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LEARNING OUTCOMES

e The Centered Model
e Equivalence of the LSE in the Centered Model and the OLSE
o New ldentities for SSp
e Confidence Ellipsoid
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FrRoOM MVP p. 84

3.3.1 Test for Significance of Regression

The test for significance of regression is a test to determine if there is a linear rela-
tionship between the response y and any of the regressor variables x,, x;,..., x.
This procedure is often thought of as an overall or global test of model adequacy.
The appropriate hypotheses are

Hy i =pi==p=0

H;:f;#0 foratleast one j

Rejection of this null hypothesis implies that at least oncf the regressors i, xy, . .,
1, contributes significantly to the model.

The test procedure is a generalization of the amalysis of variance used in simple
linear regression. The total sum of squares 55, is partitioned into a sum of squares
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FrRoOM MVP p. 84

The authors of MVP do not explain, why [y is not involved in the
null hypothesis.

From another source: Since g is usually not zero, we would rarely
be interested in including g = 0 in the hypothesis. Rejection of
Ho: B = 04,1 might be due solely to 5y, and we would not learn
whether the x variables predict y.
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HYPOTHESES ON THE REGRESSION COEFFICIENTS

Ho: 1= =...= B =0

Hy: B; # O for at least one f;

The null hypothesis says that there is no useful linear relationship
between Y and any of the k predictors. If at least one of these
ijs is # 0, the model is deemed useful.

We could test each g; separately (see the preceding lecture 5),
but that would take time and be very conservative (if Bonferroni
correction is used). A better test is a joint test, and is based on a
statistic that has an F distribution when H, is frue.
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HYPOTHESES ON THE REGRESSION COEFFICIENTS

Ho: 1 =02=...=B=0 )

Hy: B; # O for at least one f; J

We must find LSE of 34, 3o, . . ., Bx wWithout involving 3. Then we
must find a decomposition of variance to find the quadratic
forms of an F-test without the presence of 3, in the F-statistic. The
expressions from Lecture 5 must be modified. For this we need
partitioned matrices and the centered model.
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CENTERED MULTIPLE LINEAR REGRESSION
MODEL

Yi=Po+BiXn+- -+ BuXu+ei, T=1,....n, n>k+1.
The centered model is
Yi=a+B(Xn—X)+ -+ B (Xu —X) +e, i=1,...,n (D

—_ '| n '
where X, = -3 1 Xx;.j=1,...,k, and

a = fBo+ Bi1xq+ -+ BrXk. )
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CENTERED MULTIPLE LINEAR REGRESSION
MODEL

Infroduce
X1 o Xk
Xo1 - Xok
Xp = \ .
Xn1 o Xnk

so that the design matrix is partitioned as

X=(ln Xg)
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THE MATRIX OF CENTERED
REGRESSOR/COVARIATE VALUES

We recall the centering matrix Ce.e and compute

lnll,xp),

where we compute the 1 x k matrix 17X as

1

CceXI? = <XI? - B

X1 Xk
Xo1 e Xok n n n
r
]nXR:(],],...,]) : : : = ZX”’ZX/Q"”’ZX”(
' ' ' i=1 i=1 i=1
Xm0 Xnk
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THE MATRIX OF CENTERED
REGRESSOR/COVARIATE VALUES

Thus we get the n x k matrix

1

1
n

&
1 X
1. .7 L _ Xq
B]n]nXR: : (X],XQ,...,Xk): :
1 X
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THE MATRIX OF CENTERED
REGRESSOR/COVARIATE VALUES MATRIX OF
CENTERED REGRESSOR/COVARIATE VALUES

Hence

i =X e X=X
CceXR:<XR_:)]n]LXR>: XQ]I—X1 XQkI—Xk
Xm = X1 o0 Xpk — Xk

We set _ _

X=X o X — Xk

X e X21I—>_(1 X2kl_)_<k @
Xm = X1 o0 Xpk — Xk

This is the matrix of centered regressor/covariate values.
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THE CENTERED MODEL IN A MATRIX FORM

Now we can write the equations in (1) in matrix form as

Vi
Yo
«
Y: . :(]n,Xc)< >+E
. /8 R
Yn
where
B €1
B2 €2
IBR = : ) €= . )
Bk €n
and Xc is given in (4).
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EXQ LSE FOR THE CENTERED MODEL

@ Show that the normal equations (c.f. Lecture 3) for (5) are

n 0@ &\ _ (ny
(o, ) ()~ () ©

Continued on the next slide —
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EXQ LSE FOR THE CENTERED MODEL

e Why is XIX. of full rank? Check formally that

(o 2% >_]= LN %
O XIXc e (XIX)

END of EXQ. O
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PART 2: EQUIVALENCE
We check that

®)

and

are the same, that is

. (h
p= (BE)
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Y=X3+¢

i Toxn - X g? €1
y_ Y X— 1 X?1 e Xok PO I R
\}n 1 X:.ﬂ e Xrlvk 5k €n
The normal equations are
X'XB =Xy Q)
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PARTITIONING OF THE MULTIPLE REGRESSION
EQ’s

T X X1k
1 X Xok
x=| 7 = (1n Xg), ,@:(20>

: r

T Xm Xnk

where
1 X1 Xk B
1 X1 o Xok B2
= X%={"" "0 | Be=|" 10)
1 Xl o Xnk Bk
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PARTITIONING OF THE MULTIPLE REGRESSION
MODEL

Then we can write the normal equations (9) as

(]n XI?)T(]n X/?) <go>=(]n XR)TY an

R
By multipication of partitioned matrices (see Appendix)

.IZ'—).In TX/? BO ]ny (]2)
X0 XpXe) \Br) — \ Xy
We verify that this in fact gives & and that BR given here will

satisfy (6), o, B = Bp. We obtain from (12)

nBo + 17 XeBr = Ny (13)
and R R
XEnBo + XEXpBr = XRy. (14)
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PARTITIONING OF THE MULTIPLE REGRESSION
MODEL

In (13) we get
~ 1 ~ _
Bo + EILXRBR =y

Here (see Lecture 2., Part 0)

X Xk
1., 1 Xo1 ot Xok 1 & 1 &
STiXe=—(11...1) L (n;m...n;xjk
Xm0 Xnk

=(X...%) =X

Here x has the means of the columns of X, as components.
Hence

Go+X'Br=7y (15)
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PARTITIONING OF THE MULTIPLE REGRESSION
MODEL

Recall « = g + BiX1 + - - - + BiXk in (2). Hence
Bo+X1Bp=Fo+ Xy + - + Bk = é. (16)

Hence we have obtained that & = y.
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PARTITIONING OF THE MULTIPLE REGRESSION
MODEL

We study now (14), i.e.,
XR1nBo + XaXpBr = X3y
We have already observed that 11X = nx’. Hence
NXBg + XiXeBr = X2y A7)
We find (check details)

XIXo = X\ Xp — nxx’

XEXp = XIXc + nxx’ (18)
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PARTITIONING OF THE MULTIPLE REGRESSION
MODEL

Furthermore
Xpy = X2y + nxy (a9

By (18) ~ ~ ~
XEXeBr = XIXcBr + NXXT B

But by the above X' 8p = & — . i.e..
XiXeBr = XIXBe + n% (a— o) 20)

We insert (20) in the the LHS (left hand side) of (17), which
becomes

LHS :  nX[Bo + XIXpBr = NXBg + X XcBp + NX (a - 30)

LHS : XIX.Bp + nXé
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LHS : X/X.Bp + nXa @n
From (19) RHS (right hand side) of (17) is

RHS : XLy = Xy + nxy (22)

Since we have found & = y, as LHS= RHS in (17), (21) and (22)
give

XIXeBp = Xly (23)
But & = y and (23) can be written in matrix form as
v i) () = ()
A | = 24
<ok XIx.) \Br) = \Xly ©

which is (6). By (7). Bp = 5.
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FUNDAMENTAL VARIANCE IDENTITY WITHOUT fg
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FUNDAMENTAL VARIANCE IDENTITY WITHOUT fg

In Appendix D of Lecture 3 (see slides) we showed that
~ ~T
SSres = @ (B) =¥y - B XTy 25)

We shall next use the partitioned equations to rewrite this. The
first step is to write with the notations in (10)

N\ T N T N\ T
ATy1y, [ Bo T, (0o ]rT7> _ (5o <]rT7Y)
B X'y = <BR> (1h,Xp)' Y = <B/?) <Xl; Yy = (ER) X/gy

_~ ~T _/_ e~ ~T
= nyPo+ BeXgy = ny (y - xrﬁp) + BrXgY

where we used (15). (continued on the next slide —)
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FUNDAMENTAL VARIANCE IDENTITY WITHOUT fg

We have found up to this point that
B'X7y = ny (7~ XBe) + BeXly
We continue to trim the right hand side as
= N2 — nyBeX + BeXby = ny? + B (Xby - nyX)
— np2 + BeXly,

where used (19) above, that is, Xy = Xly + nxy. Now we return
to (25)
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FUNDAMENTAL VARIANCE IDENTITY WITHOUT fg

The final result above is

~T _ ~T

B X"y = ny? + BeXly.
Hence we get in (25)

~T o AT

SSres = Y'Y — B X'y =y'y — ny? — BpXly.
We note by scalar product and an Appendix to Lecture 1, slides,
that

n n
Yy-ni? =3y} -ni? =3 (- Y.
i=1 i=1
Hence we have found

n

_ AT
SSres = _ (Vi — ¥)* — BpXly (26)

i=1
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FUNDAMENTAL VARIANCE IDENTITY WITHOUT fg

n
_ ~T
SSres = > (vi— ¥)* — BpXly
i=1
A phantastic step (if you mind)

n _ ~T n _ ~T ~T
STy =BeXl+ [ Y (vi— 7)? - BrXly | = BrXL + SSkes.
i=1 i=1
Or, .

SST = BRXc’: + SSRes (27)

This means that the regression or model sum of squares SSg is
identified as

~T
SSk = BpXly (28)
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FUNDAMENTAL VARIANCE IDENTITY WITHOUT fg

In view of (8), we have 3 = (XIX:) ' Xly. Hence

~T ~ ~T -1 ~T
BrXIXeBr = B XIXe (XIXe)  Xly = Bexly

=I,

Hende the regression or model sum of squares from (28) is

~T ~
SSr = BpXIX:Bp 29

The odvon’rgge of (29) is that SSg is a quadratic form in the
normal r.v. Bp.
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ANOTHER ROUND OF PHANTASTIC IDENTITIES

~T ~ ~T -1
SSk = BrXIXcBr = BeX2Xe (XIXe) XLy
~T -1
= BpXly =v7Xe (XIXo)  xly

as (X£X0)4 is symmetric, as shown in Lecture 3 in an Appendix.
We infroduce a centered hat matrix by

He o= Xe (XIXe) XL 30)

and
SS = Y Hey
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ANOTHER ROUND OF PHANTASTIC IDENTITIES

n
> (i- 7 =¥ Cee¥ = YT Hey + (¥ Ceoy — YT Hey)
i=1
= YTHCY + YT (Cce —He)y
This is
hence
SSre = YT (Cce —He)y.
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PROPOSITION

1) HeCee = He

11) Hc is idempotent and rank He = k.

111) Cee — He is idempotent andrank (Cee — He) = n—k — 1
IV) Hc (Cce - Hc) - Oka.
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Proof.
1) HeCece = Hc

1
Hccce = Hc <Hn -

n

1

1,,1[,) = He — BHcl,,ll,.

By construction of the centered hat matrix

-1
Helnll = Xe (ngc) X117,

Here
- - r
X=X o X — Xk
T Xo1 — X1 crr Xok — Xk
Xgln:<l,§Xc) — 1.1 |
Xp1 = X1 o0 Xnk — Xk
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Here

X = X)X — Xk

Xo1 — X1 e Xop — Xk
X,=[@a1...1) , , _

Xp1 — X1 o0 Xpk — Xk

E.g.. if we take by rules of matrix multiplication the scalar product
of the first column with 1] we get

n n n
D xp—nx =) x1-> X
j=1 j=1 J=1

by definition of X; in the environment of (3). The same holds for
every other column of X.. Therefore X1, = (0]) T_ 0, and

1
n

Xc (X£Xc>7] Ok,n = Hc

HeCee = He +

!
n

Xe (XCTXC) R

= H. +
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The part 1) is checked by direct multiplication. Parts ) and V)
follow from ) and II). O
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PROPOSITION
IfY € N, (XB). then

~T ~ 1
SSr/0® = BrXXeBr/o® ~ x*(K,\), where X = 5BRXIXc0r

and

SSkes/0? = (Z (vi— ﬂchTv> [o? ~x*(n—k=1)

i=1

These follow due to Proposition 1 in the same way as the
corresponding statements in Lecture 6. O]
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~T ~ 1
SSr/0® = BrXXeBr/o® ~ x*(k,\), where X = 5BRXIXc0r

and

SSRes/O' = (Z (vi— ﬂRX£Y> /0' ~X (n k—1)

i=1

These statistics do not contain fFg!
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PROPOSITION
IfY € N (XB), then SSg and SSges are independent. J

Proof as in Lecture 5. O

TiMO KosK1 (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION xx-01 2023 40 /68



Now we can state the F-test for

Ho: 1 =po=...= B =0

Hy: B; # O for at least one f;

Set
SSr/(ka?)

~ SSres/(N— Kk — 1)2

SSx/k

F T SSres/(N—k —1)

=F

1) If Hoistrue, then A=0and F ~ F(k,n—k —1).
11) If Ho not frue, then F ~ F(k,n—k — 1, ).

These statements follow as in Lecture 5.
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The F-statistic from Lecture 5 (see the slides)

B SSi/k
~ SSpes/(N—Kk— 1)

We shall first analyze (we simplify reading and writing by 3, — 3)

F

1

—SSr ~ x2(k, \), Azl(Xﬁ)T H
o2 2

n

mg) XB. @n
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If ve R" and Ais areal, symmetric, positive-definite n x n matrix,
then the set

D(v, h) = {x € R"|(x — V)TA(X — V) < h}

is an ellipsoid with radius h centered at v. The eigenvectors of A
are the principal axes of D.
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Cook, R Dennis: Detection of influential observation in
linear regression, Technometrics, 19, 1, 15—18, 1977.

(ﬂ/? - BR) ' XIXe (ﬂ/? - 3/?)
k

/SSres/(N—k —1) | ~ F(k,n—k 1)
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CONFIDENCE ELLIPSOID

100 - (1 — @)% confidence ellipsoid for 3, p is

{5/? (ﬂ/? _BR)TXCTXC (ﬁ/? _BR) < (rf_sslﬁs])/:]—a(k,n— k — 1)}.

where F_,(k,n—k — 1) is the 1 — a probability point of the
central F-distribution.
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APPENDIX A

The F-statistic from Lecture 5 (see the slides)

B SSr/k
~ SSres/(N—k —1)

We shall first analyze (we simplify reading and writing by 3, — 3)

F

1

1SS0, A=t xg) (H- ]
o2 2

n

m;) X8 (32
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PARTITIONED MATRICES

We write

1
n

T
= <5O7:8/T?> <)]<gr> (H_ r]?]n]rC) (]n XI?) <§??> (33)

(Convince yourself that the following is a conformable matrix
multiplication)

<1[,>< 1 T) 1%(/4-},1,,1[,)
) (H==1,1]) =
X3 n XE(H=F1a17)
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PARTITIONED MATRICES

1% (H= J1a1]) _(ﬂ,H_;];lnm)_( o >
X;<H_%1n1;) XIH — tXT1,1] XE— IxTp1]

Here we used, as often before, 11H = (HTln)T = (H1,)" = 1] and
111, = nand the rule B, i.e., X)H = X} in the technical appendix
XXX. When we insert this in (33) we have

_ T 07 Po
= (008) (g ) 00 %0 ()

Here X21, — 1XI1,101, = X21, — X1, = 0, and 0L1, = 0 and
0/Xp =0}, as0.is 1 x nand Xp is n x k.
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PARTITIONED MATRICES

Hence we get (please control the required conformabilities in alll

of this) .

- (ﬁo’ﬁ;?) ((;]k X0 Xp — f)l?gl,n[,x,e) (?;)
= Bk <XI£XI? - ,],,X/g]nﬁnx/?) Br-

Here the centering matrix re-appears by

1 1
XhXp — Bxﬂhnl,ﬁxr‘, =X} <]1n - nlnll,) Xp = X} CeeXp
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PARTITIONED MATRICES

By idempotence and symmetry of Cee we have
ngcceX/? = X/;Ccceccexl? = X/gcgeccexl? = (CceXI?)T cceX/?-
But

1
CeeXp = (X,? - nlnILX,g> = Xc.
Hence we have written the non-centrality parameter as a

quadratic form in the reduced vector of regression coefficients

1
A = 5BRXcXBr. €7
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TECHNICAL APPENDIX: PARTITIONED MATRICES
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TECHNICAL APPENDIX: AN IMPORTANT IDENTITY
FOR A PARTITIONED MATRIX

Let X be an nx pmatrix, X = (X; X))

X(X'X)'X'X=X
X(X'X)'X[XX;]=X
X(X'X)'X[XX,]=[X /X, ]

Consequently,

A X(XX)'XX, =X, mdxmxfx&=&|

Similarly,

B |mxmxﬁr=m and XX(X'X)'X'=X} |
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MULTIPLICATION OF PARTITIOINED MATRICES

If two matrices A and B are conformal for multiplication, and if A and B are parti-
tioned so that the submatrices are appropriately conformal, then the product AB can
be found using the usual patter of row by column multiplication with the subma-
trices as if they were single elements; for example

Ay A B, B
AB:( I 12)( 1 |2)

Ay Ap/\By By
(A11311+A12321 A||312+A|2P'22)
AyByi+ApBy AyBp+ApBy/

(2.35)
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THE INVERSE

We now give the inverses of some special matrices. If A is symmetric and nonsin-
gular and is partitioned as
Ay A
{0 BOL
Ay Ay

and if B= Ay - A1|A]_]]A13. then, provided A]']' and B~ exist, the inverse of A is
given by

-1 -1 -1 -1 -1 -1
Al Z(An HATARBTAyA T -A ApB ) (2.50)

-B'AyA B~
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PART I: F-STATISTIC

Selected Topics from Preceding Lecture Required in this Lec-
ture.
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ORDINARY NORMAL (GAUSSIAN) MULTIPLE
REGRESSION

e ~ Nj (0,52I5) and 3, such that

Y =XB,+e True model 35)
B=(X"X)"'XTY

B~ Niy (ﬁ*,02(XTX)4> (36)

and _
B=8,+XX) X (37)
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#(1)*

@ (X)*

SST = SSR + S5E

e=(I-H)y
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NON-CENTRAL CHI-SQUARE

DEFINITION |
X~ Np(u, 1) Ge. X,..., Xy are independent, X; ~ N(u;, 1)). Set

n n
W:=XX= "X, X=> u.
i=1 i=1

W has the non-central chi-square distribution with n degrees
of freedom and non-cenftrality parameter A\, coded as
W~ x*(n, A)

Note that x?(n,0) = x?(n)
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NON-CENTRAL CHI-SQUARE & QUADRATIC FORMS

PROPOSITION

LetX ~ Np(u, X). let A be a symmetric n x n matrix of constants of
rank r, and let X := 3T A Then XTAX ~ x2(r, \) if and only if AX is
idempotent.

Theorem 5.5 on p. 117 in Rencher, Alvin C and Schaalje, G
Bruce: Linear Models in Statistics, 2008. Proof by
momentgenerating functions.

We shall now apply this to the quadratic forms SSt and SSg.
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PROBABILITY DISTRIBUTIONS RELATED TO THE
NORMAL DISTRIBUTION: F-DISTRIBUTION

PROPOSITION
If X, ~ x%(m) and X, ~ x? (ny) are independent. Let

X1/M

= 38
%o /2 ©8)

V' has the F-distribution with (ny, ny) degrees of freedom, coded
asV ~ F(ny,ny)

This proposition is Problem 10. of Chapter 1 Section 3, in Gut,
Allan: An Intermediate Course in Probability. Second Edition,
Springer, 2009.
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If X ~ x?(r,\), Y ~ x?(s) and X and Y are independent, then

_ X

Q= Y/s

~ F(r,s,\) (€%))

Here F(r, g, \) is the non-central F-distribution with non-centrality
parameter X. The pdf is is a noncentral F-distributed random
variable.
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Hence, by the preceding

SSr/k

~Flk,n—k—1,\
SSres/(N— Kk — 1) ( )

The ratio

B SSr/k
T SSres/(N—k —1)

is thus called the F-stafistic.

F
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F-DISTRIBUTION, CRITICAL VALUES

E.Q., Foos(3,8)4.07

s/r 1 2 3 4 5 6

1 161 200 216 225 230 234
185 19 192 192 193 193
10.1 955 928 9.12 901 894
771 694 659 639 626 6.16
6.61 579 541 519 505 495
599 514 476 453 439 428
559 474 435 412 397 3.87
532 4.46 407 384 3.69 3.58
512 426 386 3.63 348 3.37
496 41 371 348 333 322
484 398 359 336 32 3.09

ZTo0V®O®NOON®LN
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F-TEST

Source df Sum of Squares MSS

Regression k SSr SSr/K

Residual n—k-—1 SSRes 52=SSres/(NK-1)
| Total | n—1 | SSr

Source = source of variation, df= degrees of freedom, SS= sum of
squares, MSS= mean sum of squares.
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Fa

Figure 5.2 Central F, noncentral F, and power of the F test (shaded area).
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When an F statistic is used to test a hypothesis Hy, the distribution
will typically be central if the (null) hypothesis is tfrue and
noncentral if the hypothesis is false.

Thus the noncentral F distribution can often be used to evaluate
the power of an F- test. The power of a test is the probability of
rejecting Ho,, for a given value of I. If Fa is the upper a
percentage point of the central F distribution, then the power, P(
p. g, a,l), can be defined as
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