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LEARNING OUTCOMES

Repetition of Distributions Related to the Normal Distribution
o 2 distribution
e Students t-distribution
e F-distribution

Independence of Quadratic Forms

Marginal Confidence Intervals for 3 in Ordinary Normall
Multiple Regression.

non-cenfral F-distribution

F-statistic, ANOVA Table for Significance of Mulfiple
Regression

distribution
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PART [: REFRESHMENT

Selected Topics from Preceding Lectures Required in this Lec-
ture.
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THE (ORDINARY) MULTIPLE LINEAR REGRESSION
MODEL

BeRT, n>k+1.

Y=X3+e. M
The following assumptions hold:

1) E[e] =0 R"
2) C. =E[ee’] =01, (homoscedasticity)
3) XX is invertible
The model is called ordinary normal regression model, if
additionally the following the following assumption holds:
4) € ~ Ny (0,0%I)
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SUMMARY: ORDINARY MULTIPLE REGRESSION

Y=X3,+e. True model
B=(X"X)"'XTY
E|B] = 8.

Csz=o*(X'X)""!

ee =Y —XB=y—Hy

T
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SUMMARY: NORMAL (GAUSSIAN) MULTIPLE
REGRESSION

B=(X"X)"'XTY

B ~ Nt (8., (XX)7") (©)
and as shown in Lecture 3
B=8.+XX)"Xe @
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e=Y—HY=¢— He. 8

g ~ Np <0n,02 (I — H)) : ©)
BNNI(—H (lB*aoz(XTX)i]) (]O)
esc=yY-XB=y—Hy
- 1
02 — meZSEeLSE (] ])
o2
(N—k=T1)— ~x*(n—k-1) (12)
g

x?(n—k—1)is the chi-squared distrioution with n—k — 1 degrees
of freedom.
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PROBABILITY DISTRIBUTIONS RELATED TO THE
NORMAL DISTRIBUTION:

e 2-distribution
e Students t-distribution
o F-distributfion

TiMoO KosK1 (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 26-01 2023 9/74



PROBABILITY DISTRIBUTIONS RELATED TO THE
NORMAL DISTRIBUTION: CHI-SQUARE

DEFINITION
X ~ Ny (0,1,) G.e. Xy,..., X are iid., X ~ N0, 1)).

n
W:=X'X=>)" X
=1

W has the chi-square distribution with n degrees of freedom,
symbolically W ~ x2(n)

The pdf of W is

x3-le 3
- , x>0
f(x; n) =19 22r (5)
0, otherwise.
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STUDENT’S DISTRIBUTION

DEFINITION
X ~ N(u,02), Z ~ x?(n) are independent r.v.’s. Set

(X=p)
U=—2 13)

\/%

Gut (2009) Chapter 1, Section 3, Problem 9: U has the (Stu-
dent’s) t-distribution with n degrees of freedom, symbolically
U~ 1(n)
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STUDENT’S T-DISTRIBUTION f(Nn), PDF

The pdf of t(n) is
r(ntl o\ —(N+1)/2
f(f;n):(Qr)n)<1+f> , —o0o<t<4oo
2

When n=1we get,asT(3) = /x.I(1) =0l =1,

1
7T(]+1L2)7

which is the Cauchy distribution C(0, 1).

f(t; 1) =
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THE PDF OF F-DISTRIBUTION WITH (N1, Ny)
DEGREES OF FREEDOM

m/2 —(Mm+ny)/2
f(x; m,ng) = B (0 2 n] Y <f71> xM/2] <1 + n]X> ;
(15
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PROBABILITY DISTRIBUTIONS RELATED TO THE
NORMAL DISTRIBUTION: F-DISTRIBUTION

PROPOSITION
If X, ~ x%(m) and X, ~ x? (ny) are independent. Let
Xi/n
= (16)
Xa/N2

V' has the F-distribution with (ny, ny) degrees of freedom, coded
asV ~ F(ny,ny)

This proposition is Problem 10. of Chapter 1 Section 3, in Gut,
Allan: An Intermediate Course in Probability. Second Edition,
Springer, 2009.
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A DIGRESSION

How to find the pdf of V = 2;2;'7 A general frick: We have the

ratio Z = é of two independent random variables with pdfs fy(x)
and fy(y). respectively. First, transform (X, Y) — (Z, U) by

_Y
=3
Find the Jacobian of the inverse transformation
X=X(Z,U)=2U,Y =Y(Z,U)=Uas U=Y. Then the rule of
fransformation of variables in a pdf (Gut Thm. 2.1 p. 21) gives

fzv(z,y) = fxv(2y,Y)lY| = fx(zy)fy(y)|y| (by independence) and
thus

Z u=Y.

+oo

t@)= [ Wf@)ay

Try the handwork at home to obtain (15) with (16). (This is NOT
EXQ).
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INDEPENDENCE OF LINEAR FORMS

PROPOSITION

X~ N(u,C). Let A and B be conforming matrices. Then AX and
BX are independent random variables if and only

ACB'" = 0. a7

If A and B are symmetric and C = ¢2I, then AX and BX are
independent random variables if and only

AB=0. 18)

The proof is short showing that the joint momentgenerating
function of the pair (AX, BX) is a product of the
momentgenerating function of AX and the momentgenerating
function of BX. The details are omitted here.
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A REMARKABLE CASE OF STATISTICAL
INDEPENDENCE

PROPOSITION
IFY ~ Nn(XB.,0%Ip), then 3 and 82 are independent.

Proof. We have (c.f. (7) above)

B=08,+XX)"Xe a9

As an object of probability calculus 62 is the random variable
> 1

o2 =

T~
= m g € (20)

Hence we conclude by (19) and (20) that 3 and 62 are
independent random variables, soon as (X' X)~'X’e and & are
independent random variables.
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A REMARKABLE CASE OF STATISTICAL
INDEPENDENCE

B=8.+XX)"Xe
Let us note from the previous (c.f. (8) above) that
e=(Ih—H)e
By the true normal model assumptions e ~ Np (0, o2, ). Hence

we consider the proposition above with X > e, A = (X7X)~1XT
and B= (I, —H)and C = o21,. Note that A is not symmetric,
hence we try the case (17).

A= X"X)""XTis an (k + 1) x nmatrix and B = (I, — H) isan n x n
matrix. Hence A and B are conformable for the matrix product

ACB" = 52 AB,
as B = (I, — H) is symmetric.
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A REMARKABLE CASE OF STATISTICAL
INDEPENDENCE

ACB" = 0?AB = o?(XTX)"'XT (1, — H)
= 52 ((XTX)”xT - (XTX)*]XTH) .

By definition of the hat matrix H we get

XTX)™'XTH = (XTX) T IXTX(XTX)TIXT = (XTX) 71X

—_——
=41

Hence
ACBT = 52 ((XTX)‘]XT - (XTX)—U(T) — O 1)xn

and the claim about independence holds as asserted.
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APPLICATIONS OF THIS INDEPENDENCE IN SIMPLE
LINEAR REGRESSION

We know that under the tfrue normal model assumptions

B ~ Nt (8.,0°(XTX)™") @1

We consider as our first example the simple linear regression
k = 1. By (21) and the properties of joint normal distributions

~ A oaNT A «
(here N,), see Lecture 2, we know thatin 3 = (ﬁo, [31) . Bo and 3,

have univariate marginal distrbutions that are normal
distributions.
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APPLICATIONS OF THIS INDEPENDENCE IN SIMPLE
LINEAR REGRESSION

We treat the case k = 1 and present confidence intervals with
exact confidence degrees for gy and 37, for the predictor as a

staight line, and a prediction interval with an exact confidence
degree.
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It is found in egn. (21) of Appendix B of slides of Lecture 3 that
(XTX)_] _ 1 ( ZP:] Xi2 - ZP:] Xi) (22)

= n
NSxx \— Zi:] Xi n

Hence

5 iy x? N 1
50~N(65,022'-‘ ) 51~N<ﬂ7,a23 )
XX

NSyx

By Proposition (9) in Appendix of Lecture 1, slides, we recall

n

n
So=> X' —nx* =) (x—X)
i=1

i=1
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SIMPLE LINEAR REGRESSION

Thus we have

R . o1 X2
50~N<Bo,o <n+z;’:1(x,-—x)2))

A~ N IB* 0'2

which agrees with the formula derived in Lecture 1.
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SIMPLE LINEAR REGRESSION

We established in Lecture 4 the distribution of the observed
residuals as

Now we know in addition that €’ and 3, are independent. We
recall a result/an exercise of probability calculus, see, e.g., Gut,
Allan: An Intermediate Course in Probability. Second Edition,
Springer, 2009, Chapter 1, Section 3, Problem 9.
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We apply (13) with X — f; and Z — L&'z This gives

Tn — (/81 ;B]) -lATA -~ T(I’)—Z)
VS £f
n—-2

Let us recall that 62 = % is the unbiased estimate of o2 . Then

- (5 jﬁT) N

. tH(n—2). (23)
VS«

From this we derive a confidence interval (Cl) for 57 by a well
known technique.
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Let us choose confidence level 1 — a. By symmetry of f(t;n — 2),
see (14), we can find (software or by table, section 17.8 in Rdde,
Lennart and Westergren, Bertil: Mathematics handbook for
science and engineering) a positive number 1, »(n — 2) such that

P(—tyo(n—2) <Th <fhp(n—=2)) =1-0.

We insert T, from (23). Some equivalent re-writing of the
inequalities entails

(51 fo2(N— 2)\/3— B < B + ; )Z]—a.

This gives us the Cl with the confidence degree 1 — «:

I\

lgr = |B1 — taja(n— 2)ﬁ’51+ o/2(N—2)

|
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ClI for 33

At Math.Dept/KTH this Cl is also written down in the form

A~

g

S (%)

gz = Br £ t,a(n-2)
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Test of hypothesis about 31: CI method

There is no theoretic line of regression when 3, = 0. We can
make a significance test by the method of CI:

HO . BT = O
mot
Hy: By #0
Reject Hy atf the significance level « , if the observed interval
does not inlude zero, i.e., reject H, if
A G .
0 ¢ IBT = ﬂ] + fa/z(n — 2) — if
il (X —X)?

If S = S (X — X)? is “large’, the length of this Cl is small and
the Clis thus informative.
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EXQ

Show that the Cl for gy at the confidence level 1 — «is

X 1 X2
[ N (< ) Y, N I (A —
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CI for the true line of regression

(3) 0=050+bB1X
Here we derive a ClI for the theoretical line of regression at x = xg.
Let us first note that

E(Bo + Fr1X0) = E(fo) + E(B1x0) = Bo + BiXo.

and with notations form Lecture 1
n n
Bir=> cy and =) dy
=1 =1

where :
Ci= (X — X)/Sxx and ag; = " CiX. L))
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n n
Var(fp + Bixo) = Var [ Y " aVi+ ) ciVixg
= =1
n
= Var Z (di+ cixg) Vi
i=1

and due to independence

= Z (di + Cixg)? Var (Y;) = JQZ(d + Cixp)?
=1 =1
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Confidence Interval

It is shown in Appendix A that

Var(ﬁAO + B\]Xo) = 0'2 Z (O’,’ + C,'Xo)2 = 02 . (:) -+ (Xo — )_()2/Sxx> .

i=1

Hence the sought Cl is

o 1 (X0 — X)?
I =g+ P+ Tap(n=2)01 S+ =p =5 -
Bo+100 = P + B / no Yl —X)?
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CI for the Toy Example of Lecture 1. above with
a=0.05
Plot of the training set, the predictor and

A A ~ _%)2
Bo+ bixo £ foos(n—2)84 [ 7 + %

1 2 3 4 5 6 ¥
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Prediction Interval

Let Yy be a new observed response to xg. i.e.,
Yo € N(55 + 87X, 0?). We predict Y, by the predictor

Yo = Bo + Aixo-

Error of prediction A
Yo— Yo

has a normall distribution with mean zero. Since Yy and Y are
independent (Why?)

Var (Yg - \A/o> =V (Yy) + Var (\70)
We have already observed above
N A A 1 _
Var (vo) = Var(fo + fix0) = o2 - (n + (X0 — X)? /sxx) :
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Prediction Interval

That is, :
var (Yo - ) = o? (1 Lo 2)2/sxx> ©25)

We estimate 2 with 2. However, Since Y, and Y, have zreo

means, 5
(-7

The predictor % = Bp + Bixo. is a specal case of the predictor
x!. .8 in Lecture 4. Does the MSE of prediction error above
agree with the MSE of Lecture 4.7

= MSE

Var <YO — \A/O) =E
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A CHECK:

In Lecture 4.
MSE = X[, CsXny1 + 0.

Now insert C@ from (22) and write x,T,+])(1 , Xo). EXpand the
quadratic form and simplify using tricks of finite sums, then this
yields (25), as it should.
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Prediction Interval

EXQ: Explain why
Yo - Yo
o1+ 5+ (0 = X)2/Su

has a t-distribution with n—2 degrees of freedom. Then show that

o 1 _
Yo+ 1y 2(n—2)5- \/1 +- 400~ X)? / Sxx

covers Yy with the probability 1 — «. The interval is called a
(1 — ) - 100% prediction interval for Yy
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Prediction interval in the Toy Example: o = 0.05

Plot of the training set, predictor and

YO:|:7L0025 n— 2

6

\/]—F +(xg—X )2/Sxx
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Prediction interval and Confidence interval in the
Toy Example plotted together

Plot of the predictor, 8y + 51X £ th.os(N — 2)6

Yoﬂ:f0025n 2 \/]‘i‘ + Xo— )2/Sxx

6

L L L L L
1 2 3 4 5 6 &
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CI FOR (3; IN MULTIPLE NORMAL REGRESSION

~

B ~ Nig (5*702(XTX)_]>

By the properties gf multivariate normal distribution it holds for
every componet g, j =0,...,k + 1that

~

B~ N (ﬁj‘, azcjj>
where ¢ is the array on the main diagonal of (X"X)~!. Hence

we can apply the preceding study to find confidence intervals
for a single ;.
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|End of treatment of the case k = |
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BOOTSTRAP AND MULTIPLE LINEAR REGRESSION

The Annals of Statistics
1981, vol. 9, No. 6, 1218-1228

BOOTSTRAPPING REGRESSION MODELS

By D. A. FREEDMAN'
University of California, Berkeley

The regression and correlation models are considered. It is shown that
the bootstrap approximation to the distribution of the least squares estimates
is valid, and some error bounds are given.
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BOOTSTRAP AND MULTIPLE LINEAR REGRESSION

as classical methods. In the regression model, it is appropriate to resample the centered
residuals. More specifically, the observable column n-vector é(n) of residuals is given by
é(n) = Y(n) = X(n)f. However, ji, = (1/n) Y1 &:(n) need not vanish, for the column
space of X need not include the constant vectors. Let £, be the empirical distribution of
&(n), centered at the mean, so F, puts mass 1/n at &(n) - ji, and [ x dF,* = 0. Given Y (n),

let M{conﬂitimal}y independent, with common distribution £,; let ¢*(n) be the
sampled with /_’_FJ

replacement
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BOOTSTRAP AND MULTIPLE LINEAR REGRESSION

letef, .+, er be conditionally independent, with common distribution F,; let ¢*(n) be the
n-vector whose ith component is ¢/; and let

Y*(n) = X(0)A(n) + ¢* (n).

Informally, e* is obtained by resampling the centered residuals. And Y* is generated from
the data, using the regression model with / as the vector of parameters and F, as the
distribution of the disturbance terms e. Now imagine giving the starred data (X, Y*) to
another statistician, and asking for an estimate of the parameter vector. The least squares
estimate is A* = (X"X)”X"Y*. The m%wm is that the distribution of
J;{ﬂ* — f), which can be computed directly from the data, approximates the distribution

of V(£ - B). As will be shown in Section 2 below, this approximation is likely to be very
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BOOTSTRAP AND MULTIPLE LINEAR REGRESSION

One repeats the computation of B* B times, finds their empirical
distribution Fﬁ* , and from this one can find confidence intervals
for 3. Here no assumptions of normal distrbution are required.
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BOOTSTRAP AND MULTIPLE LINEAR REGRESSION
) e

PR i ;ﬁ Statistics and Probability Letters
L)) “49 QCIS! 18

Mlﬁ!ﬁﬂ homepage: www.glsevier.com/locate/stapro

Bootstrapping for multivariate linear regression models

l bhanl af Boklia Hanlih 20 Pallama Co TEBL DA Das WOATA Masss Uasine 7T ACE1A TICA

'.l‘ a Cahan
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STEP 2:Fundamental Analysis of Variance Identity
(ONCE MORE)
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Fundamental Analysis of Variance Identity (ONCE
MORE)

From Lecture 4. the Fundamental Analysis of Variance Identity is
written as

n
~  =\2
y' Ccey = Z (yi - y) +e/sest. (26)
=551 =l =S5Res
SSq

where SSg is the regression or model sum of squares, SSges is the

Residual Sum of Squares and where we recall the centering
maftrix :
Cce - ]In - Eln]%
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SSr AND SSgres ARE INDEPENDENT

By the definition of the predictor

-<>|

Y=X3, Y= (v] ) Z %
2
and by (26) we have the random variable SSg = 31, (Y Y)

PROPOSITION
SSr and SSres are independent random variables. ‘

Proof: We know by the above that B and g are independent r.v.s.
SSr and SSges are functions! of 3 and &, respectively, and thus
independent.

'Borelmeasurable functions
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SSr AS A QUADRATIC FORM

N\ 2
>, ()7,- - )7) will written as a quadratic form. Let use the
centering matrix with

~

)/1—)?

-~ Yo=Y
Ceey = | * @7)

VoV

Hence

n

~  =\2 ~
S (7i—=7) =l Ceo¥ I?=|| CeoHy [>=Yy" (CeoH)" CesHly
i=1

We have (CceH)T = H'C], = HCce. since we have at earlier
stage checked that H and Ce are symmetric.
TiMoO KosK1 (KTH, DEPT. MATHEMATICS)
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SSr AS A QUADRATIC FORM

Hence

n
~  =\2
S (7i-7) =¥ (CeeH)' CeoHy = y"HCooCooHy = Y HCcoHy.

i=1

where we used the fact that Ce is idempotent, as checked
earlier. By definition of the centering matrix,

!
n

1
n

1

cce/—/—<]1n— lnl,T,>H—H— lnl;H:H—Blnl,T,

where we used 17 H = (HTln)T = (H1,)" = 1], see Lecture 3.
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SSr AS A QUADRATIC FORM

Hence

1 1 1
HCeeH = H (H— nm,f,) = HH — B/—/1,,1[, =H- 51,71;

since His idempotent, and H1, = 1,, see Lecture 3. In summary,
we have found the desired quadratic form for the regression
component:

SSr = Z( ) <H—]l 1T>y 28)

H— %lnl,ﬂ is symmetric and we saw in Lecture 3 that it is
idempotent.
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THE GEOMETRY OF THE FUNDAMENTAL ANALYSIS
OF VARIANCE IDENTITY

The following two Figures® illustrate the geometry of the
decomposition. The notation in the Figures C(1 : n) = sp (X) and
J=11,1], 85; = SST and SSg = SSR

9Copied from S. Puntanen & K. Vehkalahti: Matriiseja tilastotieteilijéille,
Report 56/2017, Faculty of Information Sciences, TUNI
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#(1)*

@ (X)*

SST = SSR + S5E

e=(I-H)y
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NON-CENTRAL CHI-SQUARE

DEFINITION |
X~ Np(u, 1) Ge. X,..., Xy are independent, X; ~ N(u;, 1)). Set

n n
W:=XX= "X, X=> u.
i=1 i=1

W has the non-central chi-square distribution with n degrees
of freedom and non-cenftrality parameter A\, coded as
W~ x*(n, A)

Note that x?(n,0) = x?(n)
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THE EXPRESSION IN THIS SLIDE IS NOT
REQUIRED IN THE EXAMINATION

A
4 @_\ £
))& [/
| | \/\ ) /)
\ A \--w':/
-y

The pdf of W ~ x2(n, \) is
1 XA N/4—1/2
fx(X;n,\) = 5€ (x+2)/2 (X) Inj2—1(VAX)

where |,(y) is a modified Bessel function of the first kind.
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74(n)

(0, k)

n

Figure 5.1 Central and noncentral chi-square densities.
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NON-CENTRAL CHI-SQUARE & QUADRATIC FORMS

PROPOSITION

LetX ~ Np(u, X). let A be a symmetric n x n matrix of constants of
rank r, and let X := 3T A Then XTAX ~ x2(r, \) if and only if AX is
idempotent.

Theorem 5.5 on p. 117 in Rencher, Alvin C and Schaalje, G
Bruce: Linear Models in Statistics, 2008. Proof by
momentgenerating functions.

We shall now apply this to the quadratic forms SSt and SSg.
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NON-CENTRAL CHI-SQUARE & QUADRATIC FORMS

X ~ Np(p, X), A symmetric n x n matrix
of rank r, A := Jul Au. XTAX ~ x2(r,\) &
AY is idempotent.

SSr: Y ~ Np (XB,,0%1,), and the quadratic form is %YTCceY. Cee
is a symmmetric and idempotent matrix. Hence its rank equals
(see Slides for Lecture 4) is its tfrace, and by rules of frace,
rankCce :TrCCe :Trﬂn - %Tr]n]L =N- ]
(Recall that 1,1] is an n x n matrix of ones). Thus

rank A = 4 Cee = N— 1. Compute AY = 5 Cce0?ln= Cee. As
Cee is idempotent, we have

] ]
—SSt~xA(N=1,0), A= 5 (XB,)" CeeXB,.
g
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NON-CENTRAL CHI-SQUARE & QUADRATIC FORMS

X ~ Nn(p, X), A symmetric n x n matrix
of rank r, A := S ul Au. XTAX ~ x2(r,\) &
AY is idempotent.

SSr: Y ~ Nn (XB,,021,), and the quadratic form is
YT (H=1n0)Y. A= (H=1101]). Since H— 151} is @
symmetric and idempotent matrix. Its rank equals (see Slides
for Lecture 4) its frace, and by rules of trace,

1 1 1
rank (H nl,,l[,) = (H nm;) —=TrH - ETrmL = k.
Tr H = k + 1 was found in Appendix C of Lecture 3. Thus
rank A = k. Next AT = 2 (H = J101%) e2In= (H = 51a17).

lSSRN><2(I<,A), /\::l(Xﬁ*)T H—lm[, X8, .
o2 2 n
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DEGREES OF FREEDOM

1857 = LSSk + > SSres
o g

o2
1 1 1 1 1
—Y'CceY =Y (H=-=-1,1T7) Y+ —¢e'e
o2 o2 n n o2
degrees of freedom=n—1 degrees of freedom=k degrees of freedom=n—k—1

See (11) and (12) for the case %SSRQS. We note

n—1=k+(n—k—1).
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If X ~ x?(r,\), Y ~ x?(s) and X and Y are independent, then

X/r
Q= /s ~ F(r,s,\) 29)
Here F(r, s, \) is the non-central F-distribution with non-centrality
parameter A. The pdf is is a noncentral F-distributed random
variable. The probability density function (pdf) for the noncentral

F-distribution is

i e M2(\/2)k (r)£+k< s )’Zs+’<qr/2]+k
k:OB(2,2+k)kl S+ rqg

The noncentral F-distribution is implemented in R.
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Hence, by the preceding

SSr/k

~Flk,n—k—1,\
SSres/(N— Kk — 1) ( )

The ratio

B SSr/k
T SSres/(N—k —1)

is thus called the F-stafistic.

F
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F-TEST OF A HYPOTHESIS ON THE REGRESSION
COEFFICIENTS

Ho: B =04
Under this null hypothesis the F-statistic has a central
F-distribution:
F~Fkn—k—-10)=Fkn—k-1)

We choose a significance level «, find F,(k,n— k — 1), the upper
a percentage point of the central F(k,n — k — 1)- distribution,
and refuse the null hypothesis, as soon as

SSr/k

F= SSres/(N— Kk — 1)

> Fa(k,n—k—1)
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F-DISTRIBUTION, CRITICAL VALUES F,(r,S) OF
F(r.s)

E.Q., Foos(3,8) = 4.07, c.f., MVP Table A.4, p. 548.
s/r 1 2 3 4 5 6
161 200 216 225 230 234
185 19 192 192 193 193
10.1 955 928 9.12 901 894
771 694 659 639 626 6.16
661 579 541 519 505 495
599 514 476 453 439 428
559 474 435 412 397 3.87
532 446 4.07 384 3.69 358
512 426 3.86 3.63 348 3.37
496 41 371 348 333 322
484 398 359 336 32 309

ZTo0VONOONLN—
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F-TEST

Source df Sum of Squares MSS

Regression k SSr SSr/K

Residual n—k-—1 SSRes 52=SSres/(NK-1)
| Total | n—1 | SSr

Source = source of variation, df= degrees of freedom, SS= sum of
squares, MSS= mean sum of squares.
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F-TEST OF A HYPOTHESIS ON THE REGRESSION
COEFFICIENTS

Ho: B =04

The noncentral F distribution can often be used to evaluate the
power of an F- test. The power of a test is the probability of
rejecting H,, for a given value of A.

Let F.(p, Q) be the upper a percentage point of the central
F(p, q) distribution. Let Z ~ F(p, sg, ). Then the power of the
F-test ., P(p, g, a, \). is defined as

P(p,q,a,\) = P(Z > Fa(p, Q).
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POWER OF AN F-TEST OF A HYPOTHESIS ON THE
REGRESSION COEFFICIENTS:

P(p,q,a, ) = P(Z > Fa(9,Q)).

F

o

Figure 5.2 Central F, noncentral F, and power of the F test (shaded area).

TiMoO KosK1 (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 26-01 2023 70/ 74



APPENDIX A : COMPUTATIONS FOR PREDICTION
INTERVALS
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S (i + ex0)® = L+ (X0 — %)%/ S

We insert d; = 1 — ¢;x to get

n n 5
Y (d+ex)’=> <;) +ci(x — )‘()> -

i=1 i=1

n = n
1 Xg— X
:;[72—’_2( On );CH-(XO— ZC XO_ )2/SXX‘

since the auxiliary (I) in Lecture 1. says >/, ¢; = 0 and the
auxiliary (IV) in Lecture 1. gives >°7; ¢? = 1/S.
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Ronald Fisher

British statistician, geneticist and
evolutionary biclogist whose
contributions to statistical theory
have become mainstays of modern
statistical practice.
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