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YOUR LEARNING OUTCOMES

Logit function, Logistic function
Logistic regression

definition
likelihood function
maximum likelihood estimate
best prediction & validation
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PART 1: BINARY RESPONSE Y AND E [Y |x]
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BINARY RESPONSE AND COVARIATES (OF ANY

KIND)

x =


1
x1
x2
...

xp

 .

is a (p + 1)× 1 vector of covariates/predictors, which can be
binary, ordinal, categorical or continuous. The response Y is
binary r.v.. Its values y are coded as y ∈ {0, 1}, equivalently
recoded as y ∈ {−1, 1}, which has its advantages, as seen later.

EXAMPLE

Y = Bacterial Meningitis or Acute Viral Meningitis.
x =cerebrospinal fluid total protein count, p = 1.
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LOGISTIC REGRESSION

y ∈ {0, 1}, xT = (1 x1 x2 . . . x32)

EXAMPLE

Diaz, Armando A et. al: Prediction of protein solubility in
Escherichia coli using logistic regression, Biotechnology and
bioengineering, 105, 2 pp. 374−383, 2010.
. . . a model for the prediction of the solubility of proteins
overexpressed in the bacterium Escherichia coli. The model
uses the statistical technique of logistic regression. To build
this model, 32 covariates xi that could potentially correlate well
with solubility were used.
Logistic regression provides the probability p of a certain
protein to belong (= Y ) to one set or another.
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The purpose of a population-based, case-control study
was to test the hypothesis that long-term mobile phone
use increases the risk of brain tumors. The authors
identified all cases aged 20-69 years who were diagnosed
with glioma or meningioma during 2000-2002 in certain
parts of Sweden. Randomly selected controls were strat-
ified on age, gender, and residential area. Detailed infor-
mation about mobile phone use was collected from 371
(74%) glioma and 273 (85%) meningioma cases and 674
(71%) controls. For regular mobile phone use, the odds
ratio (using logistic regression) was 0.8 (95% confidence
interval: 0.6, 1.0) for glioma and 0.7 (95% confidence
interval: 0.5, 0.9) for meningioma.

Lönn, Stefan and Ahlbom, Anders and Hall, Per and Feychting,
Maria: Long-term mobile phone use and brain tumor risk.
American journal of epidemiology, 166, pp. 526–535 2005.
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REGRESSION ANALYSIS IS A STUDY OF

CONDITIONAL EXPECTATION

DEFINITION

A binary r.v. Y ∼ Be (p), Bernouilli distribution with parameter
p ∈ (0, 1), the probability mass function is

y = 1 y = 0
P(Y = y) p 1− p

E [Y ] = 0 · P(Y = 0) + 1 · P(Y = 1) = p.
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REGRESSION ANALYSIS IS A STUDY OF

CONDITIONAL EXPECTATION

When Y is a binary response variable with covariate values x,
the conditional expectation is by the simplest of simple
arguments above

E [Y | x] = P (Y = 1 | x) . (1)

We shall find an expression for P (Y = 1 | x), so that Y is said to
follow a logistic regression.

One way: Model P (x | Y = y) and P (Y = y) and use Bayes,

formula to find P (Y = 1 | x).
A different plan: find an invertible function g and set

g (E [Y | x]) = xTβ,

where β = (β0, β1, β2, . . . , βp) be (p + 1)× 1
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PART 2: SEARCH FOR g

g (E [Y | x]) = xTβ, (2)

where β = (β0, β1, β2, . . . , βp) be (p + 1)× 1.
Link function

Logit function
Logistic function a.k.a Sigmoid function
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LINK FUNCTION
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BERNOULLI DISTRIBUTION

y = 1 y = 0
P(Y = y) p 1− p

We write this as
P(Y = y) = py(1− p)1−y

and then

P(Y = y) = eln
(

p
1−p

)
y+ln(1−p) (3)

We shall now endeavour upon a study of ln
(

p
1−p

)
. In statistics

this is the ’canonical link function’ for the Bernoulli distribution
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THE FUNCTION LOGIT(p)

Terminology: p
1−p is known as the odds of success. The

logarithmic odds of success is called the logit of p

logit(p) = ln

(
p

1− p

)
We set θ = logit(p).
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THE LOGIT(P) AND ITS INVERSE

θ := logit(p) = log

(
p

1− p

)
The inverse function is

p = logit−1(θ) =
eθ

1 + eθ

The inverse function is denoted by σ(θ), and is called the
logistic function or the sigmoid.

σ(θ) :=
1

1 + e−θ
, −∞ < θ <∞,

and. Note that σ(0) = 1
2 .
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REMARK

In biology the logistic function refers to change in size of a
species population. In artifical neural networks the sigmoid is a
network output function called sigmoid.
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THE LOGIT(ODDS) AND THE LOGISTIC FUNCTION

θ = logit(p) = log

(
p

1 − p

)
, 0 < p < 1 p = σ(θ) =

1
1 + e−θ

, −∞ < θ < ∞,
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PART 3: LOGISTIC REGRESSION
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Now let us look at (2), i.e.,

g (E [Y | x]) = xTβ, (4)

where β = (β0, β1, β2, . . . , βp). Let us take g(x) = logit(x) so that
we have

logit (E [Y | x]) = xTβ (5)

Then use the inverse function of logit(x) in (5), which gives

E [Y | x] = σ
(

xTβ
)
=

exTβ

1 + exTβ
=

1
1 + e−xTβ

. (6)
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Here we have (1), i.e.,

E [Y | x] = P (Y = 1 | x) .

we have now

P (Y = 1 | x) = σ
(

xTβ
)
=

1
1 + e−xTβ

.

In addition

P (Y = 0 | x) = 1− P (Y = 1 | x) = 1− 1
1 + e−xTβ

=
e−xTβ

1 + e−xTβ
.

We have also equivalently

P (Y = 1 | x) = exTβ

1 + exTβ
,P (Y = 0 | x) = 1

1 + exTβ
.
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LOGISTIC REGRESSION

DEFINITION

If

Y =

{
1 with probability σ

(
xTβ

)
0 with probability 1− σ

(
xTβ

)
.

then we say that Y follows a logistic regression w.r.t. the
predictor variables x1, x2, . . . , xp.
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LOGISTIC REGRESSION: SPECIAL CASE

If xTβ = 0, then σ(0) = 1
2 , and

Y =

{
1 with probability 1

2
0 with probability 1

2

or, Y ∼ Ber (1/2). Hence ”flipping an honest coin” can be seen
as a special case of logistic regression.
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ARTIFICIAL NEURAL NETWORK WITH ONE LAYER

Activation function: σ
(

xT w
)

, w ↔ (β1, . . . , βp) ,b ↔ β0
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WHY?

Why did we take such a tedious or long-winding route to the
goal? Why not give the definition of ’Y following a logistic
regression’ straightaway?
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WHY? A: GENERALIZED LINEAR REGRESSION

Recall (3)

P(Y = y) = eln
(

p
1−p

)
y+ln(1−p)

We have θ = logit(p) so that

P(Y = y) = eθy−ln((1+eθ) (7)

In statistical theory (8) shows that the Bernouilli distribution
belongs to the exponential family of distributions and (8) is its
”natural form”, θ is called the natural parameter of the Bernouilli
distribution. Then we get the logistic regression probabilities as

P(Y = y) = eyxTβ−ln
(
(1+exT β

)
(8)

This is a special case of how Generalized Linear Regression
(GLM) are constructed.
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GENERALIZED LINEAR REGRESSION (GLM)

A GLM consists of three elements:
1 A particular distribution from exponential families of

probability distributions is modeling Y .
2 A linear predictor xTβ, which is made equal the natural

parameter θ = xTβ and
3 A link function g such that E (Y | x) = g−1(θ).

The link function provides the relationship between the linear
predictor and the mean of the distribution function. There is
always one well-defined canonical link function, which is derived
from the pdf of the Y in the natural exponential form. Other link
functions can be considered.
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AN EXAMPLE: POISSON REGRESSION

1 Y ∼ Po (λ), λ > 0, E [Y ] = λ.

P (Y = y) =
1
y!

e−λλy , y = 0, 1, . . .

=
1
y!

ey lnλ−λ

Set θ = lnλ. We get the natural form

P (Y = y) =
1
y!

eyθ−eθ

2 A linear predictor xTβ, which is made equal to the natural
parameter θ = xTβ and

3 The link function g(x) = ln x , x > 0 such that ln E (Y | x) = xTβ
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EXAMPLE: POISSON REGRESSION

Hence the probability mass function of
the Poisson regression is

P (Y = y |x) = 1
y!

eyxTβ−exT β
, y = 0, 1, 2, . . . .
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LOGISTIC REGRESSION: GENETIC EPIDEMIOLOGY

Logistic regression is extensively applied in medical research,
where ’success’ may mean the occurrence of a disease or
death due to a disease, and x1, x2, . . . , xp are environmental and
genetic riskfactors.
Woodward, M. : Epidemiology: study design and data analysis,
2013, CRC Press.
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LOGISTIC REGRESSION: GENETIC EPIDEMIOLOGY

Suppose we have two populations, where x(0)
1 in first population

and x(1)
2 in the second population, all other predictors are equal

in the two populations. Then a medical geneticist finds it useful
to calculate the logarithm of the odds ratio

lnψ = ln
p1

1− p1
− ln

p2

1− p2

= βi

(
x(0)

1 − x(1)
2

)
or

ψ = eβi

(
x(0)

1 −x(1)
2

)
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EGAT STUDY (FROM WOODWARD)

Smoker at entry Cardiovascular death during follow-up
Yes No Total

Yes 31 1386 1417
No 15 1883 1898

Total 46 3269 3315

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 2023-02-08 29 / 97



EGAT STUDY (FROM WOODWARD)

Logistic regression

l̂ogit (E [Y | x]) = −4.8326 + 1.0324x

was fitted with x = 1 for smokers and x = 0 for non-smokers. Then
the odds ratio is

OR =
P(Y = 1 | x)
P(Y = 0 | x)

= eβ̂(x1−x2) = e1.3024(1−0) = 2.808

The log odds for smokers is

−4.8326 + 1.0324× 1 = −3.8002

giving odds= 0.2224. For non-smokers the odds are 0.008.
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EGAT STUDY (FROM WOODWARD)

The risk for cardiovascular death for smokers is

1
1 + e−4.8326+1.0324×1 = 0.0219

For nonsmokers

1
1 + e−4.8326+1.0324×0 = 0.0079

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 2023-02-08 31 / 97



LOGISTIC REGRESSION

P(Y = 1 | x) = σ(xTβ) =
exTβ

1 + exTβ

P(Y = 0 | x) = 1

1 + eβT xT
.

Odds ratio (for success)

OR = Odds Ratio =
P(Y = 1 | x)
P(Y = 0 | x)

= exTβ

Hence a unit change in xi corresponds to eβi change in odds
and βi change in logodds.
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MOBILE PHONES AND BRAIN TUMOR; LÖNN ET.AL.

For regular mobile phone use, the odds ratio (using lo-
gistic regression) was 0.8 (95% confidence interval: 0.6,
1.0) for glioma and 0.7 (95% confidence interval: 0.5,
0.9) for meningioma.

We see that OR= 1 is included in one of the intervals and that
OR = 0.7 has the CI 95% confidence interval (0.5, 0.9).
Lönn et.al. state (loc.cit) that

This study includes a large number of long-term mobile
phone users, and (we) conclude that the data do not
support the hypothesis that mobile phone use is related
to an increased risk of glioma or meningioma.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 2023-02-08 33 / 97



PART 3: PROBABILITY MODEL FOR LOGISTIC

REGRESSION
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PART 3: PROBABILITY MODEL FOR LOGISTIC

REGRESSION

ϵ is a r.v.,
ϵ ∼ Logistic(0, 1)

means that the cumulative distribution function (CDF) of the
logistic distribution is the logistic function:

P (ϵ ≤ x) =
1

1 + e−x = σ(x)
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A GENERATIVE MODEL

We need the following regression model

Y ∗ = xTβ + ε,

where
ϵ ∼ Logistic(0, 1),

i.e. the variable Y ∗ can be written directly in terms of the linear
predictor function and an additive random error variable. The
logistic distribution (?) is the probability distribution the random
error.
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LOGISTIC DISTRIBUTION

ϵ is a r.v.,
ϵ ∼ Logistic(0, 1)

means that the cumulative distribution function (CDF) of the
logistic distribution is the logistic function:

P (ϵ ≤ x) =
1

1 + e−x = σ(x)

I.e. ϵ ∼ Logistic(0, 1), if the probability density function is

d
dx

σ(x) =
e−x

(1 + e−x)2 .
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SIMULATING ϵ ∼ Logistic(0, 1)

This is simple: simulate p1, . . . ,pn from the uniform distribution on
(0, 1) and then do εi = logit(pi) , i = 1, . . . ,n. In the figure we plot
the empirical distribution function of ϵi for n = 200.
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A PIECE OF PROBABILITY

ϵ ∼ Logistic(0, 1), what is P (−ε ≤ x) ?

P (−ε ≤ x) = P (ε ≥ −x) = 1− P (ε ≤ −x)

= 1− σ(−x)

= 1− 1
1 + ex =

ex

1 + ex =
1

1 + e−x

= P (ϵ ≤ x) .

ϵ ∼ Logistic(0, 1)⇔ −ϵ ∼ Logistic(0, 1).
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GENERATING MODEL AND/OR HOW TO SIMULATE

Take a continuous latent variable Y ∗ (latent= an unobserved
random variable) that is given as follows:

Y ∗ = xTβ + ε

and
ϵ ∼ Logistic(0, 1).

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 2023-02-08 40 / 97



Define the response Y as the indicator for whether the latent
variable is positive:

Y =

{
1 if Y ∗ > 0 i.e. − ε < xTβ,

0 otherwise.

Then Y follows a logistic regression w.r.t. x. We need only to verify
that

P(Y = 1 | x) = 1
1 + e−xTβ

.
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P(Y = 1 | x) = P(Y ∗ > 0 | x) (9)

= P(xTβ + ε > 0) (10)

= P(ε > −xTβ) (11)

= P(−ε < xTβ) (12)

= P(ε < xTβ) (13)

= σ(xTβ) (14)

=
1

1 + e−xTβ
(15)

where we used in (4) -(5) that the logistic distribution is symmetric
(and continuous), as learned above,

Pr (−ε ≤ x) = Pr (ε ≤ x) .
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PART 4: LOGISTIC REGRESSION LEARNING AND

INFERENCE

Maximum Likelihood
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PROBIT ANALYSIS

A textbook in biostatistics provides us with the following example:
Make and female moths, 20 of both, are administered with
various doses of trans-cypermethrin in order to examine the
lethality of the insecticide. After three days it was registered how
many moths were dead or not mobile. We look at only male
moths, and model by logistic regression the effect of the dose on
the proportion of moths that die or become immobile.
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MODEL VALIDATION: THE χ2-TEST

Let us return to the moth data. We can write the data for males
as

Dose (µg)
1 2 4 8 16 32

Die 1 4 9 13 18 20
Survive 19 16 11 7 8 0
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A DIFFICULTY

We look at only male moths, and model by logistic regression the
effect of the dose on the proportion of moths that die or
become immobile. This looks straightforward. But:
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A DIFFICULTY

All twenty male moths were dead or immobile in three days after
a dose of 32 µg.

logit(pi) = α+ β · dosei

How do we handle the infinite odds at 32 µg dose ?
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A DIFFICULTY & A SOLUTION DUE TO LAPLACE

We have infinite odds at 32 µg dose, if we use the estimate

ln

(
si/ni

(ni − si)/ni

)
where sis are the frequencies in the table and ni = (20) is the
total number of units. But we can use the adjusted values

ln

(
si +

1
2

ni − si +
1
2

)
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SOLUTION WITH LAPLACIAN ADJUSTMENT
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MAXIMUM LIKELIHOOD

We have the training set

Dtr = {(x1, y1) , . . . , (xn, yn)}

The likelihood function is

L (β) def
=

n∏
i=1

σ(xi)
yi (1− σ(xi))

1−yi .
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MAXIMUM LIKELIHOOD

Some simple manipulation gives that

− ln L (β) = −
n∑

i=1

(
yixT

i βi − ln
(

1 + exT
i β
))

There is no closed form solution to the minimization of − ln L (β).
The function is twice continuously differentiable, convex and
even strictly convex if the data is not linearly separable. There
are standard optimization algorithms for minimization of
functions with these properties.
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MODEL VALIDATION: THE χ2-TEST

Using the MLE-estimates α̂ = −1.9277 and β̂ = 0.2972 we can
calculate the probability of death for the dose x = 1 as

1
1 + e1.9277−0.2972 = 0.1638

and then the expected frequency of death at x = 1 is

20 · 0.1638 = 3.275

In the same way we can calculate the probabilities of death
and survival for the other doses x .
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MODEL VALIDATION: THE χ2-TEST

We use the chi-square goodness-of-fit test statistic Q

Q =
r∑

i=1

(observed freqi − expected freqi)
2

expected freqi
=

r∑
i=1

(xi − npi)
2

npi
.

where r is the number of groups in the grouped data. It can be
shown that Q is approximatively χ2(r/2− 2)- distributed (chi
square with r/2− 2 degrees of freedom) under the (null)
hypothesis that the probabilities of death and survival are as
given by the estimated model. The reduction with two degrees
of freedom is for the fact that we have estimated two
parameters.
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MODEL VALIDATION: THE χ2-TEST

Q =
r∑

i=1

(observed freqi − expected freqi)
2

expected freqi
=

r∑
i=1

(xi − npi)
2

npi
.

E.g., n2 = 4 and

n · p2 = 20 · P̂(Y = 1 | x = 2) =
20

1 + e−α̂−2β̂
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MODEL VALIDATION: THE χ2-TEST

We get

Q =
12∑
i=1

(observed freqi − expected freqi)
2

expected freqi

=
(1− 3.275)2

3.275
+ . . .+

(20− 19.99)2

0.010
= 4.2479

The p-value is
P (Q ≥ 4.24) = 0.3755

where Q is χ2(6− 2)- distributed. Hence we do not reject the
logistic regression model1.

1Here the expected frequency of 0 taken as 0.01 in the textbook cited.
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PART III: MORE ON MAXIMUM LIKELIHOOD

Likelihood function rewritten

Training: an algorithm for computing the Maximum
Likelihood Estimate

Linear Separability and Regularization
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THE TRICK APPLIED TO REWRITING THE LOGISTIC

PROBABILITY

σ(t) =
1

1 + e−t

Let us recode y ∈ {−1,+1}. Then we get

P
(

Y = y | xT
)
= σ

(
yxTβ

)
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LOGISTIC REGRESSION: A CHECK OF RECODING

σ(t) =
1

1 + e−t

P (Y = 1 | x) = 1
1 + e−xTβ

= σ
(
+1xTβ

)
.

P (Y = 0 | x) = 1− P (+1 | x) = 1− 1
1 + e−xTβ

=
1− 1 + e−xTβ

1 + e−xTβ

=
e−xTβ

1 + e−xTβ
=

1
1 + exTβ

= σ
(
−1xTβ

)
.
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LOGISTIC REGRESSION: LIKELIHOOD OF β

P (y | x;β) = σ
(

yxTβ
)

A training set
Dtr = {(x1, y1) , . . . , (xn, yn)}

where now yi ∈ {−1, 1}. The likelihood function of β is

L (β) def
=

n∏
i=1

P (yl | xl ;β)
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LOGISTIC REGRESSION: -LOG LIKELIHOOD OF β

The negative log likelihood

−l (β) def
= − ln L (β) =

=
n∑

i=1

− lnP (yl | xl ;β)

=
n∑

i=1

− lnσ
(

yixT
i β
)

=
n∑

i=1

− ln

[
1

1 + e−yixT
i β

]

=
n∑

i=1

ln
[
1 + e−yixT

i β
]
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LOGISTIC REGRESSION: MLE (1)

−l (β) =
n∑

i=1

ln
[
1 + e−yixT

i β
]

Let us recall that
β = (β0, β1, β2, . . . , βp) .

Then
∂

∂β0
ln
[
1 + e−yixT

i β
]
= −yi

e−yi(xT
i β)

1 + e−yixT
i β

= −yiσ(−yixT
i β) = −yi (1− P (yi | xi ;β))
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LOGISTIC REGRESSION: MLE (2)

−l (β) =
n∑

i=1

ln
[
1 + e−yixT

i β
]

β = (β0, β1, β2, . . . , βp) .

∂

∂βk
ln
[
1 + e−yixT

i β
]
= −yixT

i
e−yi(xT

i β)

1 + e−yixT
i β

= −yixT
i σ(−yixT

i β) = −yixT
i (1− P (yi | xi ;β))
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LOGISTIC REGRESSION: MLE (3)

−l (β) =
n∑

i=1

ln
[
1 + e−yiβ

T xT
i

]
β = (β0, β1, β2, . . . , βp) .

∂

∂β0
ln
[
1 + e−yiβ

T xT
i

]
= −yi (1− P (yi | xi ;β))

∂

∂βk
ln
[
1 + e−yiβ

T xT
i

]
= −yixT

i (1− P (yi | xi ;β))
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LOGISTIC REGRESSION: MLE (3) UPDATE

∂

∂β0
ln
[
1 + e−yiβ

T xT
i

]
= −yi (1− P (yi | xi ;β))

∂

∂βk
ln
[
1 + e−yiβ

T xT
i

]
= −yixT

i (1− P (yi | xi ;β))

Parameters can then be updated by selecting training samples
at random and moving the parameters in the opposite direction
of the partial derivatives (stochastic gradient descent algorithm).
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LOGISTIC REGRESSION: MLE (4) UPDATE

Parameters can then be updated by selecting training samples
at random and moving the parameters in the opposite direction
of the partial derivatives

β0 ← β0 + ηyi (1− P (yi | xi ;β))

β ← β + ηyiXi (1− P (yi | xi ;β))
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LOGISTIC REGRESSION: MLE (5) UPDATE

β0 ← β0 + ηyi (1− P (yi | xi ;β))

β ← β + ηyiXi (1− P (yi | xi ;β)) .
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A DIFFICULTY OF MLE
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SEPARABILITY

For a training set Dtr = (xi , yi)
n
i=1 set

E+ := {i|yi = +1}, E− := {i|yi = −1}.

Suppose there exists a βs such that

xT
i βs > 0 if i ∈ E+

(16)
xT

i βs < 0 if i ∈ E−

We say that the hyperplane xT
i βs = 0 separates linearly the

training set.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 2023-02-08 69 / 97



A DIFFICULTY OF MLE

Then the loglikelihood from the above

l (β) =
n∑

i=1

lnσ
(

yixT
i β
)
=
∑
i∈E+

lnσ
(

yixT
i β
)
+
∑
i∈E−

lnσ
(

yixT
i β
)
.

=
∑
i∈E+

ln

[
1

1 + e−xT
i βs

]
+
∑
i∈E−

ln

[
1

1 + exT
i β

]
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A DIFFICULTY OF MLE

Take λ > 0 and consider l (λβs). The terms with i ∈ E+ are

ln

[
1

1 + e−λxT
i βs

]
.

. Let now λ→ +∞. Then

ln

[
1

1 + e−λxT
i βs

]
→ 0,

since xT
i βs > 0 for i ∈ E+.
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A DIFFICULTY OF MLE

l (λβs). When λ→ +∞ the terms with i ∈ E− converge to zero

ln

[
1

1 + eλxT
i βs

]
→ 0

since xT
i βs < 0 for i ∈ E−. Thus the likelihood function

L (λβs) = el(λβs) → 1,

as λ→ +∞ But for every β

L (β) < 1

since L (β) is a product of probabilities. Hence the MLE does not
exist for a linearly separable training set.
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MLE & REGULARIZER

To avoid linear separability due to small training sets we minimize
the regularizer + the negative loglikelihood function or

λ

2
βTβ +

n∑
i=1

ln
[
1 + e−yixT

i β
]

where λ is a parameter that measures the strength of
regularization.
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MORE ON MLE

−l (β) =
n∑

i=1

− lnσ
(

yixT
i β
)

Then we recall that x = (1, x1, x2, . . . , xp). Thus

∂

∂β
F (β) =

l∑
i=1

yixiσ(−yixT
i β).

This follows by the preceding, or expressing the preceding in
vector notation

∂

∂β
xTβ = xT

Thus if we set the gradient ∂
∂βF (β) = 0 (= a column vector of

p + 1 zeros) we get
n∑

i=1

yixT
i σ
(
−yixT

i β
)
= 0
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The MLE estimate β̂ will satisfy

0p+1 =
n∑

i=1

yiσ(−yixT
i β̂)xi

⇔

0p+1 =
n∑

i=1

yi(1− P(yixT
i β̂

T
)xi
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CI

β̂MLE,i ± λα/2 · stderr(β̂MLE,i)
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PART : PREDICTION AND CROSSVALIDATION

Prediction

Crossvalidation
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When we insert β̂ back to P
(
y | xT

)
we have

P̂ (y | x) = σ
(

yxT β̂
)

or
P̂
(

Y = 1 | xT
)
= σ

(
xT β̂

)
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LOGISTIC REGRESSION

We can drop the notations P̂ and β̂ for ease of writing. For given
X the task is to maximize P (y | x) = σ

(
yxT β̂

)
. There are only two

values y = ±1 to choose among. There are two cases to
consider.
1) t = xT β̂ > 0. Then if y = +1, and y∗ = −1

y∗t < 0 < yt ⇒ ey∗t < eyt ⇒ e−yt < e−y∗t

⇒ 1 + e−yt < 1 + e−y∗t ⇒ 1
1 + e−y∗t <

1
1 + e−yt

i.e.
P (y | x) = σ (yt) > σ (y∗t) = P (y∗ | x)
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LOGISTIC REGRESSION

2) t = xT β̂ < 0. If y = +1, and y∗ = −1, then

yt < y∗t

and it follows in the same way as above that

P (y∗ | x) > P (y | x)

Hence: the maximum probability is assumed by y that has the
same sign as xT β̂.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 2023-02-08 80 / 97



Given β̂, the best probability predictor of Y , denoted by Ŷ , for
given x is

Ŷ = sign
(

xT β̂
)
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MODEL VALIDATION: CROSS-VALIDATION

A way to check a model’s suitability is to assess the model
against a set of data (testing set) that was not used to create
the model: this is called cross-validation. This is a holdout model
assessment method.
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CROSS VALIDATION

We have a training set of l pairs yi ∈ {0, 1} and the
corresponding values of the predictors.

Dtr = {(x1, y1) , . . . , (xn, yn)}

and use this to estimate β by β̂ = β̂(S), e.g., by MLE.
We must have another set of data, testing set, of holdout
samples

Dtest =
{(

xt
1, y

t
1

)
, . . . ,

(
xt

m, y
t
m

)}
Having found β̂ we should apply the optimal predictor P̂

(
y | xt

l

)
on Dtest , and compare the prediction to y t

j for all j. Note that in

this β̂ = β̂(S)
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CROSS-VALIDATION: CATEGORIES OF ERROR

prediction of -1 when the holdout sample has a -1 (True
Negatives, the number of which is TN)
prediction of -1 when the holdout sample has a 1 (False
Negatives, the number of which is FN)
prediction of 1 when the holdout sample has a -1 (False
Positives, the number of which is FP)
prediction of 1 when the holdout sample has a 1 (True
Positives, the number of which is TP)
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EVALUATION OF LOGISTIC REGRESSION (AND

OTHER) MODELS

False Positives = FP , True Positives = TP
False Negatives = FN , True Negatives= TN

Y = +1 Y = −1
Ŷ = +1 TP FP
Ŷ = −1 FN TN
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CROSS-VALIDATION

One often encounters one or several of the following criteria of
evaluation:

Accuracy = TP+TN
TP+FP+FN+TN =fraction of observations with

correct predicted classification
Precision = PositivePredictiveValue = TP

TP+FP =Fraction of
predicted positives that are correct
Recall = Sensitivity = TP

TP+FN =fraction of observations that
are actually 1 with a correct predicted classification
Specificity = TN

TN+FP =fraction of observations that are
actually -1 with a correct predicted classification
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APPENDIX: MLE FOR SIMPLE LOGISTIC

REGRESSION

Special case: xTβ = β0 + β1x.

Likelihood

Maximum Likelihood

logisticmle.m
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We consider the model:

xTβ = β0 + β1x .

P(Y = 1 | x) = σ(xTβ) =
1

1 + e−(β0+β1x)
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Notation:
P(Y = y | x) = σ(xTβ)y(1− σ(xTβ)1−y

=

{
σ(xTβ) if y = 1

1− σ(xTβ) if y = 0

Data (xi , yi)
n
i=1, likelihood function with the notation above

L (β0, β1) = P(Y = y1 | x1) · P(Y = y2 | x2) · · ·P(Y = yn | xn)

= σ(xTβ1)
y1(1− σ(xTβ1)

1−y1 · · ·σ(xTβn)
yn(1− σ(xTβn)

1−yn

= A · B

A = σ(xTβ1)
y1 · σ(xTβ2)

y2 · · ·σ(xTβn)
yn

B = (1− σ(xTβ1)
1−y1(1− σ(xTβ2)

1−y2 · · · (1− σ(xTβn)
1−yn
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ln L (β0, β1) = lnA + lnB

=
n∑

i=1

yl lnσ(xTβi) +
n∑

i=1

(1− yi) ln(1− σ(xTβi))

=
n∑

i=1

ln(1− σ(xTβi))︸ ︷︷ ︸
=− ln(1+eβ0+β1xi )

+
n∑

i=1

yl ln
σ(xTβi)

1− σ(xTβi)︸ ︷︷ ︸
=β0+β1xi

In summary:

ln L (β0, β1) =
n∑

i=1

yi (β0 + β1xi)−
n∑

i=1

ln
(

1 + eβ0+β1xi

)
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∂

∂β1
ln L (β0, β1)

=
n∑

i=1

yixi −
n∑

i=1

∂

∂β1
ln
(

1 + eβ0+β1xi

)
∂

∂β1
ln
(

eβ0+β1xi

)
=

eβ0+β1xi xi

1 + eβ0+β1xi

= P(Y = 1 | xi) · xi .
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∂

∂β1
ln L (β0, β1) = 0

⇔
n∑

i=1

(yixi − P(Y = 1 | xi) · xi) = 0.

In the same manner we can also find

∂

∂β0
ln L (β0, β1) =

n∑
i=1

(yi − P(Y = 1 | xi)) = 0

These two equations have no closed form solution w.r.t. β0 and
β1.
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NEWTON-RAPHSON FOR MLE: A ONE-PARAMETER

CASE

For one parameter θ, set f (θ) = ln L(θ). We are searching for the
solution of

f
′
(θ) =

d
dθ

f (θ) = 0.

Newton-Raphson method

θnew = θold +
f
′ (
θold

)
f ′′ (θold

) ,
where a good initial value is desired.
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NEWTON-RAPHSON FOR LOGISTIC MLE

(
βnew

0
βnew

1

)
=

(
βold

0
βold

1

)
+ H−1(βold

0 , βold
1 )

(
∂

∂β0
ln L
(
βold

0 , βold
1

)
∂

∂β1
ln L
(
βold

0 , βold
1

) ) .
where H−1(βold

0 , βold
1 ) is the matrix inverse of the 2×2 matrix (next

slide)
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NEWTON-RAPHSON FOR LOGISTIC MLE

H(βold
0 , βold

1 ) =

 ∂2

∂β2
0
ln L
(
βold

0 , βold
1

)
∂2

∂β0β1
ln L
(
βold

0 , βold
1

)
∂2

∂β1β0
ln L
(
βold

0 , βold
1

)
∂2

∂β2
1
ln L
(
βold

0 , βold
1

)


=

 ∑n
i=1 P (Y = 1 | xi ) (1 − P(Y = 1 | xi )

∑n
i=1 P (Y = 1 | xi ) (1 − P (Y = 1 | xi ) · xi )∑n

i=1 P (Y = 1 | xi ) (1 − P (Y = 1 | xi )) · xi
∑n

i=1 P (Y = 1 | xi ) (1 − P(Y = 1 | xi )) x2
i


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[bs,stderr,phat,deviance] =
logisticmle(y,x)

Input:
y - responses, a binary vector, values 0 and 1
x - the covariate, as a vector
Output:
bs - estimators of beta0 and beta1
stderr - standard error of the estimate = square roots of the
diagonal elements of H−1.
phat - estimator of p= P(Y=1)
deviance - deviance
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CONFIDENCE INTERVAL WITH DEGREE OF

CONFIDENCE 1− α

β̂MLE,i ± λα/2 · stderr(β̂MLE,i)
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