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LEARNING OUTCOMES

@ Occam’s razor

o Nested Models
o F-test for Model Dimension with Nested Models

o Variable Selection, Subset Selection, Backward selection,
Forward Selection

e AIC: Model Complexity Criterion for Model Dimension and
F-test
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Occam’s razor is the principle that states that unnecessarily
complex models should not be preferred fo simpler ones.

Occam’s razor is also known as the principle of parsinomy.
Cambridge Dictionary: parsinomy is the quality of not being
willing to spend money or to give or use a lot of something:

William of Ockham
(Franciscan friar, 1287-1347)

Ockham’s Razor

Mo more things should be presumed
to exist than are absolutely
necessary, i.e., the fewer
assumptions an explanation of a
phenomenon depends on, the better
the explanation

Ewverything should be maode as
simple as possible, but not simpler
Albert Einstein
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JENNIFER GUNNER, STAFF WRITER OF
YOURDICTIONARY.COM '

The “razor” refers to the “shaving away” of extraneous material
and assumptions. The idiom “when you hear hoofbeats think
horses, not zebras” refers to this principle that the most likely
solutfion is the simplest one. This is not because simpler
explanations are usually correct, but because you make fewer
assumptions when looking for horses instead of zebras.

@ﬁ;{z;ﬁ?ﬂx :jl
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SvD 2011-12-13, HAKAN ARVIDSSONS
RECENSERAR AV EN BOK AV LARS BORGNAS

Estonia sjénk inte genom att bogvisiret slogs loss i det
hdarda vadret. Nej, den torpederades av frdmmande
makt ddarfor att den medférde sovjetiskt krigsmaterial.
Hd&r har Borgnds ingenting att saga om vad det var for
material och pd vems order det hade lastats pd Estonia.
I konspirationens tankevdrld rdcker det med menande
antydningar.
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SvD 2011-12-13, HAKAN ARVIDSSONS
RECENSERAR AV EN BOK AV LARS BORGNAS

Inte heller skéts Olof Palme av Christer Pettersson, han
maordades av reaktiondra militadrer och poliser som fruk-
tade att han var pd vdg till Moskva fér att férhandla in
Sverige som en del den sovjetiska radsrepubliken. Det
forefaller ju som en vattentdt forklaring.

Genomgdende bygger Borgnds upp tankekedjor som
ar extremt komplicerade och fulla av svaga Iankar.
Férmodiligen har han aldrig hdért talas om  “Oc-
cams rakkniv® — den medelfida franciskanermunkens
tankeregel att i valet mellan en enkel forklaring och en
komplicerad bér man alltid valja den enkia.
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YOUTUBE

o A brief talk explaining the principle in curve fitting
https://www.youtube.com/watch?v=9GI0EJyBxIg

e How Occam’s Razor Changed the World of Science - with
Johnjoe McFadden (invokes Bayesian Inference to argue for
Occam’s Razor)
https://www.youtube.com/watch?v=F7PePo75CQY

e The Perils of Occam’s Razor (fraces the razor to the depths
of Greek philosophy, medieval theology and says it leads to
postmodernism)
https://www.youtube.com/watch?v=e5G1h0c-194
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OVERFITTING: LAGRANGE AGAIN

Dy = {(xj, Vi) 1'7:,.}. The Lagrange theorem (1795) says that there is
a polynomial L(x) of degree < n— 1 such that L(x;) = y; for all j.
That is, L(x)gives a perfect fit on the training set, but does
ovelfitting: a perfect description of Dy, but unlikely to predict well
the response Y at a new point x.

y
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This Lecture covers pp. 327—-337 in Chapter 10 in MVE but differs
in technical detail. The main sources consulted for this lecture
are:

e Chapter 10in Bertrand, Clarke and Ernest, Fokoué and Hao,
HZ: Principles and theory for data mining and machine
learning, Springer Series in Statistics, 10, 2009.

e Chapter 4 (4.4) and Chapter 11 (11.5) in Séderstrém, Torsten,
Stoica, Petre: System Identification, Prentice Hall, Englewood
Cliffs, NJ, 1988.

e Astrém, Karl Johan: Lectures on the Identification Problem:
The Least Squares Method. (Research Reports TFRT-3004).
Department of Automatic Control, Lund Institute of
Technology (LTH), 1968.
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e In addition some material is included from the lectures of
Prof. Martin Singull, Linkdpings universitet by courtesy of
Martin.
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The topic here is model selection,
where a number of predictor variables
are available for predicting the re-
sponse variable, and the goal is to find
the best model involving a subset of
these predictor variables.
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F-TEST FOR MODEL DIMENSION: TWO NESTED
MODELS
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NESTED MULTIPLE REGRESSION MODELS

We have a pool of M explanatory variables x; or covariatfes, or,
prediction variables to learn multiple linear predictors by means
of the given data sety. For each k € {1,..., M} we the training
set of n x 1 vectors

Dg{) = {(Yax]a"'axk)}

from a source.
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NESTED MULTIPLE REGRESSION MODELS

Consider two multiple regression models for the same

y=(,... yn)T, denoted by M; and M5, where model M, is
nested within model M,. Model M is a restricted model, and
My is the more flexible one. That is, model My has k; parameters
(including the infercept, i.e. ky > 1), and M, has k, parameters,
ki < ky and for any choice of the parameters in model M;, the
same regression curve can be achieved by some choice of the
parameters of model M,. We write

My C Moy
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DAVID MACKAY’S VERSION OF OCCAM’S RAZOR,
DERIVED FROM EVIDENCE INTEGRALS

A Plausibility plyliseg)

p(yli*s)

J AL N\,

A

In M; the data y are explained using a simple model, i.e., able
to predict only a limited inferval A. A complex model M,
explains a larger diversity of data structures but does not predict
as strongly as M in the interval A.
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NESTED MULTIPLE REGRESSION MODELS

Actually both M; and M, can be regarded as sets of models,
each assignment of value for the regression coefficients defning
a model.

My C My
Note that in nesting of regression models, the design matrices
satisfy X, = (X] 5(2> ,where X, is n x ky, Xj is n x ky, hence X, is

n x (ko — ky). The unit vector 1, lies in both matrices, since M,
has the intercept.
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Xp = (X1 >”<2),where Xy is n x (ko). X1 is n x ki, hence Xs is
n x (k, — k). Hence the training sets for learning M, and M, are
k
1. n !

and

ko
Df, = {Dl, {(yh Xih--wxﬁ)L} }

J=k+1

respectively. The observed response vectory = (yj,... yn)T is the
same in both training sets. Clearly, this raises the question about
selection of explanatory variables.
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NOTATIONS FOR TWO NESTED MULTIPLE
REGRESSION MODELS

We have two (sefs of ) models

Mk: E[Y’Xk:Xk]:Xkﬁlﬁ k:-|72

such that Xy is n x ky Xyisnx k, fori=1,2 and k; < k. Further

_ (B
62 - (ﬂQ)

where B, is ky x 1.and 3, is (ko — k) x 1. Let the normal equations
be

XIXBi =Xy, k=12

Note that 8; w.r.t. model M; need not be equal to 3; w.r.t. the
model M.
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OPTIMAL LSE FITS
Let the LSE’s be o R
Q) (B)) =y — X 117
Then it holds (why?) that
QY (8,) <& (B1). M

The more flexible model cannot give a worse fit in sense of LSE
than the more restricted model.

The question is, however, if the more flexible model is significantly
better than the more restricted model. In order to study this
question, we take the TRUE model in S € M as

STEY Xy =X]=X3
and the data source is represented as
Y=X8+e, e~N, (on, 02]1,,) .
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OPTIMAL LSE FITS

PROPOSITION
Assume My, c M, and S € My, and
Y=X8i+e, e~N, (0,,, 02]1,,) .

Then
1)

QY (B2) /0* ~ (N~ ko). @

(€ (81) - (B)) 1o~ Pllo—k))

3) @\ (31) Q¥ (,@'2> and @2 (BQ) are independent.
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1) Proof. As is expected to be familiar,
Q) (B,) = &és. @
where (see Lecture 4)
e =(In—Hy)e
with Hy = X, (X2TX2)_] XJ. Then it follows as in the Lecture cit.
Leler =T (1 H)e ~ 2 k)
The proofs of 2) and 3) rely on extensive technical matrix

algebra, which cannot be assumed known, and is thus not
covered here, c.f., pp. 539-540 in Séderstrdbm & Stoica. O
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On the other hand, K.J. Astréom proves
the proposition above in his Lectures on
the Identification Problem, p. 23, just by
referring to Cochran’s theorem.
Cochran’s theorem is found as Theo-
rem 9.2. on p. 138 in A. Guf: An In-
termediate Course in Probability.
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F-TEST FOR COMPARING TWO MODELS

It follows from now by the preceding proposition and the
definition of F-distribution, see Lecture 5 or MVP p. §76, that

(Q(o]) (B]) - QY (BQ)) Jo?(ky — ky)
QP (B2) /o2(n — ko)
(€5 (81) - @2 (B2) ) /(ks — k)

= — ~ F(k2—k1,n—k2). (5)
Q) (B2) /(n— k)

Fyp o=
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F-TEST FOR COMPARING TWO MODELS

Fag ~ F(ko — ky,n—ky) and F, (ko — ki, n — k) is the upper 100 - a %
upper percentile.

My C Mo
HO: SEM]
Ho: S%M]

Then, based ony = (yi,...yn)":
o If Faoq < Fa(ko — ky,n— k)., we accept H, at significance level
«, and reject in favor of H; otherwise.
e Sdderstrdbm and Stoica give on p. 74 a rule of thumb: if
Fa < (Ko — k1) + +/8(ko — ky) accept H, and reject in favor of
H, otherwise. This is argued to have the approximate level of
signifance a =~ 0.05.
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In statistical hypothesis testing a type |
error is the mistaken rejection of an ac-
tually true null hypothesis a.k.a a “false
positive”. A type Il error is the failure to
reject a null hypothesis that is actually
false a.k.a “false negative”.

If we reject H, : S € M;, when it is ac-
tually frue, in favor of M,, type | error
is the error of overfitting. M, is a more
parsimonious model.

TiMoO KosK1 (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 2023-02-02 25 /66



APPROXIMATION

Soéderstrébm and Stoica (p. 558) state the following:

IfV ~ F(ny,ny), then

mV 432, asny, — +oo

T 0)-6)
2 ) A2 (k- k), ©
Q(o)</32)
asn— +oo
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AN EXAMPLE OF F-TEST FOR COMPARING TWO
MODELS

Let us consider ky =1, k, =2, i.e.

D)]r = {(yi)/(;]}
and
D5 = {(vi, X)L }
so that

My ElY] =5

MQZ E[Y‘X:X]:Bo-i-ﬁ]X
The corresponding vectors of regression coefficients are

B1=(bo), B2= <g?>
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AN EXAMPLE OF F-TEST FOR COMPARING TWO
MODELS

Since our F-test is based on the idea that the tfrue model lies in

the smalller set of models, and is a normal random vector, we
have

Y=Tn85+e, €~ No(0n0%).
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AN EXAMPLE OF F-TEST FOR COMPARING TWO
MODELS

It has been shown in Lecture 1, Appendix C, that

S i— B0 =D ViV +ny -5 =D (vi—V)

= = =1
Hence /3y = v is the LSE of 3y w.r.t M; and
n
Q" (B1) = >(vi— ¥)? = SSkes = SS.
i=1
And as is well known fy = ¥ — §1X and S = Sxy /S W.rt Mo, and
5 . n R . n
QP (B2) = >_(vi— (Bo+ Bx))? = Y &f = SSres
i=1 i=1
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AN EXAMPLE OF F-TEST FOR COMPARING TWO
MODELS

With k; = 1, k, = 2 inserted

b, (857(8) ~ a8 (B))

Q" (Br) /(n-2)

_ SSp — SSkes
SSRes /(N — 2)
Hence
SSr
Fuy=—————.
SSres/ (N — 2)
TiMO KOSKI (KTH. DEPT. MATHEMATICS] MULTIPLE LINEAR REGRESSION
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RECALL FROM LECTURE 1: ANOVA TABLE FOR
SIMPLE LINEAR REGRESSION

Source df | Sum of Squares MSS
Regression 1 SSr SS/df
Residual n—2 SSRes 52=8S/df
| Total | n | SSr | |
SSr
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() (5) -

Q% (B2)) (ke — k)

Fag =

QY (B2) /(n— ko)

It holds in the general case that

Hence

@Q’(B]) @(2( ) SSp — SsL) —

From Lecture 5.

QL7 (B;) = st

n
SSY :ZO’/—)Z/)Q:YT <Hi— llnﬂ) y, i=12

i=1

And thus @) (m)

TiMoO KosK1 (KTH, DEPT. MATHEMATICS)
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~ 2 ~
D (B1) - @ (B2) =¥ (H— Hn)y
By rules of Tr we have
TI'(HQ—H]) =TrH, —TrH, =ky + 1 —(k] + ]) =ky — Ky,

where we used the result on the tfrace of an hat matrix in Lecture
4. Hence we have verified the number of degrees of freedom in
3.

In Lecture 4. we found also

SSe = 3 XTy — ny2. @
Hence

QY (B1) - &% (B2) = ss) — sst) = (BX - B1X] ) v
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REGRESSOR VARIABLE SELECTION

oogle Lens

(X X X X
[ X X ¥ R Sa . .
mple size = number of variables
ecse0® P
(X X X K
( X X X K
+ Stepwise selection

Sample size >> number of variables

More Generalizable Model
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REGRESSOR VARIABLE SELECTION

Suppose that an expert on a response in some domain of study
points out to us a maximum M regressor variables Xy, ..., xy, that

can be included in a multiple regression model for the response
variable Y. Let

JcM=A{1,... M}
and the model is

Mg EN[Xg=x7]=60+)_ 5%
jeg

We know that if 7 ¢ JT, then

SSRes (MJT) < SSReS (./\/lj) . ®
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Let
JCM={1,.... M}

We assume that the infercept is always included, so the model is

My : EIY [ X =Xd = 5o+ > _ B
jeJg

Subset regression: Choose the model M 7- such that

Computationally demanding even for relatively small M, as the
number of subsets of M is 2V,
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REGRESSOR VARIABLE SELECTION

This form of regression is used to select the regresseor variables
with the help of an automatic process. The aim of modeling
techniques is to maximize the prediction power and minimize the
number of predictor variables. Some of the most commonly
used model selection methods are:

e Forward selection starts with most significant predictor in the
model and adds variable for each step.

e Backward elimination starts with all predictors in the model
and removes the least significant variable for each step.

e Standard stepwise regression does two things. It adds and
removes predictors as needed for each step.
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FORWARD SELECTION

Forward selection begins with only the infercept in the model
and at each step adds the variable that results in the maximum
decrease in SSges TO the current model. If there are k variables in
the current model, we write 7, for the indices of the regressors
included. Then the new SSges from adding another variable Xx;,
jeMN\ Ji. is .

SSReskH (f) = SSRes - yT (Hn Hk) xj

Xj (]In - Hk) X;

where H, = X, (X[Xk)_] X! is the hat matrix of the current model

and X; = (X]j... ,an)T.
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FORWARD SELECTION

Adding the variable that gives the maximum decrease in SSges iS
equivalent to selecting the variable x,,; whose partial
correlation with the response, given the current variables, is
maximum. (The partial correlation is the usual correlation but
between two sefts of residuals from regressing on the same
variables. In this case, it is the correlation between the residuals
from regressing Xx.1 ON Xi, ..., X, and from the response y on
(X],...,Xk.)
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FORWARD SELECTION: STOPPING

The method stops when adding the next variable does not give
a significant improvement in the fit under some criterion.

A common stopping criterion is the critical value of the F-statistic
for testing the hypothesis Ho : Bx1 = 0in the (k + 1) -variable
model. Thus, the variable X, 1 is added to the current model if

SSRes - SSRes (J )
F — k i k41
K0T SR | SSreay., 0)/(N— k= 1)

> Fa(1,n—k—1)
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BACKWARD SELECTION

Backward elimination is the reverse of this. It begins with all M
variables in the model and at each step removes the variable
making the smallest contribution. Suppose there are k variables,
k < M, in the current model, and the corresponding design
matrix is X,. Then the new SSges from deleting the jth (1 < j < k)
variable from the current k-variable model is

B3?
SSResk,l (f - ]) = SSResk + -+
Sj
where B, is the regression coefficent for the variable x; in the
current k-variable model and s; is the jth element on the main

diagonal of (X,[Xk)_].
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BACKWARD SELECTION: STOPPING

Deletion of variables continues unfil it starts harming the fit. As
with forward selection, a common stopping criterion is based on
the F-stafistic: The variable x; is deleted from the current model if

. SSRes _ (f) - SSRes
F= kol L < Fu(l,n—k—1
=00 | S/ (n— K — 1) | = )
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STEPWISE SELECTION

One problem with forward selection and backward elimination is
that once a decision has been made 1o include or exclude a
variable, it is never reversed, otherwise he crucial requirement
(8). which requires ensting, is not valid. Stepwise selection
overcomes this drawback — but need not find the globally
optimal subset and is unstable.
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REGRESSOR VARIABLE SELECTION

«'\56 — a,b,C,

C
‘5\6‘9/// \\
{ab,c} {abd} {a,c,d} {b,c.d}
([ / AN
S W} {be} (bd} {cd} |5
{bw}
L \n )
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MODEL CHOICE BY INFORMATION CRITERIA

The information criteria can be applied
to model choice in other fields of statis-
fics & machine learning than multiple
linear regression and are not restricted
to nested models.

ICp = “2.In (Lp (BMLE)) +o(n)-p ©

—2. loglikelihood evaluated at the MLE of 3 penalty
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MODEL CHOICE BY INFORMATION CRITERIA

Information criteria for model selection are typically
likelihood-based measures of model fit that include an additive
penalty for complexity (specifically, p = the number of
parameters). Different informnation criteria are distinguished by
the form of the penalty, and can favor different models. An
information criterion IC, with n samples is thus of the form

1Cp = —2In (L (Burz) ) +é(n) - p 10)
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MODEL CHOICE BY INFORMATION CRITERIA

ICp = —2-1In (Lp (BMLE)) +¢(n)-p an

SN——
—2. loglikelihood evaluated at the MLE of 3 penalty

The model fit measured by —2- loglikelihood can be made
smaller by adding more parameters to the model, but then this is
pendlized by increase in ¢(n) - p. Hence there is a trade-off

between goodness of model fit and model complexity. The best
model is found by

Popt = argmin, <p< «ICp
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MODEL CHOICE BY INFORMATION CRITERIA:
MULTIPLE REGRESSION

Xcisnx (k+1)and Byis(k+ 1) x Tand p =k + 1in (10).
Y=X0B+e, e~Ns (on, 0211”) :
We have in Lecture 3 found that the —1- loglikelihood function at
(IBMLE7‘72> as
~ n n 1
—In (Le (B 0?) ) = 5 1n(2m) + 5 In(0?) + 5 5 SSkes,.

In Lecture 3 we found also that 53 = SSges, /n- When this is
inserted above we get

—21n (Lk (BMLE? 81%/ILE)) = Cp+nln (/U\l%/ILE> ;
where C, = (nIn(27) + Nn)
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AIC & MULTIPLE REGRESSION

—2In (Lk (BMLEaal%/ILE)) = Cp+nin (al%/ILE> ;

where C, = — (nIn(27) 4+ n) This gives in (10), as we have k + 1
regression coefficients and o2 as parameters

ICx = Cn+ nin (g +26(n) - (k +2). (12)

When we choose ¢(n) = 1, we obtain the AIC (=Akaike
Information Criterion) for model choice

AIC) = cn+n|n(a§ALE) 12 (k+2). (13)
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REGRESSOR VARIABLE FORWARD SELECTION BY
AIC

Then the best model has kaic regressors, where

Kaic = argmin, ,AIC, = argmin,, <nln (8§4LE> +2-(k+ 2)) .
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REGRESSOR VARIABLE FORWARD SELECTION BY
AlIC

Konishi, Sadanori and Kitagawa, Genshiro: Information criteria
and statistical modeling, 2008, Springer, pp. 85—88.

yi=the daily minimum temperatures in January averaged from
1971 through 2000.

The latitudes x;;, longitudes x;,, and altitudes x;3 of 25 cities in
Japan.

To predict the average daily minimum temperature in January.
multiple regression model (full model M = 3)

Yi = Bo + BiXn + BoXip + BaXiz +€;
with homoscedastic i.i.d. ; € N (0,02).
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REGRESSOR VARIABLE FORWARD SELECTION BY
AIC

86 4 Statistical Modeling by AIC

Table 4.3. Average daily minimum temperatures (in Celsius) for 25 cities in Japan.

Temp. Latitude Longitude Altitude

2

Cities

(y) (z1) (z2) (z3)
1 Wakkanai —7.6 45.413 141.683 2.8
2 Sapporo &7 43.057 141.332 17.2
3 Kushiro —11.4 42.983 144.380 4.5
3  Nemuro —7.4 43.328 145.590 25.2
4  Akita —2.7 39.715 140.103 6.3
5 Morioka —5.9 39.695 141.168 155.2
6  Yamagata —3.6 38.253 140.348 152.5
7 Wajima 0.1 37.390 136.898 5.2
8 Toyama —0.4 36.707 137.205 8.6
9 Nagano —4.3 36.660 138.195 418.2
10 Mito —2.5 36.377 140.470 29.3
11 Karuizawa —9.0 36.338 138.548 999.1
12 Fukui 0.3 36.053 136.227 8.8
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REGRESSOR VARIABLE FORWARD SELECTION BY

AIC
13 Tokyo 21 35.687 139.763 6.1
14 Kofu —2.7 35.663 138.557 272.8
15 Tottori 0.7 35.485 134.240 7.1
16 Nagoya 0.5 35.165 136.968 Ll L
17  Kyoto 11 35.012 135.735 41.4
18 Shizuoka 1.6 34.972 138.407 14.1
19 Hiroshima ) 34.395 132.465 3.6
20 Fukuoka 32 33.580 130.377 2.5
21 Kochi 1.3 33.565 133.552 0.5
22 Shionomisaki 4.7 33.448 135.763 73.0
23 Nagasaki 3.6 32.730 129.870 26.9
24 Kagoshima 4.1 31.552 130.552 3.9
25 Naha 14.3 26.203 127.688 28.1
(Source: Chronological Scientific Tables of 2004.)
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REGRESSOR VARIABLE FORWARD SELECTION BY
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Table 4.4. Subset regression models: AICs and estimated residual variances and

coefficients.
Explanatory Residual Regression coefficients
No. variables variance k AIC ap a as a3
1 I1,I3 1490 2 88919 40490 -1.108 — =0.010
2 I1,T2,T3 1484 3 90812 44459 -1.071 — —0.010
3 T1,T2 5108 2 119.715 71477 -0.835 -0.305 e
4 I 5.538 1 119.737  40.069 -1.121 — —
b T3,T3 5.693 2 122426 124.127 — =0.906 -0.007
6 I3 7.814 1 128.346 131.533 —  —0.965 —
7 I3 19.959 1 151.879  0.382 — — —0.010
8 none 24474 0 154.887 —0.580 = = =
Note: 2%=38
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REGRESSOR VARIABLE FORWARD SELECTION BY
AIC

Fig. 4.3. Decrease of AIC values by adding regressors.
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REGRESSOR VARIABLE FORWARD SELECTION BY
AIC

_ariance becomes less than one third when the altitude is included.
f™ The minimum AIC model i given by A

W= 40.490 - 1.108z;; - 0.0102;35 + ¢;,

with £; ~ N(0,1.490). The regression coefficient for the altitude x5, ~0.010, is
about 50% larger than the common knowledge that the temperature should
drop by about 6 degrees with a rise in altitude of 1,000 meters.

Note that when the number of explanatory variables is large, we need
to exercise care when comparing subset regression models having a different
umber of nonzero coefficients. This problem will be considered in section
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AIC IN MVP p. 336

We have in (13) established

CddC LUC NULDACK-LCIDICT HHOLIIAUOIL THCASULC, TSSCILALLY, WIE AL 15 d pendiizcu
log-likelihood measure. Let L be the likelihood function for a specific model. The

AlCis T
AIC=-2In(L)+2p, 272

where p is the number of parameters in theymodel. In the case of ordinary least

squares regression, p=k:1 ——

AIC =nln[¥5—"5]+2p.

n

The key insight to the AIC is similar to Ridj and Mallows C,. As we add regressors
to the model, §8;.,, cannot increase. The issue becomes whether the decrease in
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YOUTUBE

Statistics 101: Multiple Regression, AIC, AICc, and BIC Basics
https://www.youtube.com/watch?v=-BR4WE1PIXg
AlC. is a modification of AIC for small samples.
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MAaLLoOwW'S Cp, MVP pp. 334-335

1
IC, = ;SSResk + 2¢(n) - k. (4
Estimate o2 under the full model containing all M regressors with
the unbiased 02 = SSRES“] and take ¢(n) = — ( iy 2) This gives

1

known as Mallow's C2. Colin Mallows defined Cp as

1
- ;SSResk_n"“Q(k_" ])

but in his case k = 0 means no regressors in the model, but here

2In Mallow’s original definition p is the total number of regressors, here
denoted by M, but C,, is the established notation for what should be written as
Cu here.
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The following slides recapitulate algorithms combining subset se-
lection and information criteria. The algorithms do not require
nested multiple regression models. These have been communi-
cated by Prof. Martin Singull, Link6pings universitet.
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BEST SUBSET SELECTION

The problem of selecting the best model from among the 2V

possibilities considered by best subset selection is not trivial.

This is usually broken up into two stages.

—OQtetMydenotethenulbmodel-which-containshro————
predictors. This model simply predicts the sample mean
for each observation.

Q Fork=1,2.. M:

o Fit all (/) models that contain exactly k predictors.

e Pick the best among these k models, and call it M. Here
best is defined as having the smallest SSzes, OF
equivalently largest R

@ Select asingle best model from among Mo, ..., Mp

using cross-validated prediction error, AIC, BIC, or
adjusted R2,
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Although we have presented best subset selection here for linear
regression, the same ideas apply to other types of models, such
as logistic regression.

In the case of logistic regression, instead of ordering models by
SSpes. We instead use the deviance, a measure that plays the
role of SSres fOr a broader class of models.

Note: the deviance is negative two times the maximized
log-likelinood; the smaller the deviance, the better the fit.
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STEPWISE SELECTION
For computational reasons, best subset selection cannot be

applied with very large p.
e Suffer from statistical problems when M is large.

TiMO KoOsKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 2023-02-02 63 /66



STEPWISE SELECTION

For computational reasons, best subset selection cannot be
applied with very large p.
e Suffer from statistical problems when M is large.
e The larger the search space, the higher the chance of
finding models that look good on the fraining data, even

though they might not have any predictive power on future
data.
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STEPWISE SELECTION

For computational reasons, best subset selection cannot be
applied with very large p.
e Suffer from statistical problems when M is large.
e The larger the search space, the higher the chance of
finding models that look good on the fraining data, even

though they might not have any predictive power on future
data.

e Thus an enormous search space can lead to overfitting and
high variance of the coefficient estimates.
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STEPWISE SELECTION

For computational reasons, best subset selection cannot be
applied with very large p.

e Suffer from statistical problems when M is large.

e The larger the search space, the higher the chance of
finding models that look good on the fraining data, even
though they might not have any predictive power on future
data.

e Thus an enormous search space can lead to overfitting and
high variance of the coefficient estimates.

e For both of these reasons, stepwise methods, which explore
a far more restricted set of models, are attractive
alternatives to best subset selection.

TiMO KosK1 (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 2023-02-02 63 /66



e Forward selection. We begin with the null model - a model
that contains an intercept but no predictors.

We then fit M simple linear regressions and add to the null
model the variable that results in the lowest SSges.

Then add to that model the variable that results in the lowest
SSres fOr the new two-variable model.

This approach is contfinued until some stopping rule is
satisfied.
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e Forward selection. We begin with the null model - a model
that contains an intercept but no predictors.

We then fit M simple linear regressions and add to the null
model the variable that results in the lowest SSges.

Then add to that model the variable that results in the lowest
SSres fOr the new two-variable model.

This approach is contfinued until some stopping rule is
satisfied.

e Backward selection. We start with all variables in the model,
and remove the variable with the largest p-value - that is,
the variable that is the least statistically significant.

The new (M — 1)-variable model is fitted, and the variable
with the largest p-value is removed.

This procedure confinues until a stopping rule is reached,
i.e., we may stop when all remaining variables have a
p-value below some threshold.
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FORWARD STEPWISE SELECTION

One algorithm for the forward stepwise selection can be given
as follows: begin with a model containing no predictors, and
then adds predictors to the model, one-at-a-time, until all of the

predictors are in the model. Last compare all the models with
different numbers of predictors.

—QtetMydenotethenulbmodel-which-containshro————

predictors.
Q Fork=0,1,...M—T:
e Consider all M — k models that augment the predictors in

M, with one additional predictor.

e Choose the best among these M — k models, and calll it
M.

Here best is defined as having smallest SSges or highest ;2.

@ Select asingle best model from among Mg, ..., My
using cross-validated prediction error, AIC, BIC, or
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BACKWARD STEPWISE SELECTION

Unlike forward stepwise selection, backward stepwise selection
begins with the full model containing all p predictors, and then
iteratively removes the least useful predictor, one-at-a-time.

Q@ Let My, denote the full model, which containsallt M

predictors.

Q@ Fork=MM-1,..,1;

e Consider all k models that contain all but one of the
predictors in My, for a total of k — 1 predictors.

e Choose the best among these k models, and call it M_;.
Here best is defined as having smallest SSges or highest ;2.

@ Select asingle best model from among Mo, ..., Mp
using cross-validated prediction error, AIC, BIC, or
adjusted R2.
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