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CONDITIONAL PROBABILITY

By first definitions, assuming P(E) > 0

P(H | E) =
P(H ∩ E)

P(E)
⇔ P(H ∩ E) = P(H | E) · P(E)

and

P(E | H) =
P(E ∩ H)

P(H)
=

P(H ∩ E)
P(H)

⇔ P(H ∩ E) = P(E | H)P(H)

TIMO KOSKI (KTH, DEPT. MATHEMATICS) A TUTORIAL ON BAYES INFERENCE 2023-02-15 3 / 78



INVERSION AND BAYES’ RULE

Hence
P(H | E) · P(E) = P(E | H) · P(A)

Bayes’ Rule or inversion of probability

P(H | E) =
P(E | H) · P(H)

P(E)
.

P(E) = P(E | H)P(H) + P
(
E | Hc)P

(
Hc) .

Hc is the complement set of H.
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INVERSION AND BAYES’ RULE

Think about
H = statement/hypothesis

P(H) = Prior probability of the statement/ hypothesis

E = evidence pertaining to the statement

P(E | H) = Probabilty or Likelihood of the Evidence given the Statement

P(H | E) = Posterior probability of H, the statement/hypothesis given the evidence in E

TIMO KOSKI (KTH, DEPT. MATHEMATICS) A TUTORIAL ON BAYES INFERENCE 2023-02-15 5 / 78



DICTIONARY

a priori: relating an argument that suggests using general
principles to suggest likely effects, being without
examination of facts, formed or conceived beforehand.
a posteriori: relating to or derived by reasoning from
observed facts
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BAYES’ RULE AS A SLOGAN & THE ICONIC

PORTRAIT

Posterior ∝ Likelihood × Prior
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A COMPLETE FORM OF BAYES’ RULE

∪k
i=1Hj = the whole sample space, Hj ∩ Hi = ∅.

P(Hj | E) =
P(E | Hj) · P(Hj)

P(E)
.

P(E) =
k∑

i=1

P(E | Ai)P(Ai).
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BAYES AND LEARNING

There are N coins in an urn. N − 1 of these are honest in the
sense that one side is a head and the other a tail. One coin is
false, it has a head on both sides.
A person A picks at random one of the coins. You are NOT
permitted to inspect this selected coin. A tosses the coin k times.
The outcome is k heads. Compute the probability that the
selected coin is the false one?

Notations: H1 = honest coin, H2 = false coin. Ek = the event of k
heads in k tosses.
P(H1) =

N−1
N the prior probability of the honest coin. P(H2) =

1
N .

P (Ek | H1) =
1
2k , i.e., we assume independent tosses , each toss

∼ Be(1/2) given H1. P (Ek | H2) = 1.
Sought: the posterior probability P (H2 | Ek) .
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BAYES AND LEARNING

H1 = honest coin, H2 = false coin. Ek = the evidence : k heads in
k tosses.
P(H1) =

N−1
N the prior probability of the honest coin. P(H2) =

1
N .

P (Ek | H1) =
1
2k , i.e., we assume independent tosses.

P (Ek | H2) = 1. Sought: the posterior probability P (H2 | Ek) .

Law of total probability gives

P(Ek) = P (Ek | H1)P(H1) + P (Ek | H2)P(H2)

=
1
2k

N − 1
N

+
1
N

=
2k + N − 1

2kN
Bayes’ rule entails

P (H2 | Ek) =
P (Ek | H2)P(H2)

P(Ek)
=

2k

2k + N − 1
.
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BAYES AND LEARNING

H1 = honest coin, H2 = false coin. Ak = the event of k heads in k
tosses.
P(H1) =

N−1
N the prior probability of the honest coin. P(H2) =

1
N .

P (Ak | H1) =
1
2k , i.e., we assume independent tosses.

P (Ak | H2) = 1. Sought: P (H2 | Ak) .

P (H2 | Ak) =
2k

2k + N − 1
.

Note that
P (H2 | A0) =

1
N

= P(H2).

TIMO KOSKI (KTH, DEPT. MATHEMATICS) A TUTORIAL ON BAYES INFERENCE 2023-02-15 12 / 78



BAYES AND LEARNING

In the figure the posterior probability P (H2 | Ak) is plotted with ∗
as a function of k for k = 0, . . . , 40 and N = 1000000

P (H2 | Ak) =
2k

2k + N − 1
.
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THOMAS BAYES & OCCAM

Is there not also an Occam’s razor at work here? We converge to
the simplest explanation after having seen 40 tosses of coin with
40 heads as outcome.
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THOMAS BAYES
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THOMAS BAYES: A CULT FIGURE
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THOMAS BAYES: A CULT FIGURE

TIMO KOSKI (KTH, DEPT. MATHEMATICS) A TUTORIAL ON BAYES INFERENCE 2023-02-15 17 / 78



THOMAS BAYES
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A quote from1

Today, Bayes formua is ubiquitous in the world of AI. We all use
it on our smartphones without realizing it. In machine learn-
ing systems today, Bayesian inference is more prominent than
ever.

1https://www.bbvaopenmind.com/en/technology/
artificial-intelligence/bayesian-inference-ai-systems/
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LEARNING/INFERENCE FROM DATA

By learning/inference from data one often means the process of
inferring a general law or principle from the observations of
particular instances. The general law is a piece of knowledge
about the mechanism of nature that generates the data.
The intended learning in statistics is done by use of ’MODELS’,
which serve as the language in which the constraints
predicated on the data can be described.
We deal here with parametric statistical models.
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PARAMETRIC STATISTICAL MODEL: THE STANDARD

VIEW

x is an observation of a random variable (X ).

X ∼ f (x ; θ)

f (x ; θ) is a probability density on Rp. f (x ; θ) is a known function of
x and θ. θ is an unknown parameter.

X is distributed according to f (x |θ),
x is an observation from the distribution f .

An outcome x of the random variable (r.v.) X .
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PARAMETRIC STATISTICAL MODEL: EXAMPLES;
NORMAL DISTRIBUTION

θ =
(
µ, σ2

)
∈ Θ = R × (0,∞) .

f (x ; θ) =
1

σ
√

2π
e− 1

σ2 (x−µ)2

,−∞ < x < ∞.

We say that x is an observation from the normal distribution
N
(
µ, σ2

)
.
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PARAMETRIC STATISTICAL MODEL: EXAMPLES;
BERNOULLI DISTRIBUTION

Consider r.v. X with values 0, 1, 0 < θ < 1 and

x = 1 x = 0
f (x ; θ) θ 1 − θ

then we say X is distributed according to the Bernoulli distribution with
the parameter θ.

X ∼∼ Be(θ),
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LEARNING/INFERENCE FROM DATA: INVERSION

Retrieve the parameters of the probabilistic generating
mechanism using x . f (x ; θ) is a probabilistic generating
mechanism of data, characterizes the behaviour of future
observations conditional on θ, but in inference the roles of x and
θ are inverted.
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A CHANGE OF NOTATION

Allan Gut uses in An Intermediate Course in Probability the
notation

fY |X=x(y)

to denote the conditional probability density of Y given X = x . In
this Lecture the notation for the conditional probability density of
Y given X = x will be

f (y |x)
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BAYES’ RULE

Bayes’ rule extended to continuous random variables:

g (y |x) = f (x |y) · g (y)∫
f (x |y) · g (y)dy

,

Due to the standardization g (y |x) is a probability density; g (y |x) ≥ 0,∫
g (y |x)dy = 1.
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BAYES’ RULE: PARAMETRIC MODEL f (x ; θ) 7→ f (x |θ)

π (θ|x) = f (x | θ) · π (θ)∫
Θ f (x | θ) · π (θ)dθ

Terminology for Bayes’ Rule:
π (θ) : prior distribution on Θ.
X | θ, f (x | θ) p.d.f: likelihood
π (θ|x) : posterior distribution on Θ.
m(x) =

∫
Θ f (x | θ) · π (θ)dθ : marginal distribution of x .
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DUE TO PIERRE-SIMON, MARQUIS DE LAPLACE

1749 – 1827

π (θ|x) = f (x | θ) · π (θ)∫
Θ f (x | θ) · π (θ)dθ
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UNCERTAINTY

Uncertainty about the unknown θ is modeled by a probability dis-
tribution π (θ), and π (θ|x) expresses the uncertainty about the un-
known θ after the observation of x .
Hence this analysis does not regard θ as a random variable. π (θ)
expresses our subjective a priori opinion of where in Θ the un-
known might lie. This was/is controversial.

Mathematically: the unknown θ is dealt with as a random vari-
able. (x , θ) will have a joint distribution.
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DISTRIBUTIONS

π (θ|x) = f (x | θ) · π (θ)

m(x)
,

Terminology:
m(x) =

∫
Θ f (x | θ) · π (θ)dθ

ϕ (x , θ) : joint distribution of (x , θ).

π (θ|x)m(x) = ϕ (x , θ) = f (x |θ)π (θ)
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NOTATION

The notation ∫
Θ

f (x | θ) · π (θ)dθ

is imprecise by intent, as it can mean both a single integral and
a multiple integral.
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BAYESIAN PARAMETRIC STATISTICAL MODEL

A Bayesian parametric statistical model consists of
a prior distribution

θ ∼ π(θ)

a parametric model
x |θf (x |θ)

The quantity of interest

θ|x ∼ π (θ|x)
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PRIOR DENSITY

Any function π(·) such that

π (θ) ≥ 0,

and ∫
Θ
π (θ)dθ = 1,

can technically serve as a prior distribution.
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IMPROPER PRIOR DENSITIES

But even functions with the properties

π (θ) ≥ 0,

and ∫
Θ
π (θ)dθ = ∞,

are also invoked as priors, and are called improper priors.
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AN EXAMPLE

Xi | M = m ∼ N
(
m, σ2

0

)
, M ∼ N

(
µ, s2

)
. x(n) = (x1, . . . , xn) a sample

of I.I.D. Xi , x = 1
n
∑n

i=1 xi .

M | (X1, . . . ,Xn) ∈ N

(
nx/σ2

0 + µ/s2

n/σ2
0 + 1/s2

,
1

n/σ2
0 + 1/s2

)

i.e., π
(
m|x(n)

)
is the density of this normal distribution. Here µ and

s2 are hyperparameters.
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CONFIDENCE INTERVAL

P (a(x) ≤ θ ≤ b(x)) =
∫ b(x)

a(x) π (θ|x)dθ

P (a(x) ≤ θ ≤ b(x))︸ ︷︷ ︸
This is a probability, not a degree of confidence
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CONFIDENCE INTERVAL: EXAMPLE

Take the example above

N

(
nx/σ2

0 + µ/s2

n/σ2
0 + 1/s2

,
1

n/σ2
0 + 1/s2

)

Let s → ∞ (the prior becomes improper). Then

N

(
nx/σ2

0 + µ/s2

n/σ2
0 + 1/s2

,
1

n/σ2
0 + 1/s2

)
→ N

(
x ,

σ2
0

n

)

But then the Bayesian confidence interval
P (a(x) ≤ θ ≤ b(x)) = 0.95 becomes the familiar x ± λ0.025

σ0√
n

, and
the common mistaken but natural interpretation of the
confidence interval is correct !
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SLIDE FROM CS 109 STANFORD UNIVERSITY
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GENERAL ASPECTS OF BAYESIAN INFERENCE

inference is based on the observed x , not on an unobserved
sample space.
π (θ|x) is the only quantity evaluated for inference about θ.

On the other hand , evaluation of π (θ|x) is not in general
possible by explicit means of integral calculus. This is where
statistical inference needs Markov chain Monte Carlo (McMC).
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LIKELIHOOD

The distribution f (x | θ) regarded as a function of θ is known as
the likelihood function

l (x ; θ) = f (x | θ) .

The likelihood function l (θ|x) thus compares the plausibilities of
different parameter values for given x .
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BAYES’ RULE: POSTERIOR ∝ LIKELIHOOD × PRIOR

π (θ|x) = f (x | θ) · π (θ)∫
Θ f (x | θ) · π (θ)dθ

,

=
l (x ; θ) · π (θ)∫

Θ l (x | θ) · π (θ)dθ

Hence Likelihood Principle is satisfied by Bayesian inference.
There are ways of implementing the likelihood principle: MLE
and MAP ⇒
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THE MAXIMUM LIKELIHOOD ESTIMATE (MLE)

The maximum likelihood estimate MLE, θ̂ML of θ, is defined by

θ̂ML = argmaxθ∈Θf (x | θ)

= argminθ∈Θll (x ; θ)

MLE is a parameter value that gives the observed x the highest
possible probability.
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THE MAXIMUM A POSTERIOR ESTIMATE (MAP)

The maximum a posterior estimate MAP θ̂MAP of θ is defined by

θ̂MAP = argmaxθ∈Θπ (θ | x)
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DEFINITION: CONJUGATE FAMILY OF PRIORS

A family F of probability distributions on Θ is said to be conjugate
or closed under sampling for a likelihood function

l (x ; θ) = f (x | θ) .

if for every π ∈ F , the posterior distribution π (θ|x) also belongs to
F . In practical terms this means that one can inegrate
m(x) =

∫
Θ f (x | θ) · π (θ)dθ explicitly. Above we have seen an

example with the normal prior density on the mean of a normal.
There are several additional examples of computation of m(x)
(and π (θ|x) in Allan Gut uses in An Intermediate Course in
Probability Chapter 2.3-2.4, and exercises 2.30−2.35.
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DEFINITION: CONJUGATE FAMILY OF PRIORS

An intuitive way of understanding conjugate priors is that with
conjugate priors the prior knowledge can be translated into
equivalent sample information. See, e.g.,

N

(
nx/σ2

0 + µ/s2

n/σ2
0 + 1/s2

,
1

n/σ2
0 + 1/s2

)
.

Next we reconsider another problem with a conjugate family of
priors.
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BAYES’ BILLIARD BALL

TIMO KOSKI (KTH, DEPT. MATHEMATICS) A TUTORIAL ON BAYES INFERENCE 2023-02-15 46 / 78



BAYES’ BILLIARD BALL

A billiard ball W is rolled on a line of length one, with a uniform
probability of stopping anywhere. It stops at p, not disclosed to
us. A second ball O is rolled n times under the same assumptions
and X denotes the number of times O stops to the left of W .
Given X = x , what inference can we make on p ?
(In the figure above x ↔ p.)
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MODELING AND LEARNING FOR BAYES’ BILLIARD

BALL

We let P be a random variable, whose values are denoted by p,
0 ≤ p ≤ 1.
Parametric statistical model for rolls of Bayes’ Billiard Ball O:
Conditional on P = p, the rolls are outcomes of I.I.D Be(p) R.V’s.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) A TUTORIAL ON BAYES INFERENCE 2023-02-15 48 / 78



MODELING AND LEARNING FOR BAYES’ BILLIARD

BALL

Hence for x = 0, 1, 2, . . . ,n,

f (x |p) = P (X = x | P = p)

=

(
n
x

)
px · (1 − p)n−x ,

(the Binomial distribution)
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THE POSTERIOR DENSITY

Bayes’ rule

π (p | x) =
f (x | p) · π (p)∫ 1

0 f (x | p) · π (p)dp
, 0 ≤ p ≤ 1

and zero elsewhere. The marginal distribution of x is

m(x) =
∫ 1

0
f (x | p) · π (p)dp.
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THE POSTERIOR DENSITY

The posterior π (p | x) expresses our updated uncertainty of the
’true‘ position of W given the data X = x .
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THE POSTERIOR DENSITY

One way to get further from here is to use an explicit expression
for π (p). There are many possible choices (some more
systematic choices outlined below), some have straightforward
analytical advantages. Laplace assumed that p ∼ U(0, 1). i.e.,

π (p) =

{
1 0 ≤ p ≤ 1
0 elsewhere,
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THE MARGINAL DISTRIBUTION OF x : UNIFORM

PRIOR

m(x) =
∫ 1

0
f (x | p) · π (p)dp

=

(
n
x

)∫ 1

0
px · (1 − p)n−x dp.

We use the Beta integral:
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THE BETA INTEGRAL

∫ 1

0
pα−1(1 − p)β−1dp =

Γ(α)Γ(β)

Γ(α+ β)
.

Recall also that Γ(x + 1) = x!, if x is a positive integer. α = β = 1
gives the distribution U(0, 1). We set

B (α, β) :=
Γ(α)Γ(β)

Γ(α+ β)
.
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THE BETA DENSITY

π(p) =

{
Γ(α+β)
Γ(α)Γ(β)p

α−1(1 − p)β−1 0 < p < 1
0 elsewhere.

is a probability density Beta(α, β). α > 0 and β > 0 are
hyperparameters.
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THE MARGINAL DISTRIBUTION OF x : UNIFORM

PRIOR

m(x) =
∫ 1

0
f (x | p) · π (p)dp

=

(
n
x

)
x!(n − x)!
(n + 1)!
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THE MARGINAL DISTRIBUTION OF x , p ∈ U(0, 1)

m(x) =
∫ 1

0
f (x | p) · dp =

(
n
x

)
x!(n − x)!
(n + 1)!

=
n!

x!(n − x)!
x!(n − x)!
(n + 1)!

=
1

(n + 1)

There is an interpretation of Bayes’ work claiming that the
problem really attacked and solved by Bayes was: What should
π(p) be so that ∫ 1

0
f (x | p) · π(p)dp =

1
(n + 1)

holds for the Billiard Balls.
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THE POSTERIOR DENSITY FOR n ROLLS OF BAYES’
ORANGE BALL

π (p | x) =

(
n
x

)
px · (1 − p)n−x

m(x)

=

{
(n+1)!

x!(n−x)! · pk (1 − p)n−k 0 ≤ p ≤ 1
0 elsewhere.

This is again a Beta density, i.e., we have used a conjugate family
of priors.
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THE POSTERIOR DENSITY FOR n ROLLS OF BAYES’
ORANGE BALL

(n + 1)!
x!(n − x)!

=
Γ(n + 2)

Γ(x + 1)Γ(n − x + 1)
=

1
B(x + 1,n − x + 1)

.
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THE POSTERIOR DENSITY FOR n ROLLS OF BAYES’
ORANGE BALL
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The
densities in the picture do not have the proper constants.
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THE POSTERIOR DENSITY WITH n ROLLS OF

BAYES BALL, p ∈ Beta(α, β)

π (p | x) =

{
1

B(x+α,n−x+β) · px+α−1 (1 − p)β+n−x−1 0 ≤ p ≤ 1
0 elsewhere.

This is the Beta density Beta(α+ x , β + n − x) .
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THE MAXIMUM LIKELIHOOD ESTIMATE OF p IN

BAYES’ BILLIARD

p̂ML = argmin0≤p≤1ll (p | x)

= argmin0≤p≤1

[
− log

(
n
x

)
− x logp − (n − x) log (1 − p)

]
.

= argmin0≤p≤1 (−x logp − (n − x) log (1 − p)) .

⇒

p̂ML =
x
n

If you observed x = 0, would you belive in the estimate p̂ = 0 for
all future purposes ?
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MLE AND PREDICTIVE PROBABILITY IN BAYES’
BILLIARD

The predictive probability

x + 1
n + 2

=
x + 1

(n + 1) + 1
=

∫ 1

0
pπ(p|X = x)dp (1)

is a maximum likelihood estimate of p when n + 1 rolls of the ball
O and the first roll of the ball W are included in the data.
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SUN RISES TOMORROW

Laplace exemplified the previous formula by the following.

P(”sun rises tomorrow”) =
n + 1
n + 2

Laplace estimated the number sunsrises so far by finding the age
of the universe from the Bible, and converting that to the number
of days = n. Then in (1) x = n, as sun has risen every day so
far. By a reading of the Bible the universe is 6000 yrs old, then
P(”sun rises tomorrow”) = 0.99999954.
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SUN RISES TOMORROW

Laplace is said to have added

But this number [the probability of the sun coming up tomorrow] is
far greater for him who, seeing in the totality of phenomena the
principle regulating the days and seasons, realizes that nothing
at present moment can arrest the course of it.
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CS 547: SENSING AND PLANNING IN ROBOTICS GAURAV S. SUKHATME COMPUTER SCIENCE ROBOTIC EMBEDDED

SYSTEMS LABORATORY UNIVERSITY OF SOUTHERN CALIFORNIA.
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Q: HOW DO WE CHOOSE π (θ) ?

Assessment (by Questionnaries)
Conjugate prior
Non-informative or reference prior

Laplace’s prior
Jeffreys’ prior

Maximum entropy prior
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ASSESSMENT OF PRIOR KNOWLEDGE

(One form of) Bayesian statistics relies upon a personalistic
theory of probability for quantification of prior knowledge. In
such a theory

probability measures the confidence that a particular
individual (assessor) has in the truth of a particular
proposition
no attempt is made to specify which assessments are
correct
personal probabilities should satisfy certain postulates of
coherence.
A. O

′
Hagan: Eliciting Expert Beliefs in Substantial Practical

Applications. The Statistician , 47, pp. 21−35, 1998.

R.L. Keeney & D. von Winterfeldt: Eliciting Probabilities in
Complex Technical Problems. IEEE Transactions on
Engineering Management, 38, pp.191−201, 1991.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) A TUTORIAL ON BAYES INFERENCE 2023-02-15 68 / 78



CHOICE OF PRIOR DISTRIBUTIONS BY

ASSESSMENT

C-A. S. Stael von Holstein: Assessment and Evaluation of
Subjective Probability Distributions. 1970, Stockholm School
of Economics.
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PARAMETRIC STATISTICAL MODEL, n I.I.D. |θ
RV’S

xi |θ ∼ f (x |θ) , I.I.D. ,

or independent, identically, distributed conditional on θ

x(n) = (x1, x2, . . . , xn) ∈ X n

f (x |θ) is a probability density on Rp. f (x |θ) is a known function of
x and θ. θ is an unknown parameter ∈ Θ = a vector space of
finite dimension.
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ASYMPTOTIC SHAPE OF THE POSTERIOR

Asymptotically, for large n,

π(θ|x(n)) ≈ f
(

x(n)|θ
)

The influence of the prior vanishes.
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ASYMPTOTIC SHAPE OF THE POSTERIOR

Let us assume that f (x |θ) is a density with a scalar parameter (for
simplicity of notation) , and that f (x |θ) is some k ≥ 2 times
differentiable in θ. We let θ̂ML be the maximum likelihood
estimate of θ. We expand the log likelihood function around θ̂ML

log f
(

x(n)|θ
)
=

log f
(

x(n)|θ̂ML

)
+
(
θ − θ̂ML

) d
dθ

log f
(

x(n)|θ̂ML

)
+

1
2

(
θ − θ̂ML

)2 d2

dθ2 log f
(

x(n)|θ̂ML

)
+ Rn (θ)
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ASYMPTOTIC SHAPE OF THE POSTERIOR

But here θ̂ML is a solution of the equation

d
dθ

log f
(

x(n)|θ̂ML

)
= 0

Hence
log f

(
x(n)|θ

)
=

log f
(

x(n)|θ̂ML

)
+

1
2

(
θ − θ̂ML

)2 d2

dθ2 log f
(

x(n)|θ̂ML

)
+ Rn (θ)
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ASYMPTOTIC SHAPE OF THE POSTERIOR: LAW OF

LARGE NUMBERS

We have by assumption of I.I.D. data

d2

dθ2 log f
(

x(n)|θ
)
=

n∑
l=1

d2

dθ2 log f (xl |θ)

We set Yl =
d2

dθ2 log f (xl |θ). Then the Law of Large Numbers says
that

1
n

n∑
l=1

Yl → E [Y ] ,n → ∞

where

E [Y ] =

∫
X

d2

dθ2 log f (x |θ) f (x | θ)dx
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ASYMPTOTIC SHAPE OF THE POSTERIOR: FISHER

INFORMATION

The integral

I (θ) = −
∫
X

d2

dθ2 log f (x |θ) f (x | θ)dx

is called Fisher information.
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ASYMPTOTIC SHAPE OF THE POSTERIOR: FISHER

INFORMATION

Then we may feel inclined to believe that

d2

dθ2 log f
(

x(n)|θ̂ML

)
=

n∑
l=1

d2

dθ2 log f
(

xl |θ̂ML

)
≈ −n · I

(
θ̂ML

)
Note that even θ̂ML depends on n.
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ASYMPTOTIC SHAPE OF THE POSTERIOR

This gives
log f

(
x(n)|θ

)
≈

log f
(

x(n)|θ̂ML

)
− 1

2

(
θ − θ̂ML

)2
n · I

(
θ̂ML

)
The first term does not involve θ.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) A TUTORIAL ON BAYES INFERENCE 2023-02-15 77 / 78



ASYMPTOTIC SHAPE OF THE POSTERIOR

Then
f
(

x(n)|θ
)
≈ e− n

2 (θ−θ̂ML)
2·I(θ̂ML)

The interpretation of the relation is that the likelihood function
can be for large n be approximated by a normal density for
which the mean is θ̂ML and the variance is 1

nI(θ̂ML)
.
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