Feedforward Neural Networks with a single layer, to be seen
later.
Graph Regression
Control Engineering (System Identification), Signal
Processing, Time Series Analysis
Genetic Epidemiology
Econometrics
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THE TEXTBOOK

D. Montgomery, E. Peck, G. Vining: Introduction to Linear
Regression Analysis. WileyInterscience, 5th Edition (2012).
ISBN-10: 978-0-470-54281-1. 645 pages.
Acronym in the sequel: MPV. MPV is digitally available via KTHB.

There is a complete solutions manual : D. Montgomery, E. Peck,
G. Vining: Solutions Manual to accompany Introduction to Linear
Regression Analysis. 5th Edition, also digitally available via KTHB.
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MATRIX CALCULUS FORMUAS FOR LINEAR

REGRESSION ANALYSIS (DIGITALLY AVAILABLE AT

KTHB)
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SIMPLE LINEAR REGRESSION

The theory and practice of regression deals with the following
situation: There are n pairs of values (real numbers)

Dtr = {(x1, y1), . . . , (xn, yn)}

yi : values of a dependent variable y a.k.a. called the
’outcome’ or ’response’ variable, or a ’label’ in machine
learning jargon.

xi : values of an independent variable x a.k.a ’predictor’,
’covariate’, ’explanatory variable’ or ’feature’.

y = β0 + β1x (1)

is called the theoretic line of regression. This line is not likely
to hold exactly in Dtr . The idea is to fit a line of this kind to the
data in Dtr in an approximate sense. We see next how this is
done.
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SIMPLE LINEAR REGRESSION & LEAST SQUARES

1.

We fit a line like the theoretic line of regression by estimating the
parameters β0 and β1 by the Method of Least Squares, i.e. we
minimize the sum of the squared vertical distances between the
theoretic line and values of the response y , i.e., we minimize

Q(β0, β1) =
n∑

i=1

(yi − β0 − β1xi)
2

This is also known (as a special case of) Ordinary Least Squares
(OLS) regression
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LSE: VERTICAL DISTANCES1
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1by Courtesy of James, Gareth and Witten, Daniela and Hastie, Trevor and
Tibshirani, Robert An introduction to statistical learning, Chapter 3
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FITTING: SIMPLE LINEAR REGRESSION & LEAST

SQUARES 2.

Q(β0, β1) =
n∑

i=1

(yi − β0 − β1xi)
2

β0 in is called the intercept, β1 is the slope. The values β̂0 and β̂1
attaining the minimum are known as the Least Squares-Estimates
(LSE) of β0 and β1, respectively.
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FITTING: WHY NOT?

Q̄(β0, β1) =
n∑

i=1

| yi − β0 − β1xi |
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FITTING: SIMPLE LINEAR REGRESSION & LEAST

SQUARES 3.

Q(β0, β1) =
n∑

i=1

(yi − β0 − β1xi)
2

By a straightforward partial differentiation w.r.t β0 och β1 followed
by setting the partial derivatives equal to 0, and by solving the
resulting system of two linear equations, we find (c.f. Appendix
D) that the LSE are β̂1 and β̂0 given by

β̂0 = y − β̂1x and β̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
,

where x = 1
n
∑n

i=1 xi and y = 1
n
∑n

i=1 yi .
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SIMPLE LINEAR REGRESSION & LEAST SQUARES

4.

The straight line
ŷ := β̂0 + β̂1x .

is called the estimated line of regression or the predictor. The
vertical distances ei from yi to the estimated line of regression at
xi ,

êi = yi − ŷi = yi − β̂0 − β̂1xi

are called observed least squares residuals. Q0 is defined as

Q0 := Q(β̂0, β̂1) =
n∑

i=1

ê2
i .

and is called the residual sum of squares (RSS).
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SIMPLE LINEAR REGRESSION & LEAST SQUARES

5.

Observed least squares residuals

êi = yi − ŷi = yi − β̂0 − β̂1xi

Q0 := Q(β̂0, β̂1) =
n∑

i=1

ê2
i .

We can, of course, compute the observed residuals for any pair
(β0, β1)

ei = β0 − β1xi

and

Q(β0, β1) =
n∑

i=1

e2
i .

The function Q(β0, β1) is plotted for a data set in the book of
James et.al. in the next slide.
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LSE: RSS 2 Q(β0, β1) PLOTTED, THE RED POINT IS

Q0 := Q(β̂0, β̂1)
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S
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2by Courtesy of James, Gareth and Witten, Daniela and Hastie, Trevor and
Tibshirani, Robert An introduction to statistical learning, Chapter 3
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SUPERVISED LEARNING

In the parlance of machine learning, we have now used the
training set

Dtr = {(x1, y1), . . . , (xn, yn)}

to learn the regression model. The next step of learning in
practice is to use a test set, i.e., data pairs from the same source
not used in LSE

Dtest = {(xn+1, yn+1), . . . , (xn+m, yn+m)}

and compute using the test residuals using the learned model
predictor e(t)

i := yn+i − β̂0 − β̂1xn+i for i = 1, . . . ,m, and the

residual sum of squares
∑m

i=1

(
e(t)

i

)2
in order to compare the

coefficients of determination (see below) for both the training
set and the test set.
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SEMISUPERVISED LEARNING

The training set is

Dtr = {(x1, y1), . . . , (xn, yn)}

We want to learn the labels ŷ for

{xn+1, . . . , xn+m}

and do this by

ŷn+i = β̂0 − β̂1xn+i for i = 1, . . . ,m.
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SIMPLE LINEAR REGRESSION: A TOY EXAMPLE

This can be done by hand (or by a hand-held calculator). The
training set is

Dtr = {(1, 0.9), (2, 1.4), (3, 2.2), (4, 2.7), (5, 3.2), (6, 4.3), (7, 4.2)}

LSE yields the predictor

ŷ = 0.3143 + 0.5964x , Q0 = 0.2796, s2 :=

∑n
i=1 Q0

7 − 2
= 0.0559
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THE ERROR SCATTER PLOT IN THIS TOY EXAMPLE

The error scatter plot displays the points (x1,e1), . . . , (x7,e7). We
see no visible pattern in the plot here.
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LSE IS A STANDARD FUNCTION IN HANDHELD

SCIENTIFIC CALCULATORS (NOT A PRODUCT

PLACEMENT, AS THE MANUFACTURER NAME IS

ERASED)
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SIMPLE LINEAR REGRESSION MODEL: AN

OBSERVATIONAL STUDY

Patric Purcell: Engineering Student Attendance at Lectures:
Effect on Examination Performance. International Conference
on Engineering Education – ICEE 2007 Coimbra, Portugal
September 3 – 7, 2007
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LINEAR REGRESSION: PREDICTION OF SUCCESS

AT AN EXAM BY ATTENDANCE AT LECTURES
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This study had two principal objectives: to establish the levels
of attendance at lectures by civil engineering students at
University College Dublin and to ascertain whether lecture
attendance influenced the examination performance of
these students.

Lecture attendance for two classes of engineering students
was monitored and analysed. The average lecture
attendance rate for these students was found to be 68 %,
which is in line with attendance rates in US studies, but
higher than comparable Irish studies in other disciplines.
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PATRIC PURCELL: Engineering Student
Attendance at Lectures: Effect on Examination
Performance

A linear regression analysis of the data showed a strong
correlation between lecture attendance and examination
performance.
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PATRIC PURCELL: Engineering Student
Attendance at Lectures: Effect on Examination
Performance
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PATRIC PURCELL: Engineering Student
Attendance at Lectures: Effect on Examination
Performance

Each 10% increase in student attendance at lectures
improved examination performance by about 3%, which is
again in line with that found by other studies.

Let us write the predictors as

ŷ(x) = β̂0 + β̂1x , ŷ(x + h) = β̂0 + β̂1(x + h)

Improvement equals ŷ(x + h)− ŷ(x) = β̂1h. Hence, in the
study by Purcell, 0.3 · 10 = 3.
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QUESTION: A POLICY RECOMMENDATION?

There are other studies confirming the findings of Purcell, more of
this later.

Question: Are we now in our right to request an audience
with Rektor Anders Söderholm at Rektor,s office in
Brinellvägen 8 to deliver the (unsolicited) advice:

Bäste Anders! Statistical research has shown that exam
results will be substantially improved, were KTH to intro-
duce mandatory attendance at lectures, or, KTH is to re-
quire, say, at least 90% mandatory attendance!

This question (which an instance of a more general and a
very important issue3 ) will be adressed later by means of a
mathematical study of multiple regression and intervention.

3Use and Abuse of Regression & Causality
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POLICY INTERVENTIONS AND REGRESSION WILL

BE ANALYZED BY MEANS OF THIS BOOKLET

PUBLISHED IN 2021
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THE LEARNING OUTCOMES

Curve fitting, training set, theoretical line of regression
y = β0 + β1x

LSE ↔ β̂0 and β̂1
We are here now

Part 1: Analysis of simple linear regression
Fundamental Analysis of Variance Identity
What does the word ’regression’ signify here?

Part 2: The true data generating process: Normal linear
regression model

Additional expressions β̂0 and β̂1
Normal distribution, expectation and variance for β̂0 and β̂1 .

Part 3.: Linear Regression is about Conditional Expectation
Mathematics about conditional expectations and mean
square estimates.

Part 4.: Period-Luminosity Law (?)
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AUXILIARIES FOR TECHNICAL DETAILS

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F Link to Simple Linear regression in Stanford
CS229: Machine Learning Lecture 1 (Autumn 2018)
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PART 1.: ANALYSIS

We have found in the preceding β̂0 = ȳ − β̂1x̄ . Thus
ŷ = β̂0 + β̂1x = ȳ + β̂1(x − x̄). Hence if x = x̄ , we have

ŷ = ȳ + β̂1(x̄ − x̄) = ȳ .

This means that the estimated regression line always passes
through the point (x̄ , ȳ).
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FUNDAMENTAL ANALYSIS OF VARIANCE IDENTITY

For any
(xi , yi) the explained deviation of that pair about the
regression line is ŷi − ȳ.
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FUNDAMENTAL ANALYSIS OF VARIANCE IDENTITY

For any (xi , yi) the regression component of that pair about the
regression line is ŷi − ȳ .
A good-fitting regression line will have regression components
large in absolute value relative to the residuals.
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FUNDAMENTAL ANALYSIS OF VARIANCE IDENTITY

For any (xi , yi) the residual or the unexplained deviation of
that pair about the regression line is ei = yi − ŷi .

n∑
i=1

(yi − ȳ)2 ↔ Total Variation

n∑
i=1

(ŷi − ȳ)2 ↔ Explained Variation

n∑
i=1

(yi − ŷi)
2 ↔ Unexplained Variation

TIMO KOSKI (KTH, DEPT. MATHEMATICS) SIMPLE LINEAR REGRESSION 2023-01-18 35 / 121



FUNDAMENTAL ANALYSIS OF VARIANCE IDENTITY

& COEFFICIENT OF DETERMINATION

The coefficient of determination R2 is the amount of variation in y
that is explained by the regression line.

R2 =

∑n
i=1 (ŷi − ȳ)2∑n
i=1 (yi − ȳ)2 (2)
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LSE & AND R2: A CASE IN BIOTECHNOLOGY

Edfors, Fredrik and Danielsson, Frida and Hallström, Björn M and
Käll, Lukas and Lundberg, Emma and Pontén, Fredrik and
Forsström, Björn and Uhlén, Mathias: Gene-specific correlation of
RNA and protein levels in human cells and tissues, Molecular
Systems Biology, 12, 883 , 2016.
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LSE & AND R2: A CASE IN BIOTECHNOLOGY

In the left hand field (A) we see the variation measured as
coefficient of variation (CV) across samples plotted against the
protein length.
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LSE & AND R2: A CASE IN BIOTECHNOLOGY

In the right hand field (B) the protein lengths for the 55 target
proteins are plotted against the RNA-to-protein (RTP) ratio.
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LSE: A CASE IN BIOTECHNOLOGY

Data information from the paper cited: Test based on correlation
coefficient and follows a t-distribution with length(x)-2 degrees of
freedom, if the samples follow independent normal distributions.
An asymptotic confidence interval (the boldfaced stuff to be
established below) is given based on Fisher′s z-transform.
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FUNDAMENTAL ANALYSIS OF VARIANCE IDENTITY

It will later be established by a piece of matrix calculus that

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2
+

n∑
i=1

(yi − ŷi)
2 (3)

This can be found (very tediously) by the rules in Appendix C.
On p. 26 of MVP (3) is called the Fundamental Analysis of Vari-
ance Identity
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RENAMING

n∑
i=1

(yi − ȳ)2 ↔ SST

n∑
i=1

(ŷi − ȳ)2 ↔ SSR regression or model sum of squares

n∑
i=1

(yi − ŷi)
2 ↔ SSRes Residual Sum of Squares
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FUNDAMENTAL ANALYSIS OF VARIANCE IDENTITY

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2
+

n∑
i=1

(yi − ŷi)
2

On p. 26 of MVP this is also expressed as

SST = SSR + SSRes (4)

Hence in (2)

R2 =
SSR

SST
= 1 − SSRes

SST
. (5)
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Q0 := Q0(β̂0, β̂1) =
n∑

i=1

ê2
i ≤ Q(β0, β1) =

n∑
i=1

(yi − (β0 + β1xi)))
2

i.e., in another notation

SSRes = Q0

MVP introduces (for the first time on p.21) the ’universal’ symbol
M to write e.g.

SSRes

n − k − 1
= MSSRes,

SSR

k
= MSSR

This leads to expressions like (see MVP p. 85)

SSR/k
SSRes/(n − k − 1)

=
MSSR

MSSRes

Awkward ?
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ONE-WAY ANALYSIS OF VARIANCE: ANOVA TABLE

FOR LSE IN SIMPLE LINEAR REGRESSION

Source df Sum of Squares MSS
Regression 1 SSR SS/df
Residual n − 2 SSRes σ̂2=SS/df
Total n SST

Source = source of variation, df= degrees of freedom, SS= sum of
squares, MSS= mean sum of squares. SSRES = Q0. The rationale
for σ̂2 = Q0

n−2 will given later in a lecture on multiple regression). σ̂2

is an estimate of the variance of the deviations from a
population theoretic regression line (c.f. below). The meaning of
this will made clear in Lecture 5.
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ONE-WAY ANALYSIS OF VARIANCE: ANOVA TABLE

FOR LSE IN SIMPLE LINEAR REGRESSION

Source df Sum of Squares MSS
Regression 1 SSR SS/df
Residual n − 2 SSRes σ̂2=SS/df
Total n SST

ONE KEY TOPIC in SF2930 is the development of the properties
and diagnostic use of the ratio (in the Table k = 1)

SSR/k
SSRes/(n − k − 1)

. (6)
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WHAT DOES THE WORD REGRESSION REFER TO ?

Sir Francis Galton, 1822-1911 defined regression was as the
process of returning to the mean.

Gorroochurn, P.: On Galton’s change from “reversion” to
“regression”, vol. 70, 3, 227−231, The American Statistician, 2016
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HOW IS ’RETURNING TO THE MEAN” EXPRESSED

MATHEMATICALLY BY WHAT WE HAVE FOUND SO

FAR ? REWRITE β̂1

A)

β̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
⇔ β̂1 =

Sxy

Sxx
(7)

where we have set

Sxy =
n∑

i=1

(xi − x̄)(yi − ȳ) and Sxx =
n∑

i=1

(xi − x̄)2. (8)

TIMO KOSKI (KTH, DEPT. MATHEMATICS) SIMPLE LINEAR REGRESSION 2023-01-18 48 / 121



REGRESSION, WHAT IS IN THE NAME ?

B) Introduce Syy =
∑n

i=1(yi − ȳ)2. Then by (7) above

β̂1 =

√
Syy√
Sxx

Sxy√
Syy ·

√
Sxx

=

√
Syy√
Sxx

rxy ,

i.e.,

β̂1 =

√
Syy√
Sxx

rxy , (9)

where rxy is the (sample) coefficient of correlation (well
known from the first course sannstat), i.e.,

rxy =
Sxy√

Syy ·
√

Sxx
=

1
nSxy√

1
nSyy ·

√
1
nSxx
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REGRESSION, WHAT IS IN THE NAME ?

C) We write the predictor as ŷ = β̂0 + β̂1x = ȳ + β̂1(x − x̄) and
use (9) to get

ŷ − ȳ =

√
Syy√
Sxx

rxy(x − x̄) ⇔ ŷ − ȳ√
Syy

= rxy
x − x̄√

Sxx
.

C) By sannstat we know that |rxy | ≤ 1. Hence, if |rxy | < 1,

| ŷ − ȳ |√
Syy

<
| x − x̄ |√

Sxx
.
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REGRESSION, WHAT IS IN THE NAME ?

| ŷ − ȳ |√
Syy

<
| x − x̄ |√

Sxx
.

In words, the predicted value of y is for given x is always closer,
scaled by its standard deviation, to its mean ȳ than x is to its
mean x̄ , when scaled by its standard deviation, i.e., regression to
mean, as soon as there is not a perfect correlation.
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EXQ

Show that the squared sample coefficient of correlation equals
the coefficient of determination R2 defined in (2), i.e.,

r2
xy = R2. (10)

Aid: Use (9) above, and the results (22) and (19) in Appendix E,
see also (4).

TIMO KOSKI (KTH, DEPT. MATHEMATICS) SIMPLE LINEAR REGRESSION 2023-01-18 52 / 121



QUOTING GORROOCHURN, P. LOC.CIT
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QUOTING GORROOCHURN, P. LOC.CIT
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STATISTICAL ARTEFACT

MVP writes on p. 55:
While regression and correlation are closely related, re-
gression is more powerful tool in many situations. Corre-
lation is only a measure of association and is of little use
in prediction. However, regression methods are useful in
developing quantitative relationships between variables,
which can be used in prediction.

Does this make sense ?
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STATISTICAL ARTEFACT

In the study by Purcell, with X = attendance at lectures
(percentage of total time), Y = examination performance
∈ [0, 100]. Purcell did a regression of observations of Y on

observations of X and got the slope 0.3 = β̂1 =

√
Syy√
Sxx

rxy , see (9).
If we had the raw data, could run the inverse regression of
observations of X on observations of Y . That would give us the
slope

√
Sxx√
Syy

ryx=
√

Sxx√
Syy

rxy . If Sxx = Syy , this inverse regression has the

same slope = 0.3.
However, we do not think that examination performance
’explains’ or is the ’cause’ of attendance at lectures. On the
other hand, we can think of explaining examination
performance by attendance. This is not in the mathematics, but
a notion we entertain from elsewhere.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) SIMPLE LINEAR REGRESSION 2023-01-18 56 / 121



D. HEISE: CAUSAL ANALYSIS, 1975, P. 150
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LSE GEOMETRICALLY WITH Sxx = Syy = 1

TIMO KOSKI (KTH, DEPT. MATHEMATICS) SIMPLE LINEAR REGRESSION 2023-01-18 58 / 121



OVERFITTING

Dtr =
{(

xj , yj
)n

j=i

}
. The Lagrange theorem (1795) says that there is

a polynomial L(x) of degree ≤ n − 1 such that L(xj) = yj for all j.
That is, L(x)gives a perfect fit on the training set. But this is
overfitting: a perfect description of Dtr but unlikely to predict well
the response y at a new point x.
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PART 2

Purcell,s study is an example of an observational study: there
was no preplanned design of the levels of attendance at
lectures. We provide certain mathematical ideas for
observational simple linear regressions.
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THE TRUE DATA GENERATING PROCESS

The true data generating process provides us with observations
of a pair (X ,Y ) such that there is a theoretical population line of
regression,

Y = β∗
0 + β∗

1X + ε (11)

where β∗
0 and β∗

1 are true parameter values, and ε is an
unobserved random variable, a random disturbance.

The true line of regression exists in simulations, where tβ∗
0 and

β∗
1 are fixed by the simulating agent, who draws samples of ε

from pseudorandom number generator.
What does the true line of regression mean w.r.t real data?4

If ε ∼ N(0, σ2) and X = x , then Y ∼ N(β∗
0 + β∗

1x , σ2). Note that
σ is supposed not to depend on x

4We assume things unseen (?)
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SIMPLE LINEAR REGRESSION & LEAST SQUARES

& NORMAL DISTRIBUTION

Corresponding to X1 = x1, . . . ,Xn = xn, y1, . . . , yn are observations
of the random variables Y1, . . . ,Yn by (11). respectively, where
Yi ∼ N(µi , σ), where

µ∗
i = β∗

0 + β∗
1xi , i = 1, . . . ,n.

By the true model

yi = µ∗
i + εi = β∗

0 + β∗
1xi + εi , i = 1, . . . ,n

In addition the true data generating process gives εi ∼ N(0, σ2)
i.i.d. (independent, identically distributed )
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We can do LSE without assuming that ε is a random variable.
LSE is then a mere description of the training set.

But under the assumption ε ∼ N(0, σ2) we can find the (nor-
mal) distributions of the least squares estimators β̂0 and β̂1

Then we can find find explicit and exact confidence
intervals and test hypotheses about β∗

0 andβ∗
1. (Later in the

course as a special case of multiple regression).
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Given observed X = x

Y = β∗
0 + β∗

1x + ε

ε ∼ N(0, σ2) ⇒ Y ∼ N(β∗
0 + β∗

1x , σ2).
Y is a random variable, y is a real number (sample or outcome
of Y ). Note the syntax of the cumulative distribution function

FY (y) = P (Y ≤ y) = P
(
ε ≤ y − (β∗

0 + β∗
1x)
)
= P

(
ε

σ
≤

y − (β∗
0 + β∗

1x)
σ

)

= Φ

(
y − (β∗

0 + β∗
1x)

σ

)
since ε

σ ∼ N(0, 1).
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THE TRUE NORMAL STATISTICAL REGRESSION

MODEL & DISTRIBUTIONS OF LSE

Y = β∗
0 + β∗

1x + ε

ε ∼ N(0, σ2)

The variance σ2 does not depend on x .
β∗

0 and β∗
1 are unknown constants.
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REWRITING THE LSE 1.

Sxy is now written (by the rules in Appendix B, especially (6)) as

Sxy =
n∑

i=1

(xi − x̄)(yi − ȳ) =
n∑

i=1

xi(yi − ȳ) (12)

=
n∑

i=1

xiyi − ȳ
n∑

i=1

xi =
n∑

i=1

xiyi − nx̄ȳ .

c.f. (7) & (8) in Appendix C. We have used that
∑n

i=1(xi − x̄) (and∑n
i=1(yi − ȳ) are both equal to = 0, c.f., (6) in Appendix C.

Similarly, see (9) in Appendix C:

Sxx =
n∑

i=1

(xi − x̄)2 =
n∑

i=1

x2
i − nx2.
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REWRITING THE LSE 2.

Now we see that LSE are linear combinations of yi (use
repeatedly (4) in Appendix C)

β̂1 =
Sxy

Sxx
=

1
Sxx

(
n∑

i=1

xiyi − nx̄ȳ

)
=

=
1

Sxx

(
n∑

i=1

xiyi − x̄
n∑

i=1

yi

)
=

n∑
i=1

(
xi − x̄

Sxx

)
yi =

n∑
i=1

ciyi

β̂0 = ȳ − β̂1x̄ =
1
n

n∑
i=1

yi − x̄
n∑

i=1

ciyi =

=
n∑

i=1

(
1
n
− x̄ci

)
yi =

n∑
i=1

diyi .
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REWRITING THE LSE 3.

That is,

β̂1 =
n∑

i=1

ciyi and β̂0 =
n∑

i=1

diyi

where
ci = (xi − x̄)

/
Sxx and di =

1
n
− ci x̄ . (13)

In terms of the statistical model we have thus the random
variables β̂1 and β̂0 given by

β̂1 =
n∑

i=1

ciYi and β̂0 =
n∑

i=1

diYi
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The variance of ε, σ2, is estimated by

σ̂2 :=

∑n
i=1 Q0

n − 2
=

∑n
i=1 ê2

i
n − 2

This will be explained an studied in multiple regression, where

σ̂2 :=

∑n
i=1 ê2

i
n − k − 1

for appropriate residuals.
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Normal Distribution

The coefficients ci and di are functions of x1, . . . , xn which are are
given numbers.

β̂1 =
n∑

i=1

ciYi and β̂0 =
n∑

i=1

diYi

Here for i = 1, 2, . . . ,n, Yi are independent and
Yi ∼ N(β∗

0xi + β∗
1xi , σ

2) and independent. Hence both β̂1 and β̂0
are normally distributed r.v.s ! We need to find the means and
variances.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) SIMPLE LINEAR REGRESSION 2023-01-18 70 / 121



E
(
β̂0

)
= β∗

0

We have from (70)

E
(
β̂0

)
=

n∑
i=1

diE (Yi) .

and, since Yi ∈ N(β∗
0 + β∗

1xi , σ), we have
n∑

i=1

diE (Yi) =
n∑

i=1

di
(
β∗

0 + β∗
1xi
)
= β∗

0

n∑
i=1

di + β∗
1

n∑
i=1

dixi

It is shown in Appendix A that
∑n

i=1 di = 1 and
∑n

i=1 dixi = 0.
Hence

E
(
β̂0

)
= β∗

0

n∑
i=1

di + β∗
1

n∑
i=1

dixi = β∗
0.

In other words, β̂0 is an unbiased estimator.
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E(β̂1) = β∗
1

Vi har β̂1 =
∑n

i=1 ciYi and thus

E
(
β̂1

)
=

n∑
i=1

ciE (Yi) .

Since Yi ∈ N(β∗
0 + β∗

1xi , σ),

n∑
i=1

ciE (Yi) =
n∑

i=1

ci
(
β∗

0 + β∗
1xi
)
= β∗

0

n∑
i=1

ci + β∗
1

n∑
i=1

cixi

The auxiliary results in (I) and (II) in Appendix A entail

E
(
β̂1

)
= β∗

1

and β̂1 is an unbiased estimator, too.
TIMO KOSKI (KTH, DEPT. MATHEMATICS) SIMPLE LINEAR REGRESSION 2023-01-18 72 / 121



VARIANCE Var
(
β∗

0

)
Since Yi are independent it holds that

Var
(
β∗

0
)
=

n∑
i=1

d2
i Var (Yi) .

But Yi ∈ N(β∗
0 + β∗

1xi , σ), hence

n∑
i=1

d2
i Var (Yi) = σ2

n∑
i=1

d2
i

We find in Appendix A that
∑n

i=1 d2
i = 1

n + x̄
Sxx

. Hence

Var
(
β̂0

)
= σ2

(
1
n
+

x̄2

Sxx

)
.
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VARIANCE Var
(
β̂1

)
By the above β̂1 =

∑n
i=1 ciYi and as Yi are independent

Var
(
β̂1

)
=

n∑
i=1

c2
i Var (Yi) .

Again, by Yi ∈ N(β∗
0 + β∗

1xi , σ), we get

n∑
i=1

c2
i Var (Yi) = σ2

n∑
i=1

c2
i =

σ2

Sxx

according to the auxiliary (IV) in Appendix A.
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Probability Distributions of LSE

PROPOSITION

β̂0 ∼ N

(
β∗

0, σ
2

(
1
n
+

x2∑n
i=1(xi − x)2

))
(14)

β̂1 ∼ N

(
β∗

1,
σ2∑n

i=1(xi − x)2

)
.
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Probability Distributions of LSE

Another (not so tedious) excercise in the algebra of the relevant
finite sums shows that

Q0 = Q(β̂0, β̂1) =
n∑

i=1

ê2
i =

=
n∑

i=1

(
yi − β̂0 − β̂1xi

)2
=

n∑
i=1

(
(yi − ȳ)− β̂1 (xi − x̄)

)2
.

Square, sum and simplify to get

Q(β̂0, β̂1) = Syy

(
1 − r2

xy

)
.
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EXQ C.f. Problem 2.25 in MVP

Show that

Cov
(
β̂0, β̂1

)
=

−x̄σ2

Sxx
(15)

Aid: the definition of Cov is

Cov
(
β̂0, β̂1

)
= E

[(
β̂0 − β∗

0

)(
β̂1 − β∗

1

)]
What does (15) tell us ?
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PART 3.: CONDITONAL EXPECTATION & TRUE

DATA GENERATING PROCESS
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Let (X ,Y ) ∼ fX ,Y (x , y), a joint probability density function (PDF)
such that E [|Y |] < +∞, E

[
Y 2
]
< +∞.

The conditional expectation of Y given X = x is

E [Y |X = x ] :=
∫ +∞

−∞
yfY |X=x(y)dy .

E [Y |X ] is a random variable, which is a function of the random
variable X and takes the value E [Y |X = x ], when X = x.
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We have the rule of double expectation Theorem 2.1. p.34 in
Gut, Allan: An Intermediate Course in Probability. Second
Edition, Springer, 2009

E[Y ] = E [E [Y |X ]] . (16)

A sketch of proof of the double expectation

E [E [Y |X ]] =

∫ +∞

−∞
E [Y |X = x ] fX (x)dx

=

∫ +∞

−∞
y
∫ +∞

−∞
fY |X=x(y)fX (x)dxdy

=

∫ +∞

−∞
y
∫ +∞

−∞
fX ,Y (x , y)dxdy =

∫ +∞

−∞
yfY (y)dy = E[Y ]
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Theorem 2.3. p.36 in Gut, Allan: An Intermediate Course in
Probability. Second Edition, Springer, 2009.

PROPOSITION

g(x) is a real valued function. Assume in addition that
E
[
(g(X))2

]
< +∞. Then

E[(Y − g(X))2] = E [Var [Y |X ]] + E
[
(E [Y |X ]− g(X))2

]
. (17)

The choice gopt(X) = E [Y |X ] minimizes the mean squared error
(MSE), since

E[(Y − g(X))2] = E [Var [Y |X ]] + E
[
(E [Y |X ]− g(X))2

]
≥ E [Var [Y |X ]]] = E[

(
Y − gopt(X)

)2
]
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LINEAR REGRESSION IS ABOUT CONDITIONAL

EXPECTATION

The optimal predictor of Y given X in MSE is gopt(X) = E [Y |X ]. This
can be difficult to find. We can approximate with a straight line

gopt(X) ≈ Ŷ (X) = β0 + β1X

However, take g(X) = β0 + β1X in (17), which gives

E[(Y − (β0 + β1X))2] = E [Var [Y |X ]] + E
[
(E [Y |X ]− (β0 + β1X))2

]
.

Since the first term on the right hand does not depend on β0 and
β1, it follows that if β∗

0 and β∗
1 minimize E[(Y − (β0 + β1X))2], these

values will also minimize E
[
(E [Y |X ]− (β0 + β1X))2

]
.
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LINEAR REGRESSION IS ABOUT CONDITIONAL

EXPECTATION

The optimal predictor of Y given X in MSE is

gopt(X) = E [Y |X ] .

The optimal linear predictor of E [Y |X ] in MSE is

Ŷ (X) = β∗
0 + β∗

1X

Ŷ (X) is also the best linear predictor of Y in MSE.
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EXQ: Find β∗
0 and β∗

1 such that

MSE(β0, β1) = E[(Y − β0 + β1X)2

is minimized.

Set µx = E [X ],µy = E [Y ], σ2
x = Var [X ] , σ2

y = Var [Y ],
σxy = Cov [X ,Y ], ρ = σxy/σyσx . Then, by partial differentiations, the
minimizers of MSE(β0, β1) are

β∗
0 = µy − β∗

1µx

(18)

β∗
1 =

σxy

σ2
x

= ρ
σy

σx
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LSE LOOK LIKE SAMPLE EQUIVALENTS OF THE

TRUE POPULATION PARAMETERS β∗
0 AND β∗

1 (?)

x ≈ µx . y ≈ µy .
1
n
∑n

i=1(xi − x)(yi − y) ≈ σxy
1
n
∑n

i=1(xi − x)2 ≈ σ2
x

Therefore:

β̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
=

1
n
∑n

i=1(xi − x)(yi − y)
1
n
∑n

i=1(xi − x)2
≈ β∗

1 =
σxy

σ2
x

Or, if this was to be true, in which sense? And under which
conditions?
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LSE LOOK LIKE SAMPLE EQUIVALENTS OF THE

TRUE POPULATION PARAMETERS β∗
0 AND β∗

1 (?)

Q(β̂0, β̂1) = Syy

(
1 − r2

xy

)
.

This estimates obviously the residual variance around the
theoretical line, i.e.,

MSE(β∗
0, β

∗
1) = σ2

y

(
1 − ρ2

)
where ρ = σxy/σyσx .
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Recall Var[X ] = E[X2]− (E [X ])2. Then

E
[(

β̂1 − β∗
1

)2
]
= Var

[(
β̂1 − β∗

1

)]
+
(

E
[(

β̂1 − β∗
1

)])2

=
σ2∑n

i=1(xi − x)2
=

σ2

Sxx

by (14). In the same way

E
[(

β̂0 − β∗
0

)2
]
=

(
1
n
+

x2

Sxx

)

We see that there is convergence in mean square, i.e., β̂1
2→ β∗

1,

and β̂0
2→ β∗

0, if Sxx → +∞, and x̄ → c < +∞, as n → +∞.
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EXQ CONSISTENCY OF THE STATISTICAL

PREDICTOR

Show that for any fixed xo

E
[(

β̂0 + β̂1xo −
(
β∗

0 + β∗
1xo
))2
]
=

=
1

Sxx

(
x2

oσ
2 + 2xox̄σ2 +

Sxx

n
+ x2

)
.

Aid: Recall (15), too. Question: What about conditions for
convergence in mean square, a.k.a. consistency in mean
square?
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PART 4.:

Period-Luminosity Law a.k.a. Leavitt,s
Law
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https:/ www.atnf.csiro.au/outreach/education/senior/astrophysics/variable cepheids.html

Australia Telescope National Facility
Outreach

Some types of pulsating variable stars such as Cepheids exhibit
a definite relationship between their period and their intrinsic
luminosity. Such period-luminosity relationships are invaluable to
astronomers as they are a vital method in calculating distances
within and beyond our galaxy.
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PERIOD-LUMINOSITY PLOT

Measuring Improved Distances to Nearby Galaxies: The
Araucaria Project
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PREDICTOR

The radially pulsating Cepheid supergiant stars exhibit a
well-known relation between their mean intrinsic luminos-
ity, and their pulsation periods – the period-luminosity (PL)
relation, which is normally written in the form

M = alogP + b,

where M is the mean absolute magnitude (in a given
photometric band), and P the period(in days). With
the PL relation calibrated, the mean luminosities of
Cepheids, and thus their distances, can be inferred from
their periods (the detailed procedure available on the
Australia Telescope National Facility Outreach page).

TIMO KOSKI (KTH, DEPT. MATHEMATICS) SIMPLE LINEAR REGRESSION 2023-01-18 92 / 121



PERIOD-LUMINOSITY PLOT

The following relationship between a Population I Cepheid,s
period P and its mean absolute magnitude Mv was in 2007
established from Hubble Space Telescope trigonometric
parallaxes for 10 nearby Cepheids:

Mv = (−2.43 ± 0.12) (log10 P − 1)− (4.05 ± 0.02)

P is measured in days. (Wikipedia)
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https:/ www.atnf.csiro.au/outreach/education/senior/astrophysics/variable cepheids.html

In 1924 Edwin Hubble detected Cepheids in the An-
dromeda nebula, M31 and the Triangulum nebula M33.
Using these he determined that their distances were
900,000 and 850,000 light years respectively. He thus es-
tablished conclusively that these ”spiral nebulae” were in
fact other galaxies and not part of our Milky Way. This was
a momentous discovery and dramatically expanded the
scale of he known Universe.
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YOU HAVE HEARD ABOUT HUBBLE BUT HAVE YOU

HEARD ABOUT LEAVITT?

The accomplishments of Edwin Hubble, the American
astronomer who established that the universe is expanding,
also were made possible by Leavitt,s groundbreaking
research. Hubble often said that Leavitt deserved the Nobel
Prize for her work.

H
¯

enrietta Swan Leavitt 1868 – 1921. A graduate of Radcliffe
College, she worked at the Harvard College Observatory as
a ”computer”, tasked with examining photographic plates
in order to measure and catalog the brightness of stars. This
work led her to discover the relation between the luminosity
and the period of Cepheid variables. In the early 1900’s
Henrietta Leavitt fit the the predictor M = alogP + b using
paper and pencil by applying Legendre,s formula for LSE
from 1805.
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APPENDIX A : ALGEBRA FOR THE VARIANCE AND

EXPECTATION OF β̂0 AND β̂1
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(1)
∑n

i=1 di = 1

We have ci = (xi − x̄)
/

Sxx . Then

n∑
i=1

di =
n∑

i=1

(
1
n
− ci x̄) =

n∑
i=1

1
n
−

n∑
i=1

ci x̄

= 1 − x̄
n∑

i=1

ci = 1 − x̄
1

Sxx

n∑
i=1

(xi − x̄)

= 1 − x̄
1

Sxx
· 0 = 1.

since
∑n

i=1(xi − x̄) = 0 by (6) in Appendix C. Note that we got also

n∑
i=1

ci = 0.
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(2)
∑n

i=1 dixi ,
∑n

i=1 cixi = 1

n∑
i=1

dixi =
n∑

i=1

(
1
n
− ci x̄)xi

=
1
n

n∑
i=1

xi − x̄
n∑

i=1

cixi .

But
n∑

i=1

cixi = (1/Sxx)
n∑

i=1

(xi − x̄)xi = (1/Sxx)
n∑

i=1

(x2
i − x̄xi)

= (1/Sxx)

(
n∑

i=1

x2
i − x̄

n∑
i=1

xi

)
=

= (1/Sxx)

(
n∑

i=1

x2
i − nx̄2

)
= (1/Sxx) · Sxx = 1.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) SIMPLE LINEAR REGRESSION 2023-01-18 99 / 121



(2)
∑n

i=1 dixi = 0

Since
∑n

i=1 cixi = 1, we get

n∑
i=1

dixi =
n∑

i=1

(
1
n
− ci x̄

)
xi

=
1
n

n∑
i=1

xi − x̄
n∑

i=1

cixi︸ ︷︷ ︸
=1

.

=
1
n

n∑
i=1

xi − x̄ = 0.
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SUMMARY OF AUXILIARIES

(I)
n∑

i=1

cixi = 1

(II)
n∑

i=1

ci = 0,

(III)
n∑

i=1

dixi = 0

(IV)
n∑

i=1

c2
i =

1
Sxx

(IV) follows immediately by the definitions of ci and Sxx .)
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∑n
i=1 d2

i = 1
n + x̄

Sxx

n∑
i=1

d2
i =

n∑
i=1

(
1
n
− ci x̄

)2

=
n∑

i=1

1
n2 − 2x̄

n

n∑
i=1

ci + x̄2
n∑

i=1

c2
i

By the auxiliary (II),
∑n

i=1 ci = 0. By (IV ) we get
n∑

i=1

c2
i =

n∑
i=1

(xi − x̄)2/S2
xx =

1
Sxx

Note that
∑n

i=1
1
n2 = 1/n. In summary:

n∑
i=1

d2
i =

1
n
+

x̄2

Sxx
.
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APPENDIX C : RULES OF COMPUTATION WITH

FINITE SUMS

DEFINITION

(1)
∑n

i=1 xi = x1 + x2 + . . .+ xn.

PROPOSITION

(2)
∑n

i=1 a · xi = a
∑n

i=1 xi .

PROPOSITION

(3)
∑n

i=1 (xi + yi) =
∑n

i=1 xi +
∑n

i=1 yi .
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PROPOSITION

(4)
∑n

i=1 (axi + byi) = a
∑n

i=1 xi + b
∑n

i=1 yi

PROPOSITION

(5)
∑n

i=1 (xi + yi)
2 =

∑n
i=1 x2

i + 2
∑n

i=1 xiyi +
∑n

i=1 y2
i .

TIMO KOSKI (KTH, DEPT. MATHEMATICS) SIMPLE LINEAR REGRESSION 2023-01-18 104 / 121



x := 1
n
∑n

i=1 xi . Then it follows that:

PROPOSITION

(6)
∑n

i=1 (xi − x) = 0.

PROPOSITION

(7)
∑n

i=1 (xi − x) · (yi − y) =
∑n

i=1 (xi − x) yi =
∑n

i=1 xi (yi − y) .
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PROPOSITION

(8)
∑n

i=1 (xi − x) · (yi − y) =
∑n

i=1 xiyi − nxy .

PROPOSITION

(9)
∑n

i=1 (xi − x)2 =
∑n

i=1 x2
i − nx2.
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PROOFS:

(1)
∑n

i=1 xi = x1 + x2 + . . .+ xn.

(2)
∑n

i=1 a · xi = a
∑n

i=1 xi .

Proof: Definition (1) entails
∑n

i=1 a · xi = ax1 + ax2 + . . .+ axn
= a (x1 + x2 + . . .+ xn) = a

∑n
i=1 xi .

Example: xi = 1, i = 1. . . . ,n∑n
i=1 a = a + a + . . .+ a = a (1 + 1 + . . .+ 1) = a · n.

(3)
∑n

i=1 (xi + yi) =
∑n

i=1 xi +
∑n

i=1 yi .

Proof: Definition (1) entails∑n
i=1 (xi + yi) = (x1 + y1) + (x2 + y2) + . . .+ (xn + yn)

= x1 + x2 + . . .+ xn + y1 + y2 + . . .+ yn =
∑n

i=1 xi +
∑n

i=1 yi .
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(4)
∑n

i=1 (axi + byi) = a
∑n

i=1 xi + b
∑n

i=1 yi

Proof: This follows by (3) and (2).

(5)
∑n

i=1 (xi + yi)
2 =

∑n
i=1 x2

i + 2
∑n

i=1 xiyi +
∑n

i=1 y2
i .

Bevis: Use (xi + yi)
2 = x2

i + 2xiyi + y2
i and (4) as well as (2) with

a = 2.
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(6)
∑n

i=1 (xi − x) = 0.
Proof:

∑n
i=1 (xi − x) =

∑n
i=1 xi −

∑n
i=1 x according to (4). But

here we have with a = x in (2) that
∑n

i=1 x = x
∑n

i=1 1= x · n
according to the Example in (2). But x · n =

∑n
i=1 xi and this

entails the assertion in (6).

(7)
∑n

i=1 (xi − x) · (yi − y) =
∑n

i=1 (xi − x) yi =
∑n

i=1 xi (yi − y) .
Proof: (xi − x) · (yi − y) = (xi − x) · yi − (xi − x) · y . Then we get
by (4) that∑n

i=1 (xi − x) · (yi − y) =
∑n

i=1 (xi − x) · yi −
∑n

i=1 (xi − x) · y .
With a = y in (2) we obtain

∑n
i=1 (xi − x) · y = y ·

∑n
i=1 (xi − x)

and then (6) give that
∑n

i=1 (xi − x) · (yi − y) =
∑n

i=1 (xi − x) yi .
The other equality follows analogously.
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(8)
∑n

i=1 (xi − x) · (yi − y) =
∑n

i=1 xiyi − nxy .
Proof: Expand

∑n
i=1 xi (yi − y) in the right hand side of (7) and

use (2) and the definition on x .

(9)
∑n

i=1 (xi − x)2 =
∑n

i=1 x2
i − nx2.

Proof: From (5) we get that∑n
i=1 (xi − x)2=

∑n
i=1 x2

i − 2
∑n

i=1 xix +
∑n

i=1 x2. Then (2) with
a = x and the Example in (2) entail that∑n

i=1 x2
i − 2

∑n
i=1 xix +

∑n
i=1 x2 =

∑n
i=1 x2

i − 2x
∑n

i=1 xi + nx2.
The definition of x gives

∑n
i=1 xi = nx , so that∑n

i=1 x2
i − 2x

∑n
i=1 xi + nx2 =

∑n
i=1 x2

i − 2x · nx + nx2

=
∑n

i=1 x2
i − nx2.
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(10)
∑n

i=1 (xi − a)2 =
∑n

i=1(xi − x)2 + n(x − a)2.

Proof: We note the identity

n∑
i=1

(xi − a)2 =
n∑

i=1

[(xi − x)− (a − x)]2

and by (5)

=
n∑

i=1

(xi − x)2 − 2
n∑

i=1

(xi − x) · (a − x) +
n∑

i=1

(a − x)2 .

With (2)

=
n∑

i=1

(xi − x)2 − 2 (a − x)
n∑

i=1

(xi − x) +
n∑

i=1

(a − x)2
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and the Example in (2) again

=
n∑

i=1

(xi − x)2 − 2 (a − x)
n∑

i=1

(xi − x) + n (a − x)2

and (6) gives
∑n

i=1 (xi − x) = 0 so that

=
n∑

i=1

(xi − x)2 + n (a − x)2 ,

which is the right hand side of (10), as was claimed.
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We have thus by (10)

n∑
i=1

(yi − β0)
2 =

n∑
i=1

(yi − y)2 + n(y − β0)
2 ≥

n∑
i=1

(yi − y)2,

since n(y − β0)
2 ≥ 0. Hence β̂0 = y is the LSE of β0, when the

regression model does not have a covariate, or, β∗
1 = 0 in the

true model.
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APPENDIX D: LSE VERIFIED

We check that

β̂0 = y − β̂1x and β̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
,

where x = 1
n
∑n

i=1 xi and y = 1
n
∑n

i=1 yi .
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DERIVATIVE OF
∑n

i=1 (xi − µi(θ))
2

W.R.T. θ

LEMMA

g (θ) =
∑n

i=1 (xi − µ(θ))2.

(11) Then d
dθg (θ) = −2

∑n
i=1 (xi − µ(θ))µ

′

i (θ), where µ
′

i (θ) =
d
dθµi(θ).

Proof: We have for each i that

d
dθ

(xi − µi(θ))
2 = 2 (xi − µi(θ))

(
−µ

′

i (θ)
)
.

The derivative of a sum with a finite number of terms is the sum of
the derivatives of the constituent terms, i.e.,
d
dθg (θ) =

∑n
i=1

d
dθ (xi − µi(θ))

2. The number −2 does not depend
on the index of summation, and can hence be moved outside
the sum, rule (2). The claimed expression for d

dθg (θ) follows.
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LSE

Q(β0, β1) =
n∑

i=1

(yi − β0 − β1xi)
2

We seek (β̂0, β̂1) by solving the system of equations{
∂

∂β0
Q(β̂0, β̂1) = 0

∂
∂β1

Q(β̂0, β̂1) = 0.

Set θ = (β0, β1). By (11), with µi(θ) = β0, ∂
∂β0

µi(θ) = 1
∂

∂β0
Q(β̂0, β̂1) = 0 ⇔

∑n
i=1(yi − β̂0 − β̂1xi) = 0, which gives by (2),(3)

and (4), that
∑n

i=1 yi − nβ̂0 − β̂1
∑n

i=1 xi = 0 ⇔ β̂0 = y − β̂1x , as
expected.
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LSE

By (11), with µi(θ) = β1xi , ∂
∂β1

µi(θ) = xi and this cannot moved

outside summation. Hence ∂
∂β1

Q(β̂0, β̂1) = 0 ⇔∑n
i=1

(
yi − β̂0 − β̂1xi

)
xi = 0. We substitute β̂0 as establilshed

above, to obtain
∑n

i=1

(
yi − y + β̂1x − β̂1xi

)
xi = 0 ⇔∑n

i=1 (yi − y) xi − β̂1
∑n

i=1 (xi − x) xi = 0. This gives

β̂1 =

∑n
i=1 (yi − y) xi∑n
i=1 (xi − x) xi

.

By (12) above we have
∑n

i=1 xi(yi − ȳ) =
∑n

i=1(xi − x̄)(yi − ȳ).
Furthermore,

∑n
i=1 (xi − x) xi=

∑n
i=1 x2

i − x
∑n

i=1 xi=
∑n

i=1 x2
i − nx2

=by the rule (9) =
∑n

i=1 (xi − x)2. Hence β̂1 equals the asserted
expression.
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APPENDIX E: ANOTHER EXPRESSION FOR SSRes

SSRes = SST − β̂1Sxy (19)

Check: SSRes =
∑n

i=1 (yi − ŷi)
2
=
∑n

i=1 ((yi − ȳ)− (ŷi − ȳ))2.
Squaring and rule (5) yield

SSRes =
n∑

i=1

(yi − ȳ)2 − 2
n∑

i=1

(yi − ȳ) (ŷi − ȳ) +
n∑

i=1

(ŷi − ȳ)2 (20)

Here, by definition of ŷi ,

ŷi − ȳ = ȳ − β̂1x + β̂1xi − ȳ = β̂1 (xi − x) .

We insert these expressions in (20) to get

SSRes = SST − 2β̂1

n∑
i=1

(yi − ȳ) (xi − x) + β̂1
2

n∑
i=1

(xi − x)2 (21)

We simplify the last two terms in the right hand side.
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APPENDIX E: ANOTHER EXPRESSION FOR SSR

Use (7) and (8) to get

β̂1

n∑
i=1

(yi − ȳ) (xi − x) = β̂1Sxy

β̂1
2

n∑
i=1

(xi − x)2 = β̂1
2
Sxx = β̂1

Sxy

Sxx
Sxx = β̂1Sxy (22)

When these results are substituted back into (21), (19) follows.
In view of (4), i.e., SST = SSR + SSRes we have

SSR = β̂1Sxy . (23)
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APPENDIX F: FLOWCHART FOR SIMPLE LINEAR

REGRESSION
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APPENDIX G: STANFORD ONLINE

Stanford CS229: Machine Learning Lecture 1 (Autumn 2018)
Andrew Ng (Adjunct Professor of Computer Science) lecturing
on simple linear regression starting 40:41 in
https://www.youtube.comwatch?v=jGwO UgTS7I&t=4050s
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