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LEARNING OUTCOMES

Occam’s razor

Nested Models
F-test for Model Dimension with Nested Models
Variable Selection, Subset Selection, Backward selection,
Forward Selection
AIC: Model Complexity Criterion for Model Dimension and
F-test
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Occam’s razor is the principle that states that unnecessarily
complex models should not be preferred to simpler ones.

Occam’s razor is also known as the principle of parsinomy.
Cambridge Dictionary: parsinomy is the quality of not being
willing to spend money or to give or use a lot of something:
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JENNIFER GUNNER, STAFF WRITER OF

YOURDICTIONARY.COM1

The ”razor” refers to the ”shaving away” of extraneous material
and assumptions. The idiom ”when you hear hoofbeats think
horses, not zebras” refers to this principle that the most likely
solution is the simplest one. This is not because simpler
explanations are usually correct, but because you make fewer
assumptions when looking for horses instead of zebras.

1
https://examples.yourdictionary.com/examples-of-occam-s-razor.html
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SVD 2011-12-13, HÅKAN ARVIDSSONS

RECENSERAR AV EN BOK AV LARS BORGNÄS

Estonia sjönk inte genom att bogvisiret slogs loss i det
hårda vädret. Nej, den torpederades av främmande
makt därför att den medförde sovjetiskt krigsmaterial.
Här har Borgnäs ingenting att säga om vad det var för
material och på vems order det hade lastats på Estonia.
I konspirationens tankevärld räcker det med menande
antydningar.
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SVD 2011-12-13, HÅKAN ARVIDSSONS

RECENSERAR AV EN BOK AV LARS BORGNÄS

Inte heller sköts Olof Palme av Christer Pettersson, han
mördades av reaktionära militärer och poliser som fruk-
tade att han var på väg till Moskva för att förhandla in
Sverige som en del den sovjetiska rådsrepubliken. Det
förefaller ju som en vattentät förklaring.
Genomgående bygger Borgnäs upp tankekedjor som
är extremt komplicerade och fulla av svaga länkar.
Förmodligen har han aldrig hört talas om ”Oc-
cams rakkniv” − den medeltida franciskanermunkens
tankeregel att i valet mellan en enkel förklaring och en
komplicerad bör man alltid välja den enkla.
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YOUTUBE

A brief talk explaining the principle in curve fitting
https://www.youtube.com/watch?v=9GI0EJyBxIg

How Occam’s Razor Changed the World of Science - with
Johnjoe McFadden (invokes Bayesian Inference to argue for
Occam’s Razor)
https://www.youtube.com/watch?v=F7PePo75CQY

The Perils of Occam’s Razor (traces the razor to the depths
of Greek philosophy, medieval theology and says it leads to
postmodernism)
https://www.youtube.com/watch?v=e5Glh0c-I94
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OVERFITTING: LAGRANGE AGAIN

Dtr =
{(

xj , yj
)n

j=i

}
. The Lagrange theorem (1795) says that there is

a polynomial L(x) of degree ≤ n − 1 such that L(xj) = yj for all j.
That is, L(x)gives a perfect fit on the training set, but does
overfitting: a perfect description of Dtr but unlikely to predict well
the response Y at a new point x.
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This Lecture covers pp. 327−337 in Chapter 10 in MVP, but differs
in technical detail. The main sources consulted for this lecture
are:

Chapter 10 in Bertrand, Clarke and Ernest, Fokoué and Hao,
HZ: Principles and theory for data mining and machine
learning, Springer Series in Statistics, 10, 2009.
Chapter 4 (4.4) and Chapter 11 (11.5) in Söderström, Torsten,
Stoica, Petre: System Identification, Prentice Hall, Englewood
Cliffs, NJ, 1988.
Åström, Karl Johan: Lectures on the Identification Problem:
The Least Squares Method. (Research Reports TFRT-3004).
Department of Automatic Control, Lund Institute of
Technology (LTH), 1968.
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In addition some material is included from the lectures of
Prof. Martin Singull, Linköpings universitet by courtesy of
Martin.
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The topic here is model selection,
where a number of predictor variables
are available for predicting the re-
sponse variable, and the goal is to find
the best model involving a subset of
these predictor variables.
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F-TEST FOR MODEL DIMENSION: TWO NESTED

MODELS
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NESTED MULTIPLE REGRESSION MODELS

We have a pool of M explanatory variables xj or covariates, or,
prediction variables to learn multiple linear predictors by means
of the given data set y. For each k ∈ {1, . . . ,M} we the training
set of n × 1 vectors

D(k)
tr = {(y,x1, . . . ,xk)}

from a source.
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NESTED MULTIPLE REGRESSION MODELS

Consider two multiple regression models for the same
y = (y1, . . . yn)

T , denoted by M1 and M2, where model M1 is
nested within model M2. Model M1 is a restricted model, and
M2 is the more flexible one. That is, model M1 has k1 parameters
(including the intercept, i.e. k1 ≥ 1), and M2 has k2 parameters,
k1 < k2 and for any choice of the parameters in model M1, the
same regression curve can be achieved by some choice of the
parameters of model M2. We write

M1 ⊂ M2
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DAVID MACKAY’S VERSION OF OCCAM’S RAZOR,
DERIVED FROM EVIDENCE INTEGRALS

In M1 the data y are explained using a simple model, i.e., able
to predict only a limited interval △. A complex model M2
explains a larger diversity of data structures but does not predict
as strongly as M1 in the interval △.
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NESTED MULTIPLE REGRESSION MODELS

Actually both M1 and M2 can be regarded as sets of models,
each assignment of value for the regression coefficients defning
a model.

M1 ⊂ M2

Note that in nesting of regression models, the design matrices
satisfy X2 =

(
X1 X̃2

)
, where X2 is n × k2, X1 is n × k1, hence X̃2 is

n × (k2 − k1). The unit vector 1n lies in both matrices, since M1
has the intercept.
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X2 =
(

X1 X̃2

)
, where X2 is n × (k2), X1 is n × k1, hence X̃2 is

n × (k2 − k1). Hence the training sets for learning M1 and M2 are

D1
tr :=

{(
yi , xi1, . . . , xij

)n
i=1

}k1

j=1

and

D2
tr :=

{
D1

tr

{(
yi , xi1, . . . , xij

)n
i=1

}k2

j=k1+1

}
respectively. The observed response vector y = (y1, . . . yn)

T is the
same in both training sets. Clearly, this raises the question about
selection of explanatory variables.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 2023-02-02 17 / 66



NOTATIONS FOR TWO NESTED MULTIPLE

REGRESSION MODELS

We have two (sets of ) models

Mk : E [Y | Xk = Xk ] = Xkβk , k = 1, 2

such that X1 is n × k1 X1 is n × k2 for i = 1, 2 and k1 < k2. Further

β2 =

(
β1
β̃2

)
where β1 is k1 × 1 and β̃2 is (k2 − k1)× 1. Let the normal equations
be

X T
k Xk β̂i = X T

k y, k = 1, 2.

Note that β̂1 w.r.t. model M1 need not be equal to β̂1 w.r.t. the
model M2.
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OPTIMAL LSE FITS

Let the LSE’s be
Q(i)

o

(
β̂i

)
=∥ y − Xiβ̂i ∥2 .

Then it holds (why?) that

Q(2)
o

(
β̂2

)
≤ Q(1)

o

(
β̂1

)
. (1)

The more flexible model cannot give a worse fit in sense of LSE
than the more restricted model.
The question is, however, if the more flexible model is significantly
better than the more restricted model. In order to study this
question, we take the TRUE model in S ∈ M1 as

S : E [Y | X1 = X1] = X1β
∗
1

and the data source is represented as

Y = X1β
∗
1 + ε, ε ∼ Nn

(
0n, σ

2In

)
.
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OPTIMAL LSE FITS

PROPOSITION

Assume M1 ⊂ M2 and S ∈ M1, and

Y = X1β
∗
1 + ε, ε ∼ Nn

(
0n, σ

2In

)
.

Then

1)
Q(2)

o

(
β̂2

)
/σ2 ∼ χ2 (n − k2) . (2)

2) (
Q(1)

o

(
β̂1

)
− Q(2)

o

(
β̂2

))
/σ2 ∼ χ2(k2 − k1) (3)

3) Q(1)
o

(
β̂1

)
− Q(2)

o

(
β̂2

)
and Q(2)

o

(
β̂2

)
are independent.
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1) Proof: As is expected to be familiar,

Q(2)
o

(
β̂2

)
= ϵ̂T

2ϵ̂2, (4)

where (see Lecture 4)

ϵ̂2 = (In − H2) ε

with H2 = X2
(
X T

2 X2
)−1

X T
2 . Then it follows as in the Lecture cit.

1
σ2 ε̂

T
2ε̂2 = εT (In − H2) ε ∼ χ2(n − k2)

The proofs of 2) and 3) rely on extensive technical matrix
algebra, which cannot be assumed known, and is thus not
covered here, c.f., pp. 539−540 in Söderström & Stoica.
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On the other hand, K.J. Åström proves
the proposition above in his Lectures on
the Identification Problem, p. 23, just by
referring to Cochran’s theorem.
Cochran’s theorem is found as Theo-
rem 9.2. on p. 138 in A. Gut: An In-
termediate Course in Probability.
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F-TEST FOR COMPARING TWO MODELS

It follows from now by the preceding proposition and the
definition of F-distribution, see Lecture 5 or MVP p. 576, that

FM :=

(
Q(1)

o

(
β̂1

)
− Q(2)

o

(
β̂2

))
/σ2(k2 − k1)

Q(2)
o

(
β̂2

)
/σ2(n − k2)

=

(
Q(1)

o

(
β̂1

)
− Q(2)

o

(
β̂2

))
/(k2 − k1)

Q(2)
o

(
β̂2

)
/(n − k2)

∼ F(k2 − k1,n − k2). (5)
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F-TEST FOR COMPARING TWO MODELS

FM ∼ F(k2 − k1,n − k2) and Fα(k2 − k1,n − k2) is the upper 100 · α %
upper percentile.

M1 ⊂ M2

Ho : S ∈ M1

Ho : S /∈ M1

Then, based on y = (y1, . . . yn)
T :

If FM < Fα(k2 − k1,n − k2), we accept Ho at significance level
α, and reject in favor of H1 otherwise.
Söderström and Stoica give on p. 74 a rule of thumb: if
FM < (k2 − k1) +

√
8(k2 − k1) accept Ho and reject in favor of

H1 otherwise. This is argued to have the approximate level of
signifance α ≈ 0.05.
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In statistical hypothesis testing a type I
error is the mistaken rejection of an ac-
tually true null hypothesis a.k.a a ”false
positive”. A type II error is the failure to
reject a null hypothesis that is actually
false a.k.a ”false negative”.

If we reject Ho : S ∈ M1, when it is ac-
tually true, in favor of M2, type I error
is the error of overfitting. M1 is a more
parsimonious model.
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APPROXIMATION

Söderström and Stoica (p. 558) state the following:

If V ∼ F (n1,n2), then

n1V d→ χ2 (n1) , as n2 → +∞

Thus

n

(
Q(1)

o

(
β̂1

)
− Q(2)

o

(
β̂2

))
Q(2)

o

(
β̂2

) d→ χ2 (k2 − k1) , (6)

as n → +∞
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AN EXAMPLE OF F-TEST FOR COMPARING TWO

MODELS

Let us consider k1 = 1, k2 = 2, i.e.

D1
tr :=

{
(yi)

n
i=1

}
and

D2
tr :=

{
(yi , xi)

n
i=1

}
so that

M1 : E [Y] = β0

M2 : E [Y|X = x ] = β0 + β1x

The corresponding vectors of regression coefficients are

β1 = (β0), β2 =

(
β0
β1

)
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AN EXAMPLE OF F-TEST FOR COMPARING TWO

MODELS

Since our F-test is based on the idea that the true model lies in
the smaller set of models, and is a normal random vector, we
have

Y = 1nβ
∗
0 + ε, ε ∼ Nn

(
0n, σ

2In

)
.
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AN EXAMPLE OF F-TEST FOR COMPARING TWO

MODELS

It has been shown in Lecture 1, Appendix C, that

n∑
i=1

(yi − β0)
2 =

n∑
i=1

(yi − y)2 + n(y − β0)
2 ≥

n∑
i=1

(yi − y)2,

Hence β̂0 = y is the LSE of β0 w.r.t M1 and

Q(1)
o

(
β̂1

)
=

n∑
i=1

(yi − y)2 = SSRes = SST.

And as is well known β̂0 = y − β̂1x and β̂1 = Sxy/Sxx w.r.t M2. and

Q(2)
o

(
β̂2

)
=

n∑
i=1

(yi − (β̂0 + β̂xi))
2 =

n∑
i=1

e2
i = SSRes
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AN EXAMPLE OF F-TEST FOR COMPARING TWO

MODELS

With k1 = 1, k2 = 2 inserted

FM =

(
Q(1)

o

(
β̂1

)
− Q(2)

o

(
β̂2

))
Q(1)

o

(
β̂1

)
/(n − 2)

=
SST − SSRes

SSRes/(n − 2)

Hence

FM =
SSR

SSRes/(n − 2)
.
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RECALL FROM LECTURE 1: ANOVA TABLE FOR

SIMPLE LINEAR REGRESSION

Source df Sum of Squares MSS
Regression 1 SSR SS/df
Residual n − 2 SSRes σ̂2=SS/df
Total n SST

FM =
SSR

SSRes/(n − 2)
.
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FM =

(
Q(1)

o

(
β̂1

)
− Q(2)

o

(
β̂2

))
/(k2 − k1)

Q(2)
o

(
β̂2

)
/(n − k2)

.

It holds in the general case that

Q(k)
o

(
β̂i

)
= SS(k)

Res

Hence

Q(1)
o

(
β̂1

)
− Q(2)

o

(
β̂2

)
= SST − SS(1)

R −
(

SST − SS2
R

)
= SS(2)

R − SS(1)
R .

From Lecture 5.

SS(i)
R =

n∑
i=1

(
ŷi − ¯̂y

)2
= yT

(
Hi −

1
n

1n1T
n

)
y, i = 1, 2

And thus Q(1)
o

(
β̂1

)
− Q(2)

o

(
β̂2

)
= yT (H2 − H1)y.
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Q(1)
o

(
β̂1

)
− Q(2)

o

(
β̂2

)
= yT (H2 − H1)y

By rules of Tr we have

Tr (H2 − H1) = Tr H2 − Tr H1 = k2 + 1 − (k1 + 1) = k2 − k1,

where we used the result on the trace of an hat matrix in Lecture
4. Hence we have verified the number of degrees of freedom in
(3).
In Lecture 4. we found also

SSR = β̂
T
X T y − nȳ2. (7)

Hence

Q(1)
o

(
β̂1

)
− Q(2)

o

(
β̂2

)
= SS(2)

R − SS(1)
R =

(
β̂

T
2X T

2 − β̂
T
1X T

1

)
y
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REGRESSOR VARIABLE SELECTION
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REGRESSOR VARIABLE SELECTION

Suppose that an expert on a response in some domain of study
points out to us a maximum M regressor variables x1, . . . , xM that
can be included in a multiple regression model for the response
variable Y . Let

J ⊂ M = {1, . . . ,M}

and the model is

MJ : E [Y | XJ = xJ ] = β0 +
∑
j∈J

βjxj .

We know that if J ⊂ J †, then

SSRes
(
MJ †

)
< SSRes (MJ ) . (8)
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Let

J ⊆ M = {1, . . . ,M}

We assume that the intercept is always included, so the model is

MJ : E [Y | Xk = Xk ] = β0 +
∑
j∈J

βjxj

Subset regression: Choose the model MJ ∗ such that

MJ ∗ = argminJ⊆MSSRes (MJ )

Computationally demanding even for relatively small M, as the
number of subsets of M is 2M .
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REGRESSOR VARIABLE SELECTION

This form of regression is used to select the regresseor variables
with the help of an automatic process. The aim of modeling
techniques is to maximize the prediction power and minimize the
number of predictor variables. Some of the most commonly
used model selection methods are:

Forward selection starts with most significant predictor in the
model and adds variable for each step.
Backward elimination starts with all predictors in the model
and removes the least significant variable for each step.
Standard stepwise regression does two things. It adds and
removes predictors as needed for each step.
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FORWARD SELECTION

Forward selection begins with only the intercept in the model
and at each step adds the variable that results in the maximum
decrease in SSRes to the current model. If there are k variables in
the current model, we write Jk for the indices of the regressors
included. Then the new SSRes from adding another variable xj ,
j ∈ M \ Jk , is

SSResk+1(j) = SSRes −
yT (In − Hk)xj

xT
j (In − Hk)xj

where Hk = Xk
(
X T

k Xk
)−1

X T
k is the hat matrix of the current model

and xj =
(
x1j . . . , xnj

)T .
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FORWARD SELECTION

Adding the variable that gives the maximum decrease in SSRes is
equivalent to selecting the variable xk+1 whose partial
correlation with the response, given the current variables, is
maximum. (The partial correlation is the usual correlation but
between two sets of residuals from regressing on the same
variables. In this case, it is the correlation between the residuals
from regressing xk+1 on x1, . . . , xk and from the response y on
(x1, . . . , xk .)
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FORWARD SELECTION: STOPPING

The method stops when adding the next variable does not give
a significant improvement in the fit under some criterion.
A common stopping criterion is the critical value of the F-statistic
for testing the hypothesis Ho : βk+1 = 0 in the (k + 1) -variable
model. Thus, the variable xk+1 is added to the current model if

Fk+1 = max
j∈M\Jk

[
SSResk − SSResk+1(j)

SSResk+1(j)/(n − k − 1)

]
> Fα(1,n − k − 1)
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BACKWARD SELECTION

Backward elimination is the reverse of this. It begins with all M
variables in the model and at each step removes the variable
making the smallest contribution. Suppose there are k variables,
k ≤ M, in the current model, and the corresponding design
matrix is Xk . Then the new SSRes from deleting the jth (1 ≤ j ≤ k)
variable from the current k-variable model is

SSResk−1(j − 1) = SSResk +
β̂2

j

sjj

where β̂j is the regression coefficent for the variable xj in the
current k-variable model and sjj is the jth element on the main

diagonal of
(
X T

k Xk
)−1

.
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BACKWARD SELECTION: STOPPING

Deletion of variables continues until it starts harming the fit. As
with forward selection, a common stopping criterion is based on
the F-statistic: The variable xj is deleted from the current model if

Fj = min
j∈Jk

[
SSResk−1(j)− SSResk

SSResk/(n − k − 1)

]
< Fα(1,n − k − 1)

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 2023-02-02 41 / 66



STEPWISE SELECTION

One problem with forward selection and backward elimination is
that once a decision has been made to include or exclude a
variable, it is never reversed, otherwise he crucial requirement
(8), which requires ensting, is not valid. Stepwise selection
overcomes this drawback – but need not find the globally
optimal subset and is unstable.
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REGRESSOR VARIABLE SELECTION
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MODEL CHOICE BY INFORMATION CRITERIA

The information criteria can be applied
to model choice in other fields of statis-
tics & machine learning than multiple
linear regression and are not restricted
to nested models.

ICp = −2 · ln
(

Lp

(
β̂MLE

))
︸ ︷︷ ︸

−2· loglikelihood evaluated at the MLE ofβ

+ϕ(n) · p︸ ︷︷ ︸
penalty

(9)
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MODEL CHOICE BY INFORMATION CRITERIA

Information criteria for model selection are typically
likelihood-based measures of model fit that include an additive
penalty for complexity (specifically, p = the number of
parameters). Different information criteria are distinguished by
the form of the penalty, and can favor different models. An
information criterion ICp with n samples is thus of the form

ICp = −2 ln
(

Lk

(
β̂MLE

))
+ ϕ(n) · p (10)
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MODEL CHOICE BY INFORMATION CRITERIA

ICp = −2 · ln
(

Lp

(
β̂MLE

))
︸ ︷︷ ︸

−2· loglikelihood evaluated at the MLE ofβ

+ϕ(n) · p︸ ︷︷ ︸
penalty

(11)

The model fit measured by −2· loglikelihood can be made
smaller by adding more parameters to the model, but then this is
penalized by increase in ϕ(n) · p. Hence there is a trade-off
between goodness of model fit and model complexity. The best
model is found by

popt = argmin1≤p≤K ICp
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MODEL CHOICE BY INFORMATION CRITERIA:
MULTIPLE REGRESSION

Xk is n × (k + 1) and βk is (k + 1)× 1 and p = k + 1 in (10).

Y = Xkβk + ε, ε ∼ Nn

(
0n, σ

2In

)
.

We have in Lecture 3 found that the −1· loglikelihood function at(
β̂MLE, σ

2
)

as

− ln
(

Lk

(
β̂MLE, σ

2
))

=
n
2
ln(2π) +

n
2
ln(σ2) +

1
2σ2 SSResk ,

In Lecture 3 we found also that σ̂2
MLE = SSResk/n. When this is

inserted above we get

−2 ln
(

Lk

(
β̂MLE, σ̂

2
MLE

))
= Cn + n ln

(
σ̂2

MLE

)
,

where Cn = (n ln(2π) + n)
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AIC & MULTIPLE REGRESSION

−2 ln
(

Lk

(
β̂MLE, σ̂

2
MLE

))
= Cn + n ln

(
σ̂2

MLE

)
,

where Cn = − (n ln(2π) + n) This gives in (10), as we have k + 1
regression coefficients and σ2 as parameters

ICk = Cn + n ln
(
σ̂2

MLE

)
+ 2ϕ(n) · (k + 2). (12)

When we choose ϕ(n) = 1, we obtain the AIC (=Akaike
Information Criterion) for model choice

AICk = Cn + n ln
(
σ̂2

MLE

)
+ 2 · (k + 2). (13)
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REGRESSOR VARIABLE FORWARD SELECTION BY

AIC

Then the best model has kAIC regressors, where

kAIC = argmink∈MAICk = argmink∈M

(
n ln

(
σ̂2

MLE

)
+ 2 · (k + 2)

)
.
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REGRESSOR VARIABLE FORWARD SELECTION BY

AIC

Konishi, Sadanori and Kitagawa, Genshiro: Information criteria
and statistical modeling, 2008, Springer, pp. 85−88.

yi=the daily minimum temperatures in January averaged from
1971 through 2000.
The latitudes xi1, longitudes xi2, and altitudes xi3 of 25 cities in
Japan.
To predict the average daily minimum temperature in January.
multiple regression model (full model M = 3)

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi

with homoscedastic i.i.d. εi ∈ N
(
0, σ2

)
.
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REGRESSOR VARIABLE FORWARD SELECTION BY

AIC
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REGRESSOR VARIABLE FORWARD SELECTION BY

AIC
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REGRESSOR VARIABLE FORWARD SELECTION BY

AIC

Note: 23 = 8

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 2023-02-02 54 / 66



REGRESSOR VARIABLE FORWARD SELECTION BY

AIC
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REGRESSOR VARIABLE FORWARD SELECTION BY

AIC
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AIC IN MVP P. 336

We have in (13) established

AICk = Cn + n ln
(
σ̂2

MLE

)
+ 2 · (k + 2).
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YOUTUBE

Statistics 101: Multiple Regression, AIC, AICc, and BIC Basics
https://www.youtube.com/watch?v=-BR4WElPIXg
AICc is a modification of AIC for small samples.
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MALLOW,S Cp MVP PP. 334−335

ICk =
1
σ2 SSResk + 2ϕ(n) · k . (14)

Estimate σ2 under the full model containing all M regressors with
the unbiased σ̂2 =

SSResk
n−M−1 and take ϕ(n) = −

(
n

k+1 − 2
)

. This gives

Cp := ICk =
1
σ2 SSResk − n + 2k

known as Mallow,s Cp
2. Colin Mallows defined Cp as

Cp :=
1
σ2 SSResk − n + 2(k + 1)

but in his case k = 0 means no regressors in the model, but here
k = 1 means no regressors.

2In Mallow,s original definition p is the total number of regressors, here
denoted by M, but Cp is the established notation for what should be written as
CM here.
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The following slides recapitulate algorithms combining subset se-
lection and information criteria. The algorithms do not require
nested multiple regression models. These have been communi-
cated by Prof. Martin Singull, Linköpings universitet.
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BEST SUBSET SELECTION

The problem of selecting the best model from among the 2M

possibilities considered by best subset selection is not trivial.
This is usually broken up into two stages.

1 Let M0 denote the null model, which contains no
predictors. This model simply predicts the sample mean
for each observation.

2 For k = 1, 2, ...,M:

Fit all
(M

k

)
models that contain exactly k predictors.

Pick the best among these k models, and call it Mk . Here
best is defined as having the smallest SSRes, or
equivalently largest R2.

3 Select a single best model from among M0, . . . ,Mp
using cross-validated prediction error, AIC, BIC, or
adjusted R2.
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Although we have presented best subset selection here for linear
regression, the same ideas apply to other types of models, such
as logistic regression.
In the case of logistic regression, instead of ordering models by
SSRes, we instead use the deviance, a measure that plays the
role of SSRes for a broader class of models.
Note: the deviance is negative two times the maximized
log-likelihood; the smaller the deviance, the better the fit.
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STEPWISE SELECTION

For computational reasons, best subset selection cannot be
applied with very large p.

Suffer from statistical problems when M is large.

The larger the search space, the higher the chance of
finding models that look good on the training data, even
though they might not have any predictive power on future
data.

Thus an enormous search space can lead to overfitting and
high variance of the coefficient estimates.

For both of these reasons, stepwise methods, which explore
a far more restricted set of models, are attractive
alternatives to best subset selection.
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Forward selection. We begin with the null model - a model
that contains an intercept but no predictors.

We then fit M simple linear regressions and add to the null
model the variable that results in the lowest SSRes.

Then add to that model the variable that results in the lowest
SSRes for the new two-variable model.

This approach is continued until some stopping rule is
satisfied.

Backward selection. We start with all variables in the model,
and remove the variable with the largest p-value - that is,
the variable that is the least statistically significant.

The new (M − 1)-variable model is fitted, and the variable
with the largest p-value is removed.

This procedure continues until a stopping rule is reached,
i.e., we may stop when all remaining variables have a
p-value below some threshold.
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FORWARD STEPWISE SELECTION

One algorithm for the forward stepwise selection can be given
as follows: begin with a model containing no predictors, and
then adds predictors to the model, one-at-a-time, until all of the
predictors are in the model. Last compare all the models with
different numbers of predictors.

1 Let M0 denote the null model, which contains no
predictors.

2 For k = 0, 1, ...,M − 1:

Consider all M − k models that augment the predictors in
Mk with one additional predictor.
Choose the best among these M − k models, and call it
Mk+1.
Here best is defined as having smallest SSRes or highest R2.

3 Select a single best model from among M0, . . . ,MM
using cross-validated prediction error, AIC, BIC, or
adjusted R2.TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 2023-02-02 65 / 66



BACKWARD STEPWISE SELECTION

Unlike forward stepwise selection, backward stepwise selection
begins with the full model containing all p predictors, and then
iteratively removes the least useful predictor, one-at-a-time.

1 Let MM denote the full model, which contains all M
predictors.

2 For k = M,M − 1, ..., 1:

Consider all k models that contain all but one of the
predictors in Mk , for a total of k − 1 predictors.
Choose the best among these k models, and call it Mk−1.
Here best is defined as having smallest SSRes or highest R2.

3 Select a single best model from among M0, . . . ,Mp
using cross-validated prediction error, AIC, BIC, or
adjusted R2.
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