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LEARNING OUTCOMES

Bias-Variance Trade-off
Double Descent
k >> n

Sparse Matrices
Geometry of the High-Dimensional Spaces
Gaussian Annulus Theorem

Lasso Regression
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AUXILIARY TERMINOLOGY

Spline is a long, flexible strip of wood
that can be bent to draw curves.

Mathematics: Spline is a function defined piecewise by
polynomials. Instead of fitting a single, high-degree poly-
nomial to all data of a training set at once, spline inter-
polation fits low-degree polynomials to small subsets of the
training set.
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By courtesy of James, Gareth and Witten, Daniela and Hastie,
Trevor and Tibshirani, Robert: An introduction to statistical
learning, 2021.
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By courtesy of James, Gareth and Witten, Daniela and Hastie,
Trevor and Tibshirani, Robert: An introduction to statistical
learning, 2021.
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By courtesy of James, Gareth and Witten, Daniela and Hastie,
Trevor and Tibshirani, Robert: An introduction to statistical
learning, 2021.
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By courtesy of James, Gareth and Witten, Daniela and Hastie,
Trevor and Tibshirani, Robert: An introduction to statistical
learning, 2021.
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BIAS -VARIANCE TRADE-OFF: THE TRUE MODEL

The True Model

Y = Y (x) = E
[
(Y | X = x

]
+ ε = f (x) + ε,

where E
[
(Y | X = x

]
= f (x), E

[
ε
]
= 0,

Var
[
ε
]
= σ2.

The training set is Dtr = {(x1, y1) . . . , (xn, yn)} are all independent
samples from the same joint distribution P(x , y). A learning
method gives us an approximation, estimate of f (x) as

f̂ (x ;Dtr)

in some class of functions of x .
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BIAS -VARIANCE TRADE-OFF: THE TRUE MODEL

We do not want to know, whether f̂ (xi ;D) ≈ yi , we want to know
whether f̂ (xi ;D) is ≈ y , where (x , y) is a previously unseen test
observation, i.e., it has not been used to train f̂ (xi ;D). We want
to choose the statistical learning method that gives the lowest
MSE on the test set, as opposed to the lowest training MSE.
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BIAS -VARIANCE TRADE-OFF: MSE

We have P(x , y) = P(x)P(y |x). We draw a new sample X = x
from P(x) and then Y |X = x ∼ P(y |x). We now want to find the
expected error on a new sample sample (x ,Y )

EDtr ,ε

[(
Y − f̂ (x ;Dtr)

)2
]

The expectation ranges over different choices of the training set
Dtr = {(x1, y1) . . . , (xn, yn)} , all sampled from the same joint
distribution P(x , y).
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BIAS -VARIANCE TRADE-OFF

It will be demonstrated that we can decompose its expected
squared error on an another sample (x ,Y ) as follows

EDtr ,ε

[(
Y − f̂ (x ;Dtr)

)2
]
=
(
BiasD

[
f̂ (x ;Dtr)

])2
+ VarDtr

[
f̂ (x ;Dtr)

]
+ σ2

(1)

Here

BiasDtr

[
f̂ (x ;Dtr)

]
= EDtr

[
f̂ (x ;Dtr)− f (x)

]
= EDtr

[
f̂ (x ;D⊔∇)

]
− E

[
Y (x)

]
and

VarDtr

[
f̂ (x ;Dtr)

]
= EDtr [

(
ED⊔∇ [f̂ (x ;Dtr)]− f̂ (x ;Dtr)

)2
].
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BIAS -VARIANCE TRADE-OFF

In order to simplify writing in the subsequent check/derivation of
(1), let us set

EDtr ,ε → E,

VarDtr → Var

f̂ (x ;Dtr) → f̂ .

BiasDtr

[
f̂ (x ;D)

]
→ Bias

[
f̂
]

Y = Y (x) = E
[
Y | X = x

]
+ ε → Y = f + ε
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BIAS -VARIANCE TRADE-OFF

MSE = E
[
(Y − f̂ )2] = E

[
(f + ε− f̂ )2]

= E
[
(f + ε− f̂ + E[f̂ ]− E[f̂ ])2]

= E
[
(f − E[f̂ ])2]+ E[ε2] + E

[
(E[f̂ ]− f̂ )2]

+ 2E
[
(f − E[f̂ ])ε

]
+ 2E

[
ε(E[f̂ ]− f̂ )

]
+ 2E

[
(E[f̂ ]− f̂ )(f − E[f̂ ])

]
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I.e.,

MSE = (f − E[f̂ ])2 + E[ε2] + E
[
(E[f̂ ]− f̂ )2]

+ 2(f − E[f̂ ]) E[ε] + 2E[ε] E
[
E[f̂ ]− f̂

]
+ 2E

[
E[f̂ ]− f̂

]
(f − E[f̂ ])

= (f − E[f̂ ])2 + E[ε2] + E
[
(E[f̂ ]− f̂ )2]

= (f − E[f̂ ])2 + Var[ε] + Var
[
f̂
]

= Bias[f̂ ]2 + Var[ε] + Var
[
f̂
]

= Bias[f̂ ]2 + σ2 + Var
[
f̂
]
.

Finally, MSE loss function (or negative log-likelihood) is obtained
by taking the expectation value over x ∼ P.
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BIAS -VARIANCE TRADE-OFF

ED,ε

[(
Y − f̂ (x ;D)

)2
]
=
(
BiasD

[
f̂ (x ;D)

])2
+VarD

[
f̂ (x ;D)

]
+ σ2. (2)

The three terms on the right hand side represent (from left to
right):

the square of the bias of the learning method, which can be
thought of as the error caused by the simplifying
assumptions built into the method. E.g., when approximating
a non-linear function f (x) using a learning method for linear
models, there will be error in the estimates f̂ (x) due to this
assumption.
the variance of the learning method, or, intuitively, how
much the learning method f̂ (x) will move around its mean;
the irreducible error σ2.
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BIAS -VARIANCE TRADE-OFF

ED,ε

[(
Y − f̂ (x ;D)

)2
]
=
(
BiasD

[
f̂ (x ;D)

])2
+VarD

[
f̂ (x ;D)

]
+ σ2. (3)

This decomposition tells us that in order to minimize the
expected test error, we need to select a statistical learning
method that simultaneously achieves low variance and low bias.
Note that variance is inherently a nonnegative quantity, and
squared bias is also nonnegative. Hence, we see that the
expected test MSE can never lie below Var (ε), variance of the
unobservable irreducible error from the true model.
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BIAS -VARIANCE TRADE-OFF

What do we mean by the variance and bias of a statistical
learning method? Variance refers to the amount by which f̂
would change if we estimated it using a different training data
set.
Since the training data are used to fit the statistical learning
method, different training data sets will result in a different f̂ . But
ideally the estimate for f should not vary too much between
training sets. However, if a method has high variance then small
changes in the training data can result in large changes in f̂ . In
general, more flexible statistical methods have higher variance.
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QUOTE OF COUILLET, R. AND LIAO, Z.:Random
Matrix Methods for Machine Learning, 2022,
CAMBRIDGE UNIVERSITY PRESS.

Modern deep neural networks often have a huge num-
ber (billions) of parameters and are rouotinely trained to
fit the training data almost perfectly, whike still yielding
remarkably good test performance in may cases. This
means particularly that, in some scenarios it is possible to
have good or even optimal models which contain more
free parameters than intuitively needed.
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BIAS -VARIANCE TRADE-OFF

Recently, there has been observed the empirical trend where,
for methods like neural networks and random forests, one sees a
second bias-variance tradeoff in the out-of-sample prediction
risk beyond the interpolation limit. The risk curve here resembles
a traditional U-shape curve before the interpolation limit, and
then descends again beyond the interpolation limit, which is
known as “double descent”.
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DOUBLE-DESCENT OF DEEP NEURAL NETWORKS
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HIGH-DIMENSIONAL DATA & HIGH-DIMENSIONAL

MODELS,

Multiple regression with k >> n studied.
Q: Is double descent possible here ?
A: No answer today.
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HIGH-DIMENSIONAL VECTORS
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HIGH-DIMENSIONAL DATA

Regression analysis with k >> n. David Donoho (Stanford):
The k > n case is not anomalous; it is in some sense
(nowadays) the generic case. For many types of event
we can think of, we have the potential of a very large
number of measurables quantifying that event, and a
relatively few instances of that event.
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GENESPIDER: A QUOTE FROM INTRODUCTION

The primary objective in network inference is to obtain a network
where each link corresponds to a real influence of importance in
the biological system
Based on the principle of parsimony, we recommend the use of
linear models (= regression analysis to find the adjacency matrix
of genes T.K.) unless a hypothesis that requires nonlinearities is
tested or the class of linear models is rejected based on data.
Publicly available gene expression datasets typically suffer from
few data points compared to the high number of genes and
possible interactions, . . . and redundant nearly collinear
variables, i.e. ill-conditioned data matrices.
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GEOMETRY OF HIGH-DIMENSIONAL SPACES

High-dimensional spaces are very strange for our intuition about
geometry and convex bodies. This has important implications for
high-dimensional regression and data-analysis.
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WE SHALL ARGUE THAT HIGH DIMENSION WILL

LEAD TO SPARSE X

A sparse matrix is a matrix in which most of the elements are zero.
There is no strict quantitiave definition regarding the proportion
of zero-value elements for a matrix to qualify as sparse.
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WHY IS THIS?

The Figure makes the point that when the dimensionality
increases, the volume of the space increases so fast that the
available data become sparse.
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GEOMETRY OF HIGH-DIMENSIONAL SPACES

Material taken from Chapter 2 in

Avrim Blum, John Hopcroft, and Ravindran Kannan:
Foundations of Data Science, 2018

Summary: The higher the dimension of your space,
the more likely the points are to lie near the edges
of the space rather than the center.
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GEOMETRY OF HIGH-DIMENSIONAL SPACES
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GEOMETRY OF HIGH-DIMENSIONAL SPACES

An important property of high-dimensional objects
is that most of their volume is near the surface.

Consider any object A inRd . Next shrink A by a small amount to
produce a new object: (1 − ϵ)A defined by

(1 − ϵ)A := {(1 − ϵ)x ∈ Rd |x ∈ A}

Then the following equality holds (proof omitted) for volumes

V ((1 − ϵ)A) = (1 − ϵ)dV (A)
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GEOMETRY OF HIGH-DIMENSIONAL SPACES

An important property of high-dimensional objects
is that most of their volume is near the surface.

V ((1 − ϵ)A) = (1 − ϵ)dV (A)

Then
V ((1 − ϵ)A)

V (A)
= (1 − ϵ)d ≤ e−dϵ

where we used 1 − x ≤ e−x . This means that nearly all of the
volume of A must be in the portion of A that does not belong to
(1 − ϵ)A.
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VOLUME NEAR THE SURFACE
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GEOMETRY OF HIGH-DIMENSIONAL SPACES:
NORMS

x ∈ Rd

∥ x ∥1=
∑d

i=1 |xi |

∥ x ∥2=
√∑d

i=1 x2
i

∥ x ∥∞= max1≤i≤d |xi |
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GEOMETRY OF HIGH-DIMENSIONAL SPACES

DEFINITION

d-hypersphere in with radius r centered at origin of

Bd
r := {x ∈ Rd | ∥ x ∥2≤ r}

DEFINITION

d-hypercube of side 2r centered at origin

Cd
r := {x ∈ Rd | ∥ x ∥∞= max

1≤j≤d
|xj | ≤ r} = [−r , r ]d
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GEOMETRY OF HIGH-DIMENSIONAL SPACES

On the left hand, B2
1, on the right hand the ∥ x ∥1 unit sphere

{x ∈ R2| ∥ x ∥1≤ 1}
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A FIRST STRANGE PROPERTY

Let v be a diagonal vector from the center to a corner of
Cd

r = [−r , r ]d . Then v = ±1 · 1d . Let Ej = (0, . . . ,1, . . . ,0)T . Then

cos(θ) =
vTEj

∥ v ∥2∥ Ej ∥2
=

±1√
d

Hence for large d, all diagonals are almost orthogonal to the
coordinate axes.
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The hypervolume of Bd
r is given by

V
(

Bd
1

)
=

πd/2

Γ
(

d
2 + 1

) , V
(

Bd
r

)
= V

(
Bd

1

)
rd .

The hypervolume of Cd
r is

V
(

Cd
1

)
= 2d , V

(
Cd

r

)
= V

(
Cd

1

)
rd = 2d rd .

We have Bd
1 ⊂ Cd

1 : take any x ∈ Bd
1 , then ∥ x ∥2=

∑d
i=1 x2

i ≤ 1.
Hence x2

i ≤ 1 holds for every i (equality when one xi = 1 and the

rest zeros), which means that |xi | =
√

x2
i ≤

√
1 = 1 for every i. Thus

max1≤i≤d |xi | < 1, which by definition of Cd
1 means that x ∈ Cd

1 .
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Bd
1 ⊂ Cd

1 . With increasing dimension the volume of the
hypercube concentrates in its corners and the centre becomes
less important:

V
(
Bd

1

)
V
(
Cd

1

) =
πd/2

2dΓ
(

d
2 + 1

) → 0, as d → ∞.
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V
(
Bd

1

)
V
(
Cd

1

) =
πd/2

2dΓ
(

d
2 + 1

) → 0, as d → ∞.

Γ
(

d
2 + 1

)
= d

2 Γ
(

d
2

)
(BETA 12.5). Then

V
(
Bd

1

)
V
(
Cd

1

) =

(
π1/2

2

)d
2

dΓ
(

d
2

)
Here 0 < π1/2

2 < 1. Hence
(
π1/2

2

)d
→ 0, as d → +∞.

dΓ
(

d
2

)
→ +∞, as d → +∞.
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X ∼ Nd (0, Id),

fX (x) =
1

(2π)d/2 e−
∥x∥2

2
2

The contour lines are for ϵ ∈ (0, 1)

L = {x ∈ Rd |e−
∥x∥2

2
2 = ϵ}

It follows that
L = {x ∈ Rd | ∥ x ∥2

2= −2 ln ϵ}
Note −2 ln ϵ > 0. Hence the probability of hitting the d-sphere
inscribed in the contour line is

P
(

X ∈ Bd
2 ln(1/ϵ)

)
= P

(
∥ X ∥2

2≤ 2 ln(1/ϵ)
)
= P

(
d∑

i=1

X2
i ≤ 2 ln(1/ϵ)

)
.

But Z :=
∑d

i=1 X2
i ∼ χ2(d) so that

P
(

X ∈ Bd
2 ln(1/ϵ)

)
= P (Z ≤ 2 ln(1/ϵ))
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Take ϵ = e−1/2. Then from the above

P
(

X ∈ Bd
1

)
= P (Z ≤ 1)

When d → ∞, P (Z ≤ 1) → 0. This is seen graphically in the next
Figure, with the vertical black line at 1. For increasing degrees of
freedom the area under the pdf of χ2(d) to the left of 1
becomes smaller and smaller.
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The Figure above is a slightly edited version of a Figure provided
by

Hartmann, K., Krois, J., Waske, B. (2018): E-Learning
Project SOGA: Statistics and Geospatial Data Anal-
ysis. Department of Earth Sciences, Freie Universität
Berlin.
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P
(

X ∈ Bd
1

)
→ 0, as d → ∞

Hence the normal probability mass vanishes from the unit
hypersphere, when dimension increases. We are used to thinking
with the image of d = 1 and d = 2 that the normal distribution
has most of its mass in the center.
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Or, we have also

P
(

X ∈ Bd
1

)
=

∫
Bd

1

1
(2π)d/2 e−

∥x∥2
2

2 dx ≤
∫

Bd
1

dx = V
(

Bd
1

)
and the volume of the unit hypersphere becomes vanishingly
small as d increases, as found above.
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M. A. Carreira-Perpinãn: A Review of Dimension Reduction
Techniques Technical Report CS–96–09 Dept. of Computer
Science University of Sheffield, 1997.
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In addition, since X = (X1 . . . ,Xd), each Xi ∼ N(0, 1),

E
[
∥ X ∥2

2

]
=

d∑
i=1

[
X2

i

]
= d

In words, the mean squared distance of a point from the center
is d. The following theorem tells us, where the probability mass
lies in high dimensions. This is the Gaussian annulus theorem
found on p. 24 of Blum, Hopcroft, and Kannan.

PROPOSITION

X ∼ Nd (0, Id) For any b ≤
√

d

P
(√

d − b ≤∥ X ∥2≤
√

d + b
)
≥ 1 − 3e−cb2

,

where c is a fixed positive constant.
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Brin, Sergey: Near neighbor search
in large metric spaces, VLDB, 95, 58,
pp. 574−4584, 1995.
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S. BRIN
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S. BRIN
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S. BRIN
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Lasso= Least Absolute Selection and Shrinkage Op-
erator
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LASSO

X is k × k , the Lasso finds the regression coefficients by

min
β∈Rk

1
2n

∥ y − β0In − Xβ ∥2
2

subject to
∥ β ∥1≤ t .

This is a piece of optimization theory known as convex
programming. It forces sparsity, i.e., some or many β̂j will be zeros.
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LASSO’S EQUIVALENT LAGRANGE DUAL

X is k × k , center the model, β̂0 = ȳ −
∑k

j=1 β̂j x̄j .

min
β∈Rk

1
2n

∥ y − Xβ ∥2
2 +λ ∥ β ∥1

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 2023-02-09 60 / 73



RIDGE REGRESSION

X is k × k , ridge regression finds the regression coefficients by

min
β∈Rk

1
2n

∥ y − β0In − Xβ ∥2
2

subject to
∥ β ∥2≤ t .

Ridge regression strives at sparsity, i.e., some or many β̂j
approach zero values.
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RIDGE REGRESSION EQUIVALENT LAGRANGE DUAL

min
β∈Rk

1
2n

∥ y − Xβ ∥2
2 +λ ∥ β ∥2
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T.HASTIE, R. TIBSHIRANI AND M. WAINWRIGHT:
STATISTICAL LEARNING WITH SPARSITY. THE

LASSO AND GENERALIZATIONS, P. 11
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LAGRANGE MULTIPLIERS

Minimize f0(x)

subject to fi(x) ≤ 0, i ∈ {1, . . . ,m}

with the domain D ⊂ Rn having non-empty interior. The dual
Lagrangian function

L : Rn × Rm → R

is gives the solution by

minimize L(x , λ) = f0(x) +
m∑

i=1

λi fi(x).
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REGULARIZATION – RIDGE REGRESSION AND

LASSO

High bias (underfit) Good fit High variance
(overfit)
To overcome underfitting or high bias ⇔ Add more parameters
to the model ⇔ The model complexity increases.
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REGULARIZATION – RIDGE REGRESSION AND

LASSO

How can we overcome overfitting for a regression model?

Reduce the model complexity
Regularization – Ridge regression and Lasso
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SHRINKAGE METHODS

As an alternative, to the subset selection methods discussed
above, we can fit a model containing all p predictors using a
technique that

constrains or regularizes the coefficient estimates, or
equivalently,
shrinks the coefficient estimates towards zero.

It may not be immediately obvious why such a constraint should
improve the fit, but it turns out that shrinking the coefficient
estimates can significantly reduce their variance.

The two best-known techniques for shrinking the regression
coefficients towards zero are

ridge regression,
the lasso.
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RIDGE REGRESSION

Ridge regression is very similar to least squares, except that the
coefficients are estimated by minimizing a slightly different
quantity.
Ridge regression’s advantage over least squares is the
bias-variance trade-off. As λ increases, the flexibility of the ridge
regression fit decreases, leading to decreased variance but
increased bias.
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TUNING PARAMATER

The tuning parameter λ serves to control the relative impact of
these two terms on the regression coefficient estimates.

When λ = 0, the penalty term has no effect, and ridge
regression will produce the least squares estimates.

However, as λ → ∞, the impact of the shrinkage penalty
grows, and the ridge regression coefficient estimates will
approach zero.

Selecting a good value for λ is critical ⇒
Cross-validation!
Choose a grid of λ values, and compute the cross-validation
error for each value of λ. Then select the tuning parameter
value for which the cross-validation error is smallest.

Finally, the model is re-fit using all of the available
observations and the selected value of the tuning
parameter.
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THE LASSO

Ridge regression does have one obvious disadvantage. Unlike
best subset, forward stepwise, and backward stepwise selection,
which will generally select models that involve just a subset of
the variables, ridge regression will include all p predictors in the
final model.
The shrinkage penalty will shrink all of the coefficients towards
zero, but it will not set any of them exactly to zero (unless λ = ∞).

The lasso is an alternative to ridge regression that overcomes this
disadvantage.
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As with ridge regression, the lasso shrinks the coefficient
estimates towards zero.

However,

in the case of the lasso, the penalty has the effect of forcing
some of the coefficient estimates to be exactly equal to zero
when the tuning parameter λ is sufficiently large.

Much like best subset selection, the lasso performs variable
selection.

As a result, models generated from the lasso are generally
much easier to interpret than those produced by ridge
regression.
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RIDGE VS LASSO

It is clear that the lasso has a major advantage over ridge
regression, in that it produces simpler and more interpretable
models that involve only a subset of the predictors.

However, which method leads to better prediction
accuracy?

One can see that the lasso leads to qualitatively similar
behavior to ridge, in that as λ increases, the variance
decreases and the bias increases.

Often, the lasso and ridge regression result in almost
identical biases, but the variance of ridge is slightly lower
than the variance of the lasso.

Consequently, the minimum MSE of ridge regression is slightly
smaller than that of the lasso.

This is not surprising since lasso implicitly results that some of
the coefficients equal zero and the ridge regression include
all predictors.
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One can conclude that neither ridge regression nor the
lasso will universally dominate the other.

In general, one might expect the lasso to perform better in a
setting where a relatively small number of predictors have
substantial coefficients, and the remaining predictors have
coefficients that are very small or that equal zero.

Ridge regression will perform better when the response is a
function of many predictors, all with coefficients of roughly
equal size.

However, the number of predictors that is related to the
response is never known a priori for real data sets.

A technique such as cross-validation can be used in order to
determine which approach is better on a particular data
set.
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