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DIMENSION REDUCTION METHODS

The methods that we have discussed so far have controlled
variance in two different ways,

using a subset of the original variables, or
shrinking their coefficients toward zero.

All of these methods are defined using the original predictors,

x1, x2, ..., xp.

We now explore a class of approaches that transform the
predictors and then fit a least squares model using the
transformed variables.
We will refer to these techniques as dimension reduction
methods such as

Principal component regression, and
Partial least squares.
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PRINCIPAL COMPONENT ANALYSIS (PCA)

A principal component analysis (PCA) is concerned with
explaining the variance-covariance structure of a set of
variables through a few linear combinations of these variables.

Its general objectives are
data reduction, and

interpretation.

Although p components are required to reproduce the total
system variability, often much of this variability can be
accounted for by a small number k of the principle components.
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Let X = (X1, ...,Xp)
T be a random vector with the covariance

matrix Σ.

Algebraically, the principal components are particular linear
combinations of the p random variables.

Geometrically, these linear combinations represent the selection
of a new coordinate system obtained by rotating the original
system with x1, ..., xp as the coordinate axes.

The first principal component direction of the data is that along
which the observations vary the most.
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Consider the linear combinations

y1 = aT
1x, . . . , yp = aT

px, (1)

with the variances and covariances

Var(yi) = aT
i Σai , i = 1, ...p,

(2)
Cov(yi , yk) = aT

i Σak , i, k = 1, ...p.

The principal components are those uncorrelated linear
combinations y1, ..., yp whose variances above are as large as
possible.The p principal components are defined as follows.

DEFINITION

First principal component = linear combination y1 = aT
1x

that maximizes Var(aT
1x) subject to aT

1a1 = 1.

ith principal component = linear combination yi = aT
i x

that maximize Var(aT
i x) subject to aT

i ai = 1
and Cov(aT

i x,aT
kx) = 0 for k < i , i = 1, ...,p.
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Let λ1, ..., λp > 0 be the eigenvalues of the matrix Σ and let
D = (d1, ...,dp) be an m × m orthogonal matrix such that

DTΣD = Λ =


λ1 0 0 . . . 0
0 λ2 0 . . . 0

0
. . .

... . . . 0
0 0 0 . . . λn

 (3)

so that di is an eigenvector of Σ corresponding to the
eigenvalue λi .
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PROPOSITION

For k = 1, ...,p

λk = max
aT a=1, aT di=0, i=1,...,k−1

aTΣa = dT
kΣdk .

Since di and dj are orthogonal, the linear combinations yi = dT
i x

and yj = dT
j x are uncorrelated.
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MEASURES OF TOTAL VARIATION

Note that in transforming to principal components the measures
TrΣ and |Σ| of total variation are unchanged, for

TrΣ = Tr DTΣD = TrΛ =

p∑
i=1

λi ,

|Σ| = |DTΣD| = |Λ| =
p∏

i=1

λi .

Note also that
∑k

i=1 λi is the variance of the first k principal
components.

In principal component analysis the hope is that for some
small k , this variance is close to TrΣ, i.e.,
the first k principle components explain most of the variation
in X,
the remaining q = p − k principal components contribute
little.
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SAMPLE PRINCIPLE COMPONENT ANALYSIS

Assume that X1, ...,Xn are independently distributed as Np(µ,Σ).
The MLE of µ and Σ are given by

µ̂ = 1
n
∑n

i=1 xi , (4)

Σ̂ = 1
n
∑n

i=1 (xi − x̄) (xi − x̄)T . (5)

MLEs of the λi’s, are the ordered eigenvalues of Σ̂. The λ̂i’s are
distinct with probability one, since n > p.
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DEFINITION

The ith sample principal component is defined as the linear
combination ŷi = aT

i x that maximize the sample variance aT
i Sai

subject to aT
i ai = 1 and aT

i Sak = 0 for k < i , i = 1, ...,p.

We now have a similar theorem as above.

PROPOSITION

For k = 1, ...,p

λ̂k = max
aT a=1, aT d̂i=0, i=1,...,k−1

aT Sa = d̂T
kSd̂k , (6)

where d̂k is an eigenvector of the MLE Σ̂ corresponding to the
eigenvalue λ̂k .
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THE NUMBER OF PRINCIPAL COMPONENTS TO USE

There is always the question of how many components to
retain - and there is no definitive answer to this question.

Things to consider include
the amount of total sample variance explained,
the relative sizes of the eigenvalues (i.e., the variance of the
sample components),
the subject-matter interpretations of the components.

However, a component associated with an eigenvalue near
zero and, hence, deemed unimportant, may indicate an
unsuspected linear dependency in the data.

A useful visual aid to determining an appropriate number of
principal components is a scree plot.
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SCREE PLOT

A scree plot is the eigenvalues
orded from the largest to the
smallest.

To determine the appropriate
number of components, we look
for an elbow (bend) in the plot.

The number of components is
taken to be the point at which the
remaining eigenvalues are
relatively small and all about the
same size. In this case keep two
components.
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PRINCIPAL COMPONENTS REGRESSION (PCR)

In principal components regression (PCR),
Center your model: X is n × k .

we first perform PCA on the original predictors,

then perform dimension reduction by selecting the number
of principal components (M) using cross-validation or test set
error,

finally conduct regression using the first M dimension
reduced principal components.

Hence, the PCR uses the most important principal components
as the predictors in a linear regression model.
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The fitting process for obtaining the PCR estimator involves
regressing the response vector on the derived data matrix Z ,
since the principal components are mutually orthogonal to
each other. Thus in the regression step, performing a multiple
linear regression jointly on the M selected principal components
as covariates is equivalent to carrying out M independent simple
linear regressions separately on each of the M selected principal
components as a covariate.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 01 2023-02-17 16 / 34



A MORE DETAILED DESCRIPTION: THE MULTIPLE

CENTERED LINEAR REGRESSION MODEL

β ∈ Rk , n ≥ k .

Y = Xβ + ε. (7)

1) E [ε] = 0 ∈ Rn

2) Cε = E
[
εεT

]
= σ2In

3) X T X is invertible
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Real symmetric matrices are diagonalizable by orthogonal
matrices. X T X is a a real symmetric matrix, hence there is an
orthogonal k × k matrix V such that

V T X T XV = Λ =


λ1 0 0 . . . 0
0 λ2 0 . . . 0

0
. . .

... . . . 0
0 0 0 . . . λk


V is an orthogonal (or orthonormal matrix): columns and rows are
orthonormal vectors and thus

V T V = VV T = Ik
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Take M ∈ {1, . . . , k} and let VM be the k × M matrix consisting of
the first M columns of k × 1 vectors vi of V . Set

Z = XVM = (Xv1 . . . ,XvM)

n × M matrix. Xvi are the principal components. The n × 1
column vectors of WM are orthogonal, since

(Xvi)
T Xvj = viX

T Xvj

is the element on position (i, j) in V T X T XV and thus´= 0 for i ̸= j
and = λi for i = j.
Then we can find at least one M × 1 vector α such that

β = VMα

(This can be shown by the properties of generalized inverses.)
Then we get in (7) that

Y = Xβ + ε = XVMα+ ε = Zα+ ε.
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Y = Zα+ ε.

Then LSE of α is

α̂ = (Z T Z)−1Z T y ∈ RM

This approach reduces the problem of estimating the k
coefficients β1, ..., βk to the simpler problem of estimating the M
coefficients θ1, ..., θM , where M < k ⇒ the dimension of the
problem has been reduced from k to M.
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PCR: PROPERTIES

The final PCR estimator of β based on the first M principal
components is β̂PCR = VMα̂. Then

C
β̂PCR

= σ2VM(Z T Z)−1V T
M = σ2 VMΛ−1

M V T
M = σ2

M∑
j=1

vjvT
j

λj
. (8)

When M = k , we have Z = XV and

β̂PCR = V α̂ =

= V (Z T Z)−1Z T y = V (XV )T (XV ))−1(XV )T y

= V (V T X T XV )−1(XV )T y = VΛ−1V T X T y

But since V is orthogonal, VΛ−1V T = (V TΛV )T = (X T X)−1. Thus

β̂PCR = β̂

the PCR estimator is the ordinary LSE.
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PCR: PROPERTIES

But then by (8)

C
β̂
= σ2

k∑
j=1

vjvT
j

λj
. (9)

For any i

Var
[
β̂j

]
= σ2

k∑
l=1

v2
il

λ2
l

.

Here we see that small eigenvalues can destroy the precision of
LSE.
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PCR: COLLINEARITY

In addition, since Z = XV ,

Zi =
k∑

l=1

vlixl ,

where xi is a column of X , and vli are the elements of the ith
column of an eigenvector of X T X Small variance of a pricipal
component indicates that there are linear components of the
original regressors that are almost constant.
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PRINCIPAL COMPONENTS REGRESSION (PCR)

Let z1, ..., zM represent M < k linear combinations of our original k
regressors. That is

zm =

p∑
j=1

ϕjmxj ,

for some constants ϕjm, j = 1, ...,p, m = 1, ...,M. We can then fit
the linear regression model

yi =
M∑

m=1

θmzim + Varepsiloni , i = 1, ...,n,

using least squares.
The key idea is that often a small number of principal
components suffice to explain most of the variability in the data,
as well as the relationship with the response.
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If the constants ϕjm are chosen wisely, then such dimension
reduction approaches can often outperform least squares
regression.

However, the directions are identified in an unsupervised way,
since the response is not used to help determine the principal
component directions.

Consequently, PCR suffers from a drawback: there is no
guarantee that the directions that best explain the predictors will
also be the best directions to use for predicting the response.
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Note that

M∑
m=1

θmzim =
M∑

m=1

θm

p∑
j=1

ϕjmxij =

p∑
j=1

M∑
m=1

θmϕjmxij =

p∑
j=1

βjxij ,

where

βj =
M∑

m=1

θmϕjm.

Hence, we have a special case of the original linear regression
model, with constrains on the βj’s coefficients.

This constraint on the form of the coefficients has the potential to
bias the coefficient estimates. However, in situations where p is
large relative to n, selecting a value of M ≪ p can significantly
reduce the variance of the fitted coefficients.
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CHOOSING PRINCIPAL COMPONENTS

In PCR, the number of principal components, M, is typically
chosen by cross-validation.
We note that even though PCR provides a simple way to
perform regression using M < p predictors, it is not a feature
selection method.
This is because each of the M principal components used in the
regression is a linear combination of all p of the original features.

Therefore, while PCR often performs quite well in many practical
settings, it does not result in the development of a model that
relies upon a small set of the original features.
In this sense, PCR is more closely related to ridge regression than
to the lasso.
In fact, one can show that PCR and ridge regression are very
closely related. One can even think of ridge regression as a
continuous version of PCR.
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STANDARDIZING THE PREDICTORS

When performing PCR (also ridge regression), one generally
recommend standardizing each predictor,

x̃ij =
xij√

1
n
∑n

i=1(xij − arx·j)2
,

prior to generating the principal components. This
standardization ensures that all variables are on the same scale.

In the absence of standardization, the high-variance variables
will tend to play a larger role in the principal components
obtained, and the scale on which the variables are measured
will ultimately have an effect on the final PCR model.
However, if the variables are all measured in the same units (say,
kilograms, or inches), then one might choose not to standardize
them.
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PARTIAL LEAST SQUARES (PLS)

Partial least squares (PLS), is a supervised alternative to PCR. Like
PCR, PLS is a dimension reduction method, which first identifies a
new set of features that are linear combinations of the original
features, and then fits a linear model via least squares using
these new features.

Unlike PCR, PLS identifies these new features in a supervised way,
i.e., it makes use also of the response in order to identify new
features that not only approximate the old features well, but also
that are related to the response.

The PLS approach
attempts to find
directions that help
explain both the response
and the predictors.
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Partial least squares (PLS) is a method for constructing predictive
models when the factors are many and highly collinear.
Note that the emphasis is on predicting the responses and not
necessarily on trying to understand the underlying relationship
between the variables.
For example, PLS is not usually appropriate for screening out
factors that have a negligible effect on the response.

However, when prediction is the goal and there is no practical
need to limit the number of measured factors, PLS can be a
useful tool.
The PLS algorithm works in the same fashion whether y is single
response or multi-response.
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We now describe how the first PLS direction is computed.
After standardizing the p predictors, PLS computes the first
direction z1 by setting each ϕj1 in

z1 =

p∑
j=1

ϕj1xj ,

equal to the coefficient from the simple linear regression of y
onto xj .

One can show that this coefficient is proportional to the
correlation between y and xj .
Hence, in computing z1, PLS places the highest weight on the
variables that are most strongly related to the response.
Often, the PLS direction does not fit the predictors as closely as
does PCA, but it does a better job explaining the response.
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To identify the second PLS direction we first adjust each of the
variables for z1, by regressing each variable on z1 and taking
residuals.
These residuals can be interpreted as the remaining information
that has not been explained by the first PLS direction.
We then compute z2 using this orthogonalized data in exactly
the same fashion as z1 was computed based on the original
data.

This iterative approach can be repeated M times to identify
multiple PLS components z1, ..., zM .
Finally, at the end of this procedure, we use least squares to fit a
linear model to predict y using z1, ..., zM in exactly the same
fashion as for PCR.
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As with PCR, the number M of partial least squares directions
used in PLS is a tuning parameter that is typically chosen by
cross-validation.
We generally standardize the predictors and response before
performing PLS.

PLS is popular in the field of chemometrics, where many
variables arise from digitized spectrometry signals.
In practice it often performs no better than ridge regression or
PCR.
While the supervised dimension reduction of PLS can reduce
bias, it also has the potential to increase variance, so that the
overall benefit of PLS relative to PCR is a wash.
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We generally standardize the predictors and response before
performing PLS.
PLS is popular in the field of chemometrics, where many
variables arise from digitized spectrometry signals.
In practice it often performs no better than ridge regression or
PCR.
While the supervised dimension reduction of PLS can reduce
bias, it also has the potential to increase variance, so that the
overall benefit of PLS relative to PCR is a wash.
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