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LEARNING OUTCOMES

Repetition of Distributions Related to the Normal Distribution
χ2 distribution
Student,s t-distribution
F-distribution

Independence of Quadratic Forms
Marginal Confidence Intervals for β in Ordinary Normal
Multiple Regression.
non-central F-distribution
F-statistic, ANOVA Table for Significance of Multiple
Regression
distribution
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PART I: REFRESHMENT

Selected Topics from Preceding Lectures Required in this Lec-
ture.
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THE (ORDINARY) MULTIPLE LINEAR REGRESSION

MODEL

β ∈ Rk+1, n ≥ k + 1.

Y = Xβ + ε. (1)

The following assumptions hold:

1) E [ε] = 0 ∈ Rn

2) Cε = E
[
εεT
]
= σ2In (homoscedasticity)

3) X T X is invertible

The model is called ordinary normal regression model, if
additionally the following the following assumption holds:

4) ε ∼ Nn
(
0, σ2In

)
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HAT MATRIX

H := X(X T X)−1X T . (2)

ŷ = Hy ∈ sp (X) .
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SUMMARY: ORDINARY MULTIPLE REGRESSION

Y = Xβ∗ + ε. True model (3)

β̂ = (X T X)−1X T Y

E
[
β̂
]
= β∗

C
β̂
= σ2(X T X)−1 (4)

eLSE = y − X β̂ = y − Hy

σ̂2 =
1

(n − k − 1)
eT

LSEeLSE
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SUMMARY: NORMAL (GAUSSIAN) MULTIPLE

REGRESSION

ε ∼ Nn
(
0, σ2In

)
and β∗ such that

Y = Xβ∗ + ε True model (5)

β̂ = (X T X)−1X T Y

β̂ ∼ Nk+1

(
β∗, σ

2(X T X)−1
)

(6)

and as shown in Lecture 3

β̂ = β∗ + (X T X)−1X Tε (7)
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ε̂ = Y − HY = ε− Hε. (8)

ε̂ ∼ Nn

(
0n, σ

2 (In − H)
)
. (9)

β̂ ∼ Nk+1

(
β∗, σ

2(X T X)−1
)

(10)

eLSE = y − X β̂ = y − Hy

σ̂2 =
1

(n − k − 1)
eT

LSEeLSE (11)

(n − k − 1)
σ̂2

σ2 ∼ χ2(n − k − 1) (12)

χ2(n−k−1) is the chi-squared distribution with n−k−1 degrees
of freedom.
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PROBABILITY DISTRIBUTIONS RELATED TO THE

NORMAL DISTRIBUTION:

χ2-distribution
Student,s t-distribution
F-distribution
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PROBABILITY DISTRIBUTIONS RELATED TO THE

NORMAL DISTRIBUTION: CHI-SQUARE

DEFINITION

X ∼ Nn (0, In) (i.e. X1, . . . ,Xn are i.i.d., Xi ∼ N(0, 1)).

W := XT X =
n∑

i=1

X2
i .

W has the chi-square distribution with n degrees of freedom,
symbolically W ∼ χ2(n)

The pdf of W is

f (x ; n) =


x

n
2−1e− x

2

2
n
2 Γ
(n

2

) , x > 0;

0, otherwise.
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STUDENT’S DISTRIBUTION

DEFINITION

X ∼ N(µ, σ2), Z ∼ χ2(n) are independent r.v.’s. Set

U =
(X−µ)

σ√
Z
n

(13)

Gut (2009) Chapter 1, Section 3, Problem 9: U has the (Stu-
dent’s) t-distribution with n degrees of freedom, symbolically
U ∼ t(n)
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STUDENT’S T -DISTRIBUTION t(n), PDF

The pdf of t(n) is

f (t ; n) =
Γ(n+1

2 )
√

nπ Γ(n
2 )

(
1 +

t2

n

)−(n+1)/2

, −∞ < t < +∞ (14)

When n = 1 we get, as Γ(1
2) =

√
π,Γ(1) = 0! = 1,

f (t ; 1) =
1

π
(
1 + t2

) ,
which is the Cauchy distribution C(0, 1).
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THE PDF OF F-DISTRIBUTION WITH (n1,n2)
DEGREES OF FREEDOM

f (x ;n1,n2) =
1

B
(n1

2 , n2
2

) (n1

n2

)n1/2

xn1/2−1
(

1 +
n1

n2
x
)−(n1+n2)/2

,

(15)
where we have the Beta function

B
(n1

2
,

n2

2

)
=

Γ
(n1

2

)
Γ
(n2

2

)
Γ
(n1

2 + n2
2

)
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PROBABILITY DISTRIBUTIONS RELATED TO THE

NORMAL DISTRIBUTION: F-DISTRIBUTION

PROPOSITION

If X1 ∼ χ2 (n1) and X2 ∼ χ2 (n2) are independent. Let

V :=
X1/n1

X2/n2
(16)

V has the F-distribution with (n1,n2) degrees of freedom, coded
as V ∼ F (n1,n2)

This proposition is Problem 10. of Chapter 1 Section 3, in Gut,
Allan: An Intermediate Course in Probability. Second Edition,
Springer, 2009.
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A DIGRESSION

How to find the pdf of V = X1/n1
X2/n2

? A general trick: We have the

ratio Z = X
Y of two independent random variables with pdfs fX (x)

and fY (y), respectively. First, transform (X ,Y ) 7→ (Z ,U) by

Z =
Y
X
,U = Y .

Find the Jacobian of the inverse transformation
X = X(Z ,U) = ZU,Y = Y (Z ,U) = U as U = Y . Then the rule of
transformation of variables in a pdf (Gut Thm. 2.1 p. 21) gives
fZ ,Y (z, y) = fX ,Y (zy , y)|y | = fX (zy)fY (y)|y | (by independence) and
thus

fZ (z) =
∫ +∞

−∞
|y |fY (y)fX (zy)dy

Try the handwork at home to obtain (15) with (16). (This is NOT
EXQ).
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STEP 1.: β̂ AND σ̂2 ARE INDEPENDENT
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INDEPENDENCE OF LINEAR FORMS

PROPOSITION

X ∼ N (µ,C). Let A and B be conforming matrices. Then AX and
BX are independent random variables if and only

ACBT = O. (17)

If A and B are symmetric and C = σ2I, then AX and BX are
independent random variables if and only

AB = O. (18)

The proof is short showing that the joint momentgenerating
function of the pair (AX,BX) is a product of the
momentgenerating function of AX and the momentgenerating
function of BX. The details are omitted here.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 26-01 2023 17 / 74



A REMARKABLE CASE OF STATISTICAL

INDEPENDENCE

PROPOSITION

If Y ∼ Nn(Xβ∗, σ
2In), then β̂ and σ̂2 are independent.

Proof: We have (c.f. (7) above)

β̂ = β∗ + (X T X)−1X Tε (19)

As an object of probability calculus σ̂2 is the random variable

σ̂2 =
1

(n − k − 1)
ε̂T ε̂ (20)

Hence we conclude by (19) and (20) that β̂ and σ̂2 are
independent random variables, soon as (X T X)−1X Tε and ε̂ are
independent random variables.
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A REMARKABLE CASE OF STATISTICAL

INDEPENDENCE

β̂ = β∗ + (X T X)−1X Tε

Let us note from the previous (c.f. (8) above) that

ε̂ = (In − H) ε

By the true normal model assumptions ε ∼ Nn

(
0, σ2In

)
. Hence

we consider the proposition above with X ↔ ε, A = (X T X)−1X T

and B = (In − H) and C = σ2In. Note that A is not symmetric,
hence we try the case (17).
A = (X T X)−1X T is an (k + 1)× n matrix and B = (In − H) is an n × n
matrix. Hence A and B are conformable for the matrix product

ACBT = σ2AB,

as B = (In − H) is symmetric.
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A REMARKABLE CASE OF STATISTICAL

INDEPENDENCE

ACBT = σ2AB = σ2(X T X)−1X T (In − H)

= σ2
(
(X T X)−1X T − (X T X)−1X T H

)
.

By definition of the hat matrix H we get

(X T X)−1X T H = (X T X)−1X T X︸ ︷︷ ︸
=Ik+1

(X T X)−1X T = (X T X)−1X T .

Hence

ACBT = σ2
(
(X T X)−1X T − (X T X)−1X T

)
= O(k+1)×n

and the claim about independence holds as asserted.
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APPLICATIONS OF THIS INDEPENDENCE IN SIMPLE

LINEAR REGRESSION

We know that under the true normal model assumptions

β̂ ∼ Nk+1

(
β∗, σ

2(X T X)−1
)

(21)

We consider as our first example the simple linear regression
k = 1. By (21) and the properties of joint normal distributions

(here N2), see Lecture 2, we know that in β̂ =
(
β̂0, β̂1

)T
, β̂0 and β̂1

have univariate marginal distrbutions that are normal
distributions.
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APPLICATIONS OF THIS INDEPENDENCE IN SIMPLE

LINEAR REGRESSION

We treat the case k = 1 and present confidence intervals with
exact confidence degrees for β0 and β∗

1, for the predictor as a
staight line, and a prediction interval with an exact confidence
degree.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 26-01 2023 22 / 74



It is found in eqn. (21) of Appendix B of slides of Lecture 3 that

(X T X)−1 =
1

nSxx

( ∑n
i=1 x2

i −
∑n

i=1 xi
−
∑n

i=1 xi n

)
(22)

Hence

β̂0 ∼ N

(
β∗

0, σ
2
∑n

i=1 x2
i

nSxx

)
, β̂1 ∼ N

(
β∗

1, σ
2 1

Sxx

)
By Proposition (9) in Appendix of Lecture 1, slides, we recall

Sxx =
n∑

i=1

x2
i − nx̄2 =

n∑
i=1

(xi − x)2
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SIMPLE LINEAR REGRESSION

Thus we have

β̂0 ∼ N

(
β∗

0, σ
2

(
1
n
+

x2∑n
i=1(xi − x)2

))

β̂1 ∼ N

(
β∗

1,
σ2∑n

i=1(xi − x)2

)
.

which agrees with the formula derived in Lecture 1.
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SIMPLE LINEAR REGRESSION

We established in Lecture 4 the distribution of the observed
residuals as

1
σ2 ε̂

T ε̂ ∼ χ2(n − 2)

Now we know in addition that ε̂T ε̂ and β̂1 are independent. We
recall a result/an exercise of probability calculus, see, e.g., Gut,
Allan: An Intermediate Course in Probability. Second Edition,
Springer, 2009, Chapter 1, Section 3, Problem 9.
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We apply (13) with X 7→ β̂1 and Z 7→ 1
σ2 ε̂

T ε̂. This gives

Tn :=
(β̂1 − β∗

1)
σ√
Sxx

1√
ε̂T ε̂
σ2

n−2

∼ t(n − 2)

Let us recall that σ̂2 = ε̂T ε̂
n−2 is the unbiased estimate of σ2 . Then

Tn =
(β̂1 − β∗

1)
σ̂√
Sxx

∼ t(n − 2). (23)

From this we derive a confidence interval (CI) for β∗
1 by a well

known technique.
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Let us choose confidence level 1 − α. By symmetry of f (t ;n − 2),
see (14), we can find (software or by table, section 17.8 in Råde,
Lennart and Westergren, Bertil: Mathematics handbook for
science and engineering) a positive number tα/2(n− 2) such that

P
(
−tα/2(n − 2) ≤ Tn ≤ tα/2(n − 2)

)
= 1 − α.

We insert Tn from (23). Some equivalent re-writing of the
inequalities entails

P
(
β̂1 − tα/2(n − 2)

σ̂√
Sxx

≤ β∗
1 ≤ β̂1 +

σ̂√
Sxx

σ̂

)
= 1 − α.

This gives us the CI with the confidence degree 1 − α:

Iβ∗
1
=

[
β̂1 − tα/2(n − 2)

σ̂√
Sxx

, β̂1 + tα/2(n − 2)
σ̂√
Sxx

]
.
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CI for β∗
1

At Math.Dept/KTH this CI is also written down in the form

Iβ∗
1
= β̂1 ± tα/2(n − 2)

σ̂√∑n
i=1(xi − x)2

.
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Test of hypothesis about β1: CI method

There is no theoretic line of regression when β1 = 0. We can
make a significance test by the method of CI:

H0 : β∗
1 = 0

mot
H1 : β∗

1 ̸= 0

Reject H0 at the significance level α , if the observed interval
does not inlude zero, i.e., reject H0, if

0 /∈ Iβ∗
1
= β̂1 ± tα/2(n − 2)

σ̂√∑n
i=1(xi − x)2

.if

If Sxx =
∑n

i=1(xi − x)2 is ”large’, the length of this CI is small and
the CI is thus informative.
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EXQ

Show that the CI for β0 at the confidence level 1 − α is

Iβ∗
0
= β̂0 ± tα/2(n − 2)σ̂

√√√√(1
n
+

x2∑n
i=1(xi − x)2

)
.
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CI for the true line of regression

(3) θ = β0 + β1x0
Here we derive a CI for the theoretical line of regression at x = x0.
Let us first note that

E(β̂0 + β̂1x0) = E(β̂0) + E(β̂1x0) = β0 + β1x0.

and with notations form Lecture 1

β̂1 =
n∑

i=1

ciyi and β̂0 =
n∑

i=1

diyi

where
ci = (xi − x̄)

/
Sxx and di =

1
n
− ci x̄ . (24)
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Var(β̂0 + β̂1x0) = Var

(
n∑

i=1

diYi +
n∑

i=1

ciYix0

)

= Var

(
n∑

i=1

(di + cix0)Yi

)
and due to independence

=
n∑

i=1

(di + cix0)
2 Var (Yi) = σ2

n∑
i=1

(di + cix0)
2 .
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Confidence Interval

It is shown in Appendix A that

Var(β̂0 + β̂1x0) = σ2
n∑

i=1

(di + cix0)
2 = σ2 ·

(
1
n
+ (x0 − x̄)2/Sxx

)
.

Hence the sought CI is

Iβ0+β1x0 = β̂∗
0 + β̂∗

1x0 ± tα/2(n − 2)σ̂

√
1
n
+

(x0 − x)2∑n
i=1(xi − x)2

.
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CI for the Toy Example of Lecture 1. above with
α = 0.05

Plot of the training set, the predictor and

β̂0 + β̂1x0 ± t0.05(n − 2)σ̂
√

1
n + (x0−x)2∑n

i=1(xi−x)2
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Prediction Interval

Let Y0 be a new observed response to x0, i.e.,
Y0 ∈ N(β∗

0 + β∗
1x0, σ

2). We predict Y0 by the predictor

Ŷ0 = β̂0 + β̂1x0.

Error of prediction
Y0 − Ŷ0

has a normal distribution with mean zero. Since Y0 and Ŷ0 are
independent (Why?)

Var
(

Y0 − Ŷ0

)
= V (Y0) + Var

(
Ŷ0

)
We have already observed above

Var
(

Ŷ0

)
= Var(β̂0 + β̂1x0) = σ2 ·

(
1
n
+ (x0 − x̄)2/Sxx

)
.
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Prediction Interval

That is,

Var
(

Y0 − Ŷ0

)
= σ2

(
1 +

1
n
+ (x0 − x̄)2/Sxx

)
(25)

We estimate σ2 with σ̂2. However, Since Y0 and Ŷ0 have zreo
means,

Var
(

Y0 − Ŷ0

)
= E

[(
Y0 − Ŷ0

)2
]
= MSE

The predictor Ŷ0 = β̂0 + β̂1x0. is a specal case of the predictor
xT

n+1β̂ in Lecture 4. Does the MSE of prediction error above
agree with the MSE of Lecture 4.?
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A CHECK:

In Lecture 4.
MSE = xT

n+1C
β̂

xn+1 + σ2.

Now insert C
β̂

from (22) and write xT
n+1)(1, xo). Expand the

quadratic form and simplify using tricks of finite sums, then this
yields (25), as it should.
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Prediction Interval

EXQ: Explain why

Y0 − Ŷ0

σ̂ ·
√

1 + 1
n + (x0 − x̄)2/Sxx

.

has a t-distribution with n−2 degrees of freedom. Then show that

Ŷ0 ± tα/2(n − 2)σ̂ ·
√

1 +
1
n
+ (x0 − x̄)2/Sxx

covers Y0 with the probability 1 − α. The interval is called a
(1 − α) · 100% prediction interval for Y0
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Prediction interval in the Toy Example: α = 0.05

Plot of the training set, predictor and

Ŷ0 ± t0.025(n − 2)σ̂ ·
√

1 + 1
n + (x0 − x̄)2/Sxx
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Prediction interval and Confidence interval in the
Toy Example plotted together

Plot of the predictor, β̂0 + β̂1x0 ± t0.025(n − 2)σ̂
√

1
n + (x0−x)2∑n

i=1(xi−x)2 and

Ŷ0 ± t0.025(n − 2)σ̂ ·
√

1 + 1
n + (x0 − x̄)2/Sxx

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 26-01 2023 40 / 74



CI FOR βi IN MULTIPLE NORMAL REGRESSION

β̂ ∼ Nk+1

(
β∗, σ

2(X T X)−1
)

By the properties of multivariate normal distribution it holds for
every componet β̂j , j = 0, . . . , k + 1 that

β̂j ∼ N
(
β∗

j , σ
2cjj

)
where cjj is the array on the main diagonal of (X T X)−1. Hence
we can apply the preceding study to find confidence intervals
for a single βi .
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End of treatment of the case k = 1

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 26-01 2023 42 / 74



BOOTSTRAP AND MULTIPLE LINEAR REGRESSION
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BOOTSTRAP AND MULTIPLE LINEAR REGRESSION
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BOOTSTRAP AND MULTIPLE LINEAR REGRESSION
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BOOTSTRAP AND MULTIPLE LINEAR REGRESSION

One repeats the computation of β̂
∗

B times, finds their empirical
distribution F̂

β̂
∗ , and from this one can find confidence intervals

for β. Here no assumptions of normal distrbution are required.
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BOOTSTRAP AND MULTIPLE LINEAR REGRESSION

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 26-01 2023 47 / 74



STEP 2:Fundamental Analysis of Variance Identity
(ONCE MORE)
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Fundamental Analysis of Variance Identity (ONCE

MORE)

From Lecture 4. the Fundamental Analysis of Variance Identity is
written as

yT Ccey︸ ︷︷ ︸
=SST

=
n∑

i=1

(
ŷi − ¯̂y

)2

︸ ︷︷ ︸
SSR

+eT
LSEeLSE︸ ︷︷ ︸
=SSRes

. (26)

where SSR is the regression or model sum of squares, SSRes is the
Residual Sum of Squares and where we recall the centering
matrix

Cce = In − 1
n

1n1T
n.
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SSR AND SSRes ARE INDEPENDENT

By the definition of the predictor

Ŷ = X β̂, Ŷ =
(

Ŷ1 . . . Ŷn

)T
,

¯̂Y =
1
n

n∑
i=1

Ŷi

and by (26) we have the random variable SSR =
∑n

i=1

(
Ŷi −

¯̂Y
)2

.

PROPOSITION

SSR and SSRes are independent random variables.

Proof: We know by the above that β̂ and ε̂ are independent r.v.s.
SSR and SSRes are functions1 of β̂ and ε̂, respectively, and thus
independent.

1Borelmeasurable functions
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SSR AS A QUADRATIC FORM∑n
i=1

(
ŷi − ¯̂y

)2
will written as a quadratic form. Let use the

centering matrix with

Cceŷ =


ŷ1 − ¯̂y
ŷ2 − ¯̂y

...
ŷn − ¯̂y

 . (27)

Hence

n∑
i=1

(
ŷi − ¯̂y

)2
=∥ Cceŷ ∥2=∥ CceHy ∥2= yT (CceH)T CceHy

We have (CceH)T = HT CT
ce = HCce, since we have at earlier

stage checked that H and Cce are symmetric.
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SSR AS A QUADRATIC FORM

Hence

n∑
i=1

(
ŷi − ¯̂y

)2
= yT (CceH)T CceHy = yT HCceCceHy = yT HCceHy,

where we used the fact that Cce is idempotent, as checked
earlier. By definition of the centering matrix,

CceH =

(
In − 1

n
1n1T

n

)
H = H − 1

n
1n1T

nH = H − 1
n

1n1T
n

where we used 1T
nH =

(
HT 1n

)T
= (H1n)

T = 1T
n, see Lecture 3.
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SSR AS A QUADRATIC FORM

Hence

HCceH = H
(

H − 1
n

1n1T
n

)
= HH − 1

n
H1n1T

n = H − 1
n

1n1T
n

since H is idempotent, and H1n = 1n, see Lecture 3. In summary,
we have found the desired quadratic form for the regression
component:

SSR =
n∑

i=1

(
ŷi − ¯̂y

)2
= yT

(
H − 1

n
1n1T

n

)
y (28)

H − 1
n1n1T

n is symmetric and we saw in Lecture 3 that it is
idempotent.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 26-01 2023 53 / 74



THE GEOMETRY OF THE FUNDAMENTAL ANALYSIS

OF VARIANCE IDENTITY

The following two Figuresa illustrate the geometry of the
decomposition. The notation in the Figures C(1 : n) = sp (X) and
J = 1

n1n1T
n, SST = SST and SSR = SSR

aCopied from S. Puntanen & K. Vehkalahti: Matriiseja tilastotieteilijöille,
Report 56/2017, Faculty of Information Sciences, TUNI
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NON-CENTRAL CHI-SQUARE

DEFINITION

X ∼ Nn (µ, In) (i.e. X1, . . . ,Xn are independent, Xi ∼ N(µi , 1)). Set

W := XT X =
n∑

i=1

X2
i , λ :=

n∑
i=1

µ2
i .

W has the non-central chi-square distribution with n degrees
of freedom and non-centrality parameter λ, coded as
W ∼ χ2(n, λ)

Note that χ2(n, 0) = χ2(n)
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THE EXPRESSION IN THIS SLIDE IS NOT
REQUIRED IN THE EXAMINATION

The pdf of W ∼ χ2 (n, λ) is

fX (x ;n, λ) =
1
2

e−(x+λ)/2
(x
λ

)n/4−1/2
In/2−1(

√
λx)

where Iν(y) is a modified Bessel function of the first kind.
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NON-CENTRAL CHI-SQUARE & QUADRATIC FORMS

PROPOSITION

Let X ∼ Nn(µ,Σ), let A be a symmetric n× n matrix of constants of
rank r, and let λ := 1

2µ
T Aµ. Then XT AX ∼ χ2(r , λ) if and only if AΣ is

idempotent.

Theorem 5.5 on p. 117 in Rencher, Alvin C and Schaalje, G
Bruce: Linear Models in Statistics, 2008. Proof by
momentgenerating functions.
We shall now apply this to the quadratic forms SST and SSR.
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NON-CENTRAL CHI-SQUARE & QUADRATIC FORMS

X ∼ Nn(µ,Σ), A symmetric n × n matrix
of rank r , λ := 1

2µ
T Aµ. XT AX ∼ χ2(r , λ) ⇔

AΣ is idempotent.

SST: Y ∼ Nn
(
Xβ∗, σ

2In
)
, and the quadratic form is 1

σ2 YT CceY. Cce
is a symmetric and idempotent matrix. Hence its rank equals
(see Slides for Lecture 4) is its trace, and by rules of trace,

rank Cce = Tr Cce = Tr In − 1
n

Tr 1n1T
n = n − 1

(Recall that 1n1T
n is an n × n matrix of ones). Thus

rank A = 1
σ2 Cce = n − 1. Compute AΣ = 1

σ2 Cceσ
2In= Cce. As

Cce is idempotent, we have

1
σ2 SST ∼ χ2(n − 1, λ), λ :=

1
2
(Xβ∗)

T CceXβ∗.
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NON-CENTRAL CHI-SQUARE & QUADRATIC FORMS

X ∼ Nn(µ,Σ), A symmetric n × n matrix
of rank r , λ := 1

2µ
T Aµ. XT AX ∼ χ2(r , λ) ⇔

AΣ is idempotent.

SSR: Y ∼ Nn
(
Xβ∗, σ

2In
)
, and the quadratic form is

1
σ2 YT

(
H − 1

n1n1T
n

)
Y. A = 1

σ2

(
H − 1

n1n1T
n

)
. Since H − 1

n1n1T
n is a

symmetric and idempotent matrix. Its rank equals (see Slides
for Lecture 4) its trace, and by rules of trace,

rank
(

H − 1
n

1n1T
n

)
=

(
H − 1

n
1n1T

n

)
= Tr H − 1

n
Tr 1n1T

n = k .

Tr H = k + 1 was found in Appendix C of Lecture 3. Thus
rank A = k . Next AΣ = 1

σ2

(
H − 1

n1n1T
n

)
σ2In=

(
H − 1

n1n1T
n

)
.

1
σ2 SSR ∼ χ2(k , λ), λ :=

1
2
(Xβ∗)

T
(

H − 1
n

1n1T
n

)
Xβ∗.
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DEGREES OF FREEDOM

1
σ2 SST =

1
σ2 SSR +

1
σ2 SSRes

↕

1
σ2 YT CceY︸ ︷︷ ︸

degrees of freedom=n−1

=
1
σ2 YT

(
H − 1

n
1n1T

n

)
Y︸ ︷︷ ︸

degrees of freedom=k

+
1
σ2 ε̂

T ε̂︸ ︷︷ ︸
degrees of freedom=n−k−1

See (11) and (12) for the case 1
σ2 SSRes. We note

n − 1 = k + (n − k − 1).
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If X ∼ χ2(r , λ), Y ∼ χ2(s) and X and Y are independent, then

Q =
X/r
Y/s

∼ F(r , s, λ) (29)

Here F(r , s, λ) is the non-central F-distribution with non-centrality
parameter λ. The pdf is is a noncentral F-distributed random
variable. The probability density function (pdf) for the noncentral
F-distribution is

fQ(q) =
∞∑

k=0

e−λ/2(λ/2)k

B
( s

2 ,
r
2 + k

)
k!

( r
s

) r
2+k

(
s

s + rq

) r+s
2 +k

qr/2−1+k

The noncentral F-distribution is implemented in R.
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Hence, by the preceding

SSR/k
SSRes/(n − k − 1)

∼ F(k ,n − k − 1, λ) (30)

The ratio

F =
SSR/k

SSRes/(n − k − 1)

is thus called the F-statistic.
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F-TEST OF A HYPOTHESIS ON THE REGRESSION

COEFFICIENTS

Ho: β = 0k+1

Under this null hypothesis the F-statistic has a central
F-distribution:

F ∼ F(k ,n − k − 1, 0) = F(k ,n − k − 1)

We choose a significance level α, find Fα(k ,n − k − 1), the upper
a percentage point of the central F(k ,n − k − 1)- distribution,
and refuse the null hypothesis, as soon as

F =
SSR/k

SSRes/(n − k − 1)
≥ Fα(k ,n − k − 1)

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION 26-01 2023 66 / 74



F-DISTRIBUTION, CRITICAL VALUES Fα(r , s) OF

F(r , s)

E.g., F0.05(3, 8) = 4.07, c.f., MVP Table A.4, p. 548.
s/r 1 2 3 4 5 6
1 161 200 216 225 230 234
2 18.5 19 19.2 19.2 19.3 19.3
3 10.1 9.55 9.28 9.12 9.01 8.94
4 7.71 6.94 6.59 6.39 6.26 6.16
5 6.61 5.79 5.41 5.19 5.05 4.95
6 5.99 5.14 4.76 4.53 4.39 4.28
7 5.59 4.74 4.35 4.12 3.97 3.87
8 5.32 4.46 4.07 3.84 3.69 3.58
9 5.12 4.26 3.86 3.63 3.48 3.37

10 4.96 4.1 3.71 3.48 3.33 3.22
11 4.84 3.98 3.59 3.36 3.2 3.09
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F -TEST

Source df Sum of Squares MSS
Regression k SSR SSR/k
Residual n − k − 1 SSRes σ̂2=SSRes/(n-k-1)
Total n − 1 SST

Source = source of variation, df= degrees of freedom, SS= sum of
squares, MSS= mean sum of squares.
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F-TEST OF A HYPOTHESIS ON THE REGRESSION

COEFFICIENTS

Ho: β = 0k+1

The noncentral F distribution can often be used to evaluate the
power of an F- test. The power of a test is the probability of
rejecting Ho for a given value of λ.
Let Fα(p,q) be the upper a percentage point of the central
F(p,q) distribution. Let Z ∼ F(p, sq, λ). Then the power of the
F-test , P(p,q, α, λ), is defined as

P(p,q, α, λ) = P (Z ≥ Fα(p,q)) .
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POWER OF AN F-TEST OF A HYPOTHESIS ON THE

REGRESSION COEFFICIENTS:

P(p,q, α, λ) = P (Z ≥ Fα(q,q)) .
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APPENDIX A : COMPUTATIONS FOR PREDICTION

INTERVALS
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∑n
i=1 (di + cix0)

2 = 1
n + (x0 − x̄)2/Sxx

We insert di =
1
n − ci x̄ to get

n∑
i=1

(di + cix0)
2 =

n∑
i=1

(
1
n
+ ci(x0 − x̄)

)2

=

=
n∑

i=1

1
n2 + 2

(x0 − x̄)
n

n∑
i=1

ci + (x0 − x̄)2
n∑

i=1

c2
i =

1
n
+ (x0 − x̄)2/Sxx .

since the auxiliary (II) in Lecture 1. says
∑n

i=1 ci = 0 and the
auxiliary (IV) in Lecture 1. gives

∑n
i=1 c2

i = 1/Sxx .
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APPENDIX B: THE PERSON BEHIND F
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