
SF 2930 REGRESSION ANALYSIS

LECTURE 13.1
Generalized Inverses & Multiple Regression

Timo Koski

KTH Royal Institute of Technology

2023

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 01 2023-02-17 1 / 18



LEARNING OUTCOMES

Generalized Inverses
Interpolation Limit

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 01 2023-02-17 2 / 18



MULTIPLE REGRESSION k >> n

Let us center the model. Then X is an n × k matrix. The normal
equations are

X T Xβ = X T y

When k > n, the column rank of X cannot be full, since the row
rank equals the column rank. (The rank of an n × (k + 1) matrix is
the size of the largest invertible square matrix that can be found
inside X .) Hence the rank of the k × k matrix X T X is smaller than k
and the matrix X T X is not invertible.
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Consider the general equation with an n × k matrix A

Ax = z

There are three possibilities:
There is no solution ⇔ z /∈ sp(A).
There is one solution ⇔ A is invertible.
There are many solutions.

We try to find an k × n matrix G, which would be-
have as much like A−1 is such that if there are many
solutions, then Gz is one of them, i.e.,

AGz = z

Arne Bjerhammar: ”Application of calculus of ma-
trices to method of least squares; with special refer-
ences to geodetic calculations”. Transactions of the
Royal Institute of Technology Stockholm. 49, 1951
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GENERALIZED INVERSE

An k × n matrix G is called a generalized inverse of an n × k
matrix A if any of the following equivalent conditions hold 1:

1 Gz is a solution to Ax = z if solutions exist.
2 GA is idempotent and rank GA = rank A ⇔ AG is

idempotent and rank AG = rank A
3 AGA = A

If n = k and the inverse A−1 exists, then G = A−1, since if we
leftmultiply in AGA = A

A−1AGA = A−1A ⇔ GA = I

For any given n× k matrix A there are many generalized inverses.

1Proof on p. 106 in S. Puntanen, G.P.H. Styan, J. Isotalo: Matrix Tricks for Linear
Statistical Models. Our Personal Top Twenty Springer 2011.
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MOORE-PENROSE GENERALIZED INVERSE

If a generalized inverse G of A satisfies the four conditions below,
then G is called the Bjerhammar -Moore-Penrose (BMP) inverse.

MP1 AGA = A

MP2 GAG = G

MP3 (AG)T = AG

MP4 (GA)T = GA

Moore (1935), Penrose (1955) showed that for a given A there is
only one matrix that satisfies MP1-MP4. We set A+ := G to denote
the Moore-Penrose inverse of A. Arne Bjerhammar found A+

independently of Moore and Penrose. We shall talk about the
Bjerhammar-Moore-Penrose (BMP) inverse.
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It can be shown that a generalized inverse always exists, but it is
unique if and only if A−1 exists. By MP! we get that G = A−1.

A− = {G|AGA = A} (1)

is the set of all generalized inverses of A.
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Assume that A has full column rank, rank A = k . Then the BMP
inverse of A is

A+ = (AT A)−1AT

Proof: Check that MP1-MP4 hold.

EXAMPLE

Hence, if X has full column rank, then

X+ = (X T X)−1X T

is the BMP inverse of X.

A+ is the left inverse of A, since

A+A = (AT A)−1AT A = Ik .
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If A has full row rank, rank A = n, then

A+ = AT (AAT )−1

is the BMP inverse of A. A+ is a right inverse of A, since

AA+ = In.
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INTERPOLATION LIMIT WITH FULL ROW RANK

Back to the normal equations:

X T Xβ = X T y (2)

When X has full row rank, rank X = n, then we define

β+ = X+y.

Then
X T Xβ+ = X T XX T (XX T )−1︸ ︷︷ ︸

=In

y = X T y.

Hence β+ is a solution to (2).
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INTERPOLATION LIMIT

We have the BMP the predictor

ŷ+ = Xβ+ = XX+y

= XX T (XX T )−1y = y.

X has full row rank n, then ŷ+ is an inter-
polation of the training set.
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MORE ON GENERALIZED INVERSES

We realize also that if G =
(
X T X

)−
is any generalized inverse of

X T X , then
β̂
†
= Gy

solves the normal equations (2). We shall next study further
expressions that will contain

(
X T X

)−
.
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MORE ON GENERALIZED INVERSES

The condition defining a generalized inverse of a matrix A in (1) is
AGA = A. Then

A = AGA = (AGA)GA = A(GAG)A

and hence this implies
GAG = G. (3)

Conversely, GAG = G implies AGA = G.
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MORE ON GENERALIZED INVERSES

PROPOSITION

X is n × k and rank X = r ≤ n < k. A generalized inverse of X is

X− =
(

X T X
)−

X T . (4)

Proof Set G =
(
X T X

)−
X T . First, X is an n × k matrix and G is an

k × n matrix. We check (3).Then

GXG =
(

X T X
)−

X T X
(

X T X
)−

X T =

((
X T X

)−
X T X

(
X T X

)−
)

︸ ︷︷ ︸
=(X T X)

−

X T

by (3), and thus

GXG =
(

X T X
)−

X T = G.

and we invoke the condition in (3) to prove the assertion as
claimed.
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MORE ON GENERALIZED INVERSES

X− =
(
X T X

)−
X T . Hence it follows by the definition in (1)

XGX = X ⇔ X = X
(

X T X
)−

X T X . (5)

We observe also
1 XX− = X

(
X T X

)−
X T is symmetric.

2 rank XX− = r
3 X

(
X T X

)−
X T is the same

independently of what
(
X T X

)−
is

used.
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Y = Xβ∗ + ϵ,

where rank X = r ≤ n ≤ k . β̂
†
=

(
X T X

)−
X T y. We have

∥ x ∥=
√∑n

i=1 x2
i . We want to study

1
n
E ∥ X β̂

†
− Xβ∗ ∥2 .

.
X β̂

†
− Xβ∗ = X

(
X T X

)−
X T y − Xβ∗

= X
(

X T X
)−

X T X︸ ︷︷ ︸
=X by (5)

β∗ − Xβ∗ + X
(

X T X
)−

X Tϵ

= X
(

X T X
)−

X Tϵ
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Hence
1
n
E ∥ X β̂

†
− Xβ∗ ∥2=

=
1
n
E ∥ X

(
X T X

)−
X Tϵ ∥2 .

=
1
n

TrE
[
X
(

X T X
)−

X TϵϵT X
(

X T X
)−

X T
]

where we used the property
((

X T X
)−)T

=
((

X T X
)T
)−

=
(
X T X

)−
,

so that

=
σ2

n
X
(

X T X
)−

X T X
(

X T
)−

︸ ︷︷ ︸
=(X T X)

−
by (3)

X T

=
σ2

n
Tr X

(
X T X

)−
X T

=
σ2

n
Tr XX− =

σ2

n
r .
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H− = X
(

X T X
)−

X T

is the orthogonal projector onto the range of X
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