SF 2930 Regression Analysis Lecture 13.1

Generalized Inverses \& Multiple Regression

Timo Koski

KTH Royal Institute of Technology
2023

LEARNING OUTCOMES

- Generalized Inverses
- Interpolation Limit

Multiple Regression $k \gg n$

Let us center the model. Then X is an $n \times k$ matrix. The normal equations are

$$
X^{\top} X \boldsymbol{\beta}=X^{\top} \mathbf{y}
$$

When $k>n$, the column rank of X cannot be full, since the row rank equals the column rank. (The rank of an $n \times(k+1)$ matrix is the size of the largest invertible square matrix that can be found inside X.) Hence the rank of the $k \times k$ matrix $X^{\top} X$ is smaller than k and the matrix $X^{\top} X$ is not invertible.

Consider the general equation with an $n \times k$ matrix A

$$
A \mathbf{x}=\mathbf{z}
$$

There are three possibilities:

- There is no solution $\Leftrightarrow \mathbf{z} \notin \operatorname{sp}(A)$.
- There is one solution $\Leftrightarrow A$ is invertible.
- There are many solutions.

We try to find an $k \times n$ matrix G, which would behave as much like A^{-1} is such that if there are many solutions, then $G \mathbf{z}$ is one of them, i.e.,

$$
A G \mathbf{z}=\mathbf{z}
$$

Arne Bjerhammar: "Application of calculus of matrices to method of least squares; with special references to geodetic calculations". Transactions of the Royal Institute of Technology Stockholm. 49, 1951

Generalized Inverse

An $k \times n$ matrix G is called a generalized inverse of an $n \times k$ matrix A if any of the following equivalent conditions hold ${ }^{1}$:
(1) $G \mathbf{z}$ is a solution to $A \mathbf{x}=\mathbf{z}$ if solutions exist.
(2) $G A$ is idempotent and $\operatorname{rank} G A=\operatorname{rank} A \Leftrightarrow A G$ is idempotent and $\operatorname{rank} A G=\operatorname{rank} A$
(3) $A G A=A$

If $n=k$ and the inverse A^{-1} exists, then $G=A^{-1}$, since if we leftmultiply in $A G A=A$

$$
A^{-1} A G A=A^{-1} A \Leftrightarrow G A=\mathbb{I}
$$

For any given $n \times k$ matrix A there are many generalized inverses.

[^0]
Moore-Penrose Generalized Inverse

If a generalized inverse G of A satisfies the four conditions below, then G is called the Bjerhammar -Moore-Penrose (BMP) inverse.
MP1 $A G A=A$
MP2 $G A G=G$
MP3 $(A G)^{T}=A G$
MP4 $(G A)^{T}=G A$
Moore (1935), Penrose (1955) showed that for a given A there is only one matrix that satisfies MP1-MP4. We set $A^{+}:=G$ to denote the Moore-Penrose inverse of A. Arne Bjerhammar found A^{+} independently of Moore and Penrose. We shall talk about the Bjerhammar-Moore-Penrose (BMP) inverse.

It can be shown that a generalized inverse always exists, but it is unique if and only if A^{-1} exists. By MP! we get that $G=A^{-1}$.

$$
\begin{equation*}
A^{-}=\{G \mid A G A=A\} \tag{1}
\end{equation*}
$$

is the set of all generalized inverses of A.

Assume that A has full column rank, $\operatorname{rank} A=k$. Then the $B M P$ inverse of A is

$$
A^{+}=\left(A^{T} A\right)^{-1} A^{T}
$$

Proof: Check that MP1-MP4 hold.
Example
Hence, if X has full column rank, then

$$
X^{+}=\left(X^{\top} X\right)^{-1} X^{\top}
$$

is the BMP inverse of X.
A^{+}is the left inverse of A, since

$$
A^{+} A=\left(A^{\top} A\right)^{-1} A^{\top} A=\mathbb{I}_{k} .
$$

If A has full row rank, $\operatorname{rank} A=n$, then

$$
A^{+}=A^{T}\left(A A^{T}\right)^{-1}
$$

is the BMP inverse of $A . A^{+}$is a right inverse of A, since

$$
A A^{+}=\mathbb{I}_{n}
$$

Interpolation Limit with Full Row Rank

Back to the normal equations:

$$
\begin{equation*}
X^{\top} X \boldsymbol{\beta}=X^{\top} \mathbf{y} \tag{2}
\end{equation*}
$$

When X has full row rank, $\operatorname{rank} X=n$, then we define

$$
\boldsymbol{\beta}^{+}=X^{+} \mathbf{y}
$$

Then

$$
X^{\top} X \boldsymbol{\beta}^{+}=X^{\top} \underbrace{X X^{\top}\left(X X^{\top}\right)^{-1}}_{=\mathbb{I}_{n}} \mathbf{y}=X^{\top} \mathbf{y} .
$$

Hence $\boldsymbol{\beta}^{+}$is a solution to (2).

InTERPOLATION LIMIT

We have the BMP the predictor

$$
\begin{aligned}
& \widehat{\mathbf{y}}^{+}=X \boldsymbol{\beta}^{+}=X X^{+} \mathbf{y} \\
& =X X^{T}\left(X X^{T}\right)^{-1} \mathbf{y}=\mathbf{y}
\end{aligned}
$$

X has full row rank n, then $\widehat{\mathbf{y}}^{+}$is an interpolation of the training set.

More on generalized inverses

We realize also that if $G=\left(X^{\top} X\right)^{-}$is any generalized inverse of $X^{\top} X$, then

$$
\widehat{\boldsymbol{\beta}}^{\dagger}=G \mathbf{y}
$$

solves the normal equations (2). We shall next study further expressions that will contain $\left(X^{\top} X\right)^{-}$.

More on generalized inverses

The condition defining a generalized inverse of a matrix A in (1) is $A G A=A$. Then

$$
A=A G A=(A G A) G A=A(G A G) A
$$

and hence this implies

$$
\begin{equation*}
G A G=G . \tag{3}
\end{equation*}
$$

Conversely, $G A G=G$ implies $A G A=G$.

More on generalized inverses

Proposition

X is $n \times k$ and $\operatorname{rank} X=r \leq n<k$. A generalized inverse of X is

$$
\begin{equation*}
X^{-}=\left(X^{\top} X\right)^{-} X^{\top} . \tag{4}
\end{equation*}
$$

Proof Set $G=\left(X^{\top} X\right)^{-} X^{\top}$. First, X is an $n \times k$ matrix and G is an $k \times n$ matrix. We check (3).Then

$$
G X G=\left(X^{\top} X\right)^{-} X^{\top} X\left(X^{\top} X\right)^{-} X^{\top}=\underbrace{\left(\left(X^{\top} X\right)^{-} X^{\top} X\left(X^{\top} X\right)^{-}\right)}_{=\left(X^{\top} X\right)^{-}} X^{\top}
$$

by (3), and thus

$$
G X G=\left(X^{\top} X\right)^{-} X^{\top}=G
$$

and we invoke the condition in (3) to prove the assertion as claimed

More on generalized inverses

$X^{-}=\left(X^{\top} X\right)^{-} X^{\top}$. Hence it follows by the definition in (1)

$$
\begin{equation*}
X G X=X \Leftrightarrow X=X\left(X^{\top} X\right)^{-} X^{\top} X . \tag{5}
\end{equation*}
$$

We observe also
(1) $X X^{-}=X\left(X^{\top} X\right)^{-} X^{\top}$ is symmetric.
(2) $\operatorname{rank} X X^{-}=r$
(0) $X\left(X^{\top} X\right)^{-} X^{\top}$ is the same independently of what $\left(X^{\top} X\right)^{-}$is used.

$$
\mathbf{Y}=X \boldsymbol{\beta}_{*}+\boldsymbol{\epsilon}
$$

where $\operatorname{rank} X=r \leq n \leq k \cdot \widehat{\boldsymbol{\beta}}^{\dagger}=\left(X^{\top} X\right)^{-} X^{\top} \mathbf{y}$. We have $\|\mathbf{x}\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$. We want to study

$$
\begin{gathered}
\frac{1}{n} \mathrm{E}\left\|X \widehat{\boldsymbol{\beta}}^{\dagger}-X \boldsymbol{\beta}_{*}\right\|^{2} \\
=\underbrace{X\left(X^{\top} X\right)^{-} X^{\top} X}_{=X \widehat{\boldsymbol{\beta}}^{\dagger}-X \boldsymbol{\beta}_{*}=X\left(X^{\top} X\right)^{-} X^{\top} \mathbf{y}-X \boldsymbol{\beta}_{*}} \boldsymbol{\beta}_{*}-X \boldsymbol{\beta}_{*}+X\left(X^{\top} X\right)^{-} X^{\top} \boldsymbol{\epsilon} \\
=X\left(X^{\top} X\right)^{-} X^{\top} \boldsymbol{\epsilon}
\end{gathered}
$$

Hence

$$
\begin{gathered}
\frac{1}{n} \mathrm{E}\left\|X \widehat{\boldsymbol{\beta}}^{\dagger}-X \boldsymbol{\beta}_{*}\right\|^{2}= \\
=\frac{1}{n} \mathrm{E}\left\|X\left(X^{\top} X\right)^{-} X^{\top} \boldsymbol{\epsilon}\right\|^{2} \\
=\frac{1}{n} \operatorname{Tr} \mathrm{E}\left[X\left(X^{\top} X\right)^{-} X^{\top} \boldsymbol{\epsilon} \epsilon^{\top} X\left(X^{\top} X\right)^{-} X^{\top}\right]
\end{gathered}
$$

where we used the property $\left(\left(X^{T} X\right)^{-}\right)^{T}=\left(\left(X^{\top} X\right)^{T}\right)^{-}=\left(X^{\top} X\right)^{-}$, so that

$$
\begin{gathered}
=\frac{\sigma^{2}}{n} X \underbrace{\left(X^{\top} X\right)^{-} X^{\top} X\left(X^{\top}\right)^{-}}_{=\left(X^{\top} X\right)^{-}} X^{\top} \\
=\frac{\sigma^{2}}{n} \operatorname{Tr} X\left(X^{\top} X\right)^{-} X^{\top} \\
=\frac{\sigma^{2}}{n} \operatorname{Tr} X X^{-}=\frac{\sigma^{2}}{n} r .
\end{gathered}
$$

$$
H^{-}=X\left(X^{\top} X\right)^{-} X^{\top}
$$

is the orthogonal projector onto the range of X

[^0]: ${ }^{1}$ Proof on p. 106 in S. Puntanen, G.P.H. Styan, J. Isotalo: Matrix Tricks for Linear Statistical Models. Our Personal Top Twenty Springer 2011.

