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LEARNING OUTCOMES

Ordinary multiple regression model, k regressors xi , real
valued response Y

Normal multiple regression model, k regressors xi , real valued
response Y with normal distribution
LSE β̂ of the regression parameters
Geometry of LSE , the hat matrix H, H − 1

n1n1T
n

Properties of β̂: mean (unbiasedness), covariance matrix,
estimation of the variance sigma2

Properties of LSE residuals.
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The material of the present lecture and the next lecture is
covered with time 1:22:12 in the following item from
MITOpenCourseWare

MIT 18.S096 Topics in Mathematics with Applications in Finance,
Fall 2013
Peter Kempthorne Lecture 6: Regression Analysis
https://www.youtube.com/watch?v=l1kLCrxL9Hk
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We have the training set

Dtr :=
{(

yi , xi1, . . . , xij
)n

i=1

}k

j=1

sampled n times from a source. The yis are n
outcomes/instantiations of the dependent response variable Y
and are xij are corresponding instantiations of the k explanatory
variables, or covariates, or, prediction variables x1, . . . , xk .
A multiple linear regression model treats the relationship
between the dependent response variable y and the k of
expanatory variables as linear.
This relationship is enhanced with a statistical model through a
disturbance term or error variable εi for each yi — an
unobserved random variable that adds ”noise” to the linear
relationship.
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MEASUREMENTS WITH NOISE, A CASE

In many situations we think first of

Y (t) = f (β, t) + ε(t) (1)

We take a finite set of basis functions {ϕj(t)}k
j=1 and write as our

model

Y (t) = β0 +
k∑

i=1

βjϕj (t) + ε(t) (2)

The observations: we sample n times the response and
covariates at t1, . . . , tn and set yi = Y (ti), xij = ϕj (ti), εi = ε (ti) for
i = 1, . . . , tn j = 1, . . . , k . Hence we obtain the ordinary multiple
regression model equations:

Yi = β0 + β1xi1 + · · ·+ βkxik + εi , i = 1, . . . ,n,
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MULTIPLE LINEAR REGRESSION MODEL

Dtr is given. Multiple linear regression model:

Yi = β0 + β1xi1 + · · ·+ βkxik + εi = xT
i β + εi , i = 1, . . . ,n,

where T is the transpose, and xT
i β are the scalar products of the

vectors xi ∈ Rk+1 and β ∈ Rk+1. n > k + 1. These n equations are
conveniently written in a compact matrix notation as

Y = Xβ + ε

where (next slide)
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y = Xβ + ε

y =


y1
y2
...

yn

 ,X =


xT

1
xT

2
...

xT
n

 =


1 x11 · · · x1k
1 x21 · · · x2k
...

...
. . .

...
1 xn1 · · · xnk



β =


β0
β1
β2
...
βk

, ε =


ε1
ε2
...
εn

 .
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X : DESIGN MATRIX

In general: X is a p × p square matrix whose entries are either +1
or −1 and whose rows are mutually orthogonal ⇒ XX T = pIp. For
example:

X =

[
1 1
1 −1

]
,

X =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1
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OBSERVATIONAL X , MECHANICAL MODEL

The determination of the Earth’s gravity field from highly
accurate satellite measurements. The model1 for gravitational
potential is

V (r , θ, λ) =
GM

R

L∑
l=0

( r
R

)l l∑
m=0

Plm(cos(θ)) [Clm cos(mλ) + Slm(mλ)]

where G is the gravitational constant, M is the Earth’s mass, R is
the Earth’s reference radius, Plm represents the fully normalized
l-degree Legendre polynomials of order m, andClm and Slm are
the corresponding normalized harmonic coefficients. For the
mission, the chosen value for L is 300.

1Duff, Iain S and Gratton, Serge: The parallel algorithms team at CERFACS,
SIAM News, 39, 10, 2006
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V (r , θ, λ) =
GM

R

L∑
l=0

( r
R

)l l∑
m=0

Plm(cos(θ)) [Clm cos(mλ) + Slm(mλ)]

We consider the following parameter estimation problem: Find
the harmonic coefficients Clm and Slm as accurately as possible,
using the satellite observations. This results in a linear
least-squares problem involving millions of equations and 90,000
unknowns that engineers will need to solve on a daily basis on
an eight-processor Power 5 IBM machine.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION XX-01 2023 10 / 81



n ≥ k + 1, n << k

REMARK

Assume n ≥ k + 1. What is the mathematical relationship
between k and n? A formula or rule for this?

REMARK

n << k (meaning that n is much smaller than k). This is a situation
of big data, i.e., an observational study with a huge number of
possibly relevant explanatory/predictive factors observed.
Multiple regression in this case is treated later in Lecture XXXX
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THE (ORDINARY) MULTIPLE LINEAR REGRESSION

MODEL

β ∈ Rk+1 and n > k + 1.

Y = Xβ + ε. (3)

The following assumptions hold:

1) E [ε] = 0 ∈ Rn

2) Cε = E
[
εεT
]
= σ2In (homoscedasticity)

3) X T X is invertible (to be discussed below)

The model is called ordinary normal regression model, if
additionally the following the following assumption holds:

4) ε ∼ Nn
(
0, σ2In

)
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THE (ORDINARY) MULTIPLE LINEAR REGRESSION

MODEL

REMARK

Y = Xβ + ε.

The assumption 4), i.e., ε ∼ Nn
(
0, σ2In

)
implies by the results in

Lecture 2. that
Y ∼ Nn

(
Xβ, σ2In

)
.
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RESIDUALS

Let us now fix an arbitrary value of β ∈ Rk+1. Then we can
compute the values of the observed residuals

ei := yi − xT
i β, i = 1, . . . ,n.

These are estimates of εi i = 1, . . . ,n. Set

e =

e1
...
ϵn

 ,

Now we can write
e = y − Xβ
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LEAST SQUARES ESTIMATION (LSE)

We want to estimate β based on the training set Dtr . One
(respected and by Lecture 1 well known) way to do this is to
minimize the squared norm (length) of the observed residuals:

∥ e ∥2=∥ y − Xβ ∥2

i.e.,
β̂ = argminβ∈B ∥ y − Xβ ∥2

But by the definition of the norm ∥ · ∥ on the Euclidean space Rn

we find

∥ y − Xβ ∥2=
n∑

i=1

yi −

β0 +
k∑

j=1

βjxij

2

.

Hence this is nothing but an extension of the LSE in Lecture 1.
(Set k=1 to regain the simple linear regression therein).
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X1

X2

Y

In three dimensional setting, with one response and two
predictors k = 2, LSE fits a plane to the training data. 2

2by Courtesy of James, Gareth and Witten, Daniela and Hastie, Trevor and
Tibshirani, Robert An introduction to statistical learning, Chapter 3
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Sales

Radio

TV

In three dimensional setting, i.e. with one response and k = 2, LSE
fits a plane to the training data 3

3by Courtesy of James, Gareth and Witten, Daniela and Hastie, Trevor and
Tibshirani, Robert An introduction to statistical learning, Chapter 3

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION XX-01 2023 17 / 81



OLS LINEAR REGRESSION IS ADALINE4

Consider our implementation of the ADAptive LInear
NEuron (Adaline) from Chapter 2, Training Machine
Learning Algorithms for Classification; we remember that
the artificial neuron uses a linear activation function and
we defined a cost function ( =Q in this lecture T.K.), which
we minimized to learn the weights via optimization algo-
rithms, such as Gradient Descent (GD) and Stochastic
Gradient Descent (SGD). This cost function in Adaline is
the Sum of Squared Errors (SSE).

4p. 285 in Sebastian Raschka: Python Machine Learning. PACKT Publishing,
Birmingham, 2015
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OLS LINEAR REGRESSION IS ADALINE..5

Essentially, OLS linear regression can be understood as
Adaline without the unit step function so that we ob-
tain continuous target values instead of the class labels
−1 and 1. To demonstrate the similarity, let’s take the GD
implementation of Adaline from Chapter 2, Training Ma-
chine Learning Algorithms for Classification, ...’

5p. 285 in Sebastian Raschka: Python Machine Learning. PACKT Publishing,
Birmingham, 2015
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OLS LINEAR REGRESSION IS ADALINE..6

As an alternative to using machine learning libraries, there is
a closed-form solution for solving OLS involving a system of lin-
ear equations that can be found in most introductory statistics
textbooks . . .

If you are interested in more information on how to obtain
the normal equations, I recommend you take a look at

6p. 290 in Sebastian Raschka: Python Machine Learning. PACKT Publishing,
Birmingham, 2015
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STANFORD ONLINE

Andrew Ng (Adjunct Professor of Computer Science) lecturing
Stanford CS229: Machine Learning - Linear Regression and
Gradient Descent | Lecture 2 (Autumn 2018)
https://www.youtube.com/watch?v=4b4MUYve U8&t=133s
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FULL COLUMN RANK IMPLIES THAT X T X IS

POSITIVE DEFINITE AND INVERTIBLE

In order to assist machine learning libraries and to find the
closed-form solution, we need an assumption.

DEFINITION

An n × k matrix X has full column rank as soon as the k columns
of X are linearly independent.

LEMMA

Let A be any n × p matrix. Then

I) AT A is symmetric positive semidefinite.

II) If A has full column rank, then AT A is symmetric and
positive definite.
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FULL COLUMN RANK IMPLIES THAT X T X IS

POSITIVE DEFINITE AND INVERTIBLE

The proof of II) is a short and clear one, and is recapitulated in
the Appendix XXXX.

COROLLARY

If X has full column rank, then X T X is invertible.

Proof: By the preceding lemma, if X has full column rank, then
X T X is positive definite. Hence X T X has positive determinant, and
is therefore invertible.
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EXQ FULL COLUMN RANK FOR SIMPLE LINEAR

REGRESSION

Consider X in simple linear regression, or, as seen in Lecture 2.:

X =


1 x1
1 x2
...
1 xn

 = (1n,x)

In which case shall X with k + 1 = 2 not have full rank? Give your
answer in terms of the n × 1 vectors 1n and x.
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LEAST SQUARES ESTIMATION

Hence we set, for simplicity of writing,

Q (β) :=∥ y − Xβ ∥2 (4)

and the LSE is the minimizer

β̂ := argminβQ (β) .

PROPOSITION

If X has full column rank, then

β̂ = (X T X)−1X T y. (5)
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β̂ = (X T X )−1X T y

REMARK

Check that the matrix multiplications are compatible.

REMARK

If k is large, how hard is it to invert X T X computationally?
Computational maths & algorithmics reguested for.
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β̂ = (X T X )−1X T y AND NEURAL ENGINES (!?)

However directly forming X T X is unstable for all but the
most well-conditioned systems; in practice we would
avoid forming X T X directly. A much more reliable and
accurate method is based on QR factorization.

Citation from Zhang, Shaoshuai and Baharlouei, Elaheh and Wu,
Panruo: High accuracy matrix computations on neural engines:
A study of QR factorization and its applications. Proceedings of
the 29th International Symposium on High-Performance Parallel
and Distributed Computing, pp. 17–28, June 23-26, Stockholm,
2020.
On QR : Chapter 2.3 in Åke Björck: Numerical Methods in Matrix
Computations. Springer 2015
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COMPUTATIONAL METHODS FOR β̂ = (X T X )−1X T y

See chapter 2 for matrix calculus in linear regression.
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Proof OF β̂ = (X T X )−1X T y = argminβQ (β)

By the corollary above, X T X is invertible and β̂ is well defined.
Take any β and write

y − Xβ = y − X β̂ + X β̂ − Xβ

Let us set for ease of writing U := y − X β̂ and V := X
(
β̂ − β

)
. By

definition of the norm

∥ y − Xβ ∥2= (y − Xβ)T (y − Xβ)

Hence we have

∥ y − Xβ ∥2= (U + V )T (U + V ) = (UT + V T )(U + V )

= UT U + UT V + V T U + V T V

Set eLSE := y − X β̂. Thus

UT U =
(

y − X β̂
)T (

y − X β̂
)
= eT

LSEeLSE .
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Proof OF β̂ = (X T X )−1X T y = argminβQ (β)

Next

V T V =
(

X
(
β̂ − β

))T
X
(
β̂ − β

)
=
(
β̂ − β

)T
X T X

(
β̂ − β

)
.

In the above, UT V = V T U, since these are scalar products. Let us
expand UT V .

UT V =
(

y − X β̂
)T

X
(
β̂ − β

)
=
(

X T
(

y − X β̂
))T (

β̂ − β
)

=
(

X T y − X T X β̂
)T (

β̂ − β
)
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Proof OF β̂ = (X T X )−1X T y = argminβQ (β)

But X T X β̂ = X T y and thus the last expression equals zero, since(
X T y − X T X β̂

)T (
β̂ − β

)
= 0T

k

(
β̂ − β

)
= 0.

Hence we have established the following decomposition

Q (β) =∥ y − Xβ ∥2= eT
LSEeLSE +

(
β̂ − β

)T
X T X

(
β̂ − β

)
(6)

In the right hand side we have two non-negative terms. The first
term in the right hand side of (6) does not depend on β. Hence
we can minimize the expression by minimizing the second term,
which is a quadratic form.
Apply the lemma II) to X , which assumed to have full column
rank p = k + 1. Then X T X is a positive definite matrix, hence the
quadratic form is zero if and only if we choose β − β̂ to be the
zero vector 0k . Hence we have shown the proposition as
claimed. Q.E.D.
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AN ADDITIONAL INSIGHT TO β̂ = (X T X )−1X T y

Let the k + 1 columns of the design matrix X be denoted by

x(c)
0 =


1
1
...
1

 x(c)
j =


x1j
x2j
...

xnj

 j = 1, . . . , k , β̂ =


β̂0

β̂1

β̂2
...
β̂k

 .

Let sp (X) = sp{x(c)
0 ,x(c)

1 . . . ,x(c)
k } be the linear span of the

columns of X . Then X β̂ =
∑k

j=0 x(c)
j β̂j ∈ sp (X).
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HAT MATRIX

H := X(X T X)−1X T . (7)

Then the predicted values are ŷ = X β̂ = X(X T X)−1X T y= Hy.

ŷ = Hy ∈ sp (X) .

H is called7 hat matrix

7MPV p. 73: Hat matrix and its properties play a central role in regression
analysis. But MVP makes a suboptimal use of H
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PROPERTIES OF THE HAT MATRIX H

A) H is symmetric, i.e., HT = H

B) H is idempotent, i.e., H2 = HH = H

C) Tr(H) = k + 1
Proofs are found in the Appendix XX. The rule C) will be manifest
in Lecture 4. From linear algebra we recall by A) and B):

H is an orthogonal projection matrix in Rn
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LEAST SQUARE RESIDUALS

The n × 1 vector eLSE of observed residuals that correspond to
the least square minimizer as computed by

eLSE = y − X β̂ = y − Hy (= y − ŷ).

We have now

eT
LSE ŷ = eT

LSEHy = yT Hy − yT HT Hy

and since H is symmetric, A) above,

= yT Hy − yT HHy

and since H is idempotent, B) above,

= yT Hy − yT Hy = 0.

That is,
eT

LSEHy = 0.

Fitted values ŷ are orthogonal to the LSE residuals eLSE .
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ORTHOGONAL PROJECTION

eLSE := y − X β̂ = y − Hy ⇔ y = Hy + eLSE

eT
LSEHy = 0.

The LSE vector of residuals eLSE is orthogonal to sp (X). Hy ∈
sp (X) is the orthogonal projection of y to sp (X).

Hence H2y = Hy by idempotence is a natural property, why ?
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MPV P. 581
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MPV P. 581

In our typing the claim of MPV in the lila ’box’ is

X(X T X)−1X T 1n = 1n ⇔ H1n = 1n (8)

where

1n :=


1
1
...
1


Note that 1n is the first column in X . Hence 1n ∈ sp (X) and thus
H1n = 1n follows, since H projects a vector in sp (X) to the vector
itself (idempotence).
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MPV P. 581

More formally: The orthogonal projector represented by the
matrix H splits up Rn into a direct sum of two orthogonal
subspaces, sp (X) and its orthogonal complement sp (X)⊥, i.e.,
any e ∈ sp (X)⊥ is orthogonal to every z ∈ sp (X), and every
y ∈ Rn is uniquely decomposed as

y = Hy + e,

where Hy ∈ sp (X), and e ∈ sp (X)⊥. As 1n ∈ Rn, we set y = 1n
and thus

1n = H1n + e.

Hence eT 1n = eT H1n + eT e. Since 1n ∈ sp (X), eT 1n = 0. Since
H1n ∈ sp (X), eT H1n = 0. Hence eT e = 0, i.e. ∥ e ∥2= 0. But this
means that e = 0n. Thus we have

H1n = 1n. (9)
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MPV P. 581

Now we may write the expression in MVP as

X(X T X)−1X T − 1n

(
1n1T

n

)−1
1T

n = H − 1
n

1n1T . (10)

In Lecture 5 the need arises to find, whether the matrix H − 1
n1n1T

n
is idempotent. Let us not keep ourselves in suspense.
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H − 1
n1n1T

n IS IDEMPOTENT

(
H − 1

n
1n1T

)(
H − 1

n
1n1T

n

)
= HH− 1

n
H1n1T

n−
1
n

1n1T
nH+

1
n2 1n1T

n1n1T
n.

But HH = H, since H is idempotent, H1n1T
n = 1n1T

n by (9). Next,
1n1T

nH = 1n1T
n, since 1T

nH =
(
HT 1n

)T
= (H1n)

T = 1T
n, as H is

symmetric and by (9). As pointed out earlier, and is seen
immediately, 1T

n1n = n. Hence 1n1T 1n1T
n = n1n1T

n. Therefore and
we have established the desired idempotence.
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EXQ PYTHAGORAS
′
S THEOREM

Show that
∥ y ∥2=∥ ŷ ∥2 + ∥ eLSE ∥2

The data point y is the hypotenuse of the right-angled triangle in
Rn with the base of predicted/fitted values ŷ and the altitude of
the LSE- residual eLSE . This is next illustrated in a Figure.
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By Courtesy of Puntanen, S. and Isotalo, J. and Styan, GPH:
Formulas Useful for Linear Regression Analysis and Related Matrix
Theory. In the Figure ε̂ ↔ eLSE
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PROJECTION GEOMETRICALLY FOR SIMPLE LINEAR

REGRESSION

In the next figure
C (1;x) ↔ sp(X)

J =
1
n

1n1T
n
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PROJECTION GEOMETRICALLY FOR SIMPLE LINEAR

REGRESSION

From Puntanen S., Styan G.P.H., Isotalo J.: Matrix Tricks for Linear
Statistical Models. Springer 2011.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION XX-01 2023 45 / 81



THE (ORDINARY) NORMAL MULTIPLE LINEAR

REGRESSION MODEL

Y = Xβ + ε. (11)

where
ε ∼ Nn

(
0, σ2In

)
Then by known properties of the multivariate normal distribution

Y ∼ Nn

(
Xβ, σ2In

)
(12)

and, since
(
σ2In

)−1
= σ−2In and detσ2In = σ2n

fY (y) =
1

σn(2π)n/2 e− 1
2σ2 ∥y−Xβ∥2

(13)
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THE MAXIMUM LIKELIHOOD ESTIMATOR (MLE)
FOR NORMAL MULTIPLE LINEAR REGRESSION

MODEL 1

We have the −1· loglikelihood function

ly
(
β, σ2

)
:= − ln fY (y) =

n
2
ln(2π) +

n
2
ln(σ2) +

1
2σ2 ∥ y − Xβ ∥2

We choose β and σ2 so that ly
(
β, σ2

)
is minimized. The maximum

likelihood estimates β̂ML and σ̂ML are found by computing the
gradient

∇ly
(
β, σ2

)
) =

(
∂

∂β0
ly
(
β, σ2

)
, . . . , ∂

∂βk
ly
(
β, σ2

)
, ∂
∂σ2 ly

(
β, σ2

))T
, and

solving ∇ly
(
β̂ML, σ̂ML

)
= 0k+2.
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MLE 2

ly
(
β, σ2

)
:= − ln fY (y) =

n
2
ln(2π) +

n
2
ln(σ2) +

1
2σ2 ∥ y − Xβ ∥2

For j = 0, 1, . . . , k it holds that

∂

∂βj
ly
(
β, σ2

)
=

1
2σ2

∂

∂βj
∥ y − Xβ ∥2=

1
2σ2

∂

∂βj
Q (β)

by (4). Hence β̂ML can be found by solving first w.r.t. β the
equations

1
2
∇Q (β) = 0k

By expansion,

Q (β) = yT y − yT Xβ − βT X T y + βT X T Xβ. (14)
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MLE 2

Since yT Xβ = βT X T y we get

Q (β) = βT X T Xβ − 2βT X T y + yT y. (15)

Then
1
2
∇Q (β) = ∇

[
1
2
βT X T Xβ − βT X T y

]
.
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MLE 3

∇1
2

Q (β) = ∇
[

1
2
βT X T Xβ − βT X T y

]
.

One checks easily that

∇βT X T Xβ = 2X T Xβ,∇βT X T y = X T y

Hence
1
2
∇Q (β) = 0k ⇔ X T Xβ = X T y

and, if X T X is invertible, β̂ML = β̂ = the least squares estimate.
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THE MLE FOR NORMAL MULTIPLE LINEAR

REGRESSION MODEL 4

Now one inserts β̂ to get

ly
(
β̂, σ2

)
=

n
2
ln(2π) +

n
2
ln(σ2) +

1
2σ2 eT

LSEeLSE

∂

∂σ2 ly
(
β̂, σ2

)
= 0 ⇔ σ̂2

MLE =
eT

LSEeLSE

n
.

The estimate σ̂2
MLE =

eT
LSEeLSE

n is not used, since it is biased. For this
and other prpoperties of LSE in normal multiple linear regression
we need the notion of the true value of β∗
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THE True NORMAL MULTIPLE LINEAR

REGRESSION MODEL

ε ∈ Nn

(
0, σ2In

)
Now we suppose that the exists an unknown β∗ such that

Y = Xβ∗ + ε. (16)

in the sense that β∗ is the true value 8 in R, i.e., it underlies via
(16) the observed vector y, an outcome of Y.

8MPV uses the phrase ’correct model’
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PROPERTIES OF β̂: E
[
β̂
]
= β∗

We compute the expectation of β̂ w.r.t. the true model in (16).

β̂ = (X T X)−1X T Y = (X T X)−1X T (Xβ∗ + ε)

= (X T X)−1X T Xβ∗ + (X T X)−1X Tε

Thus
β̂ = β∗ + (X T X)−1X Tε. (17)

Then by rules of computation with expectation vectors (see
Lecture 2.)

E
[
β̂
]
= β∗ + (X T X)−1X T E [ε] = β∗ + 0 = β∗.

β̂ is unbiased
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PROPERTIES OF β̂: COVARIANCE MATRIX

Cβ̂ = σ2(X T X )−1

By definition:

C
β̂
= E

[(
β̂ − E

[
β̂
])(

β̂ − E
[
β̂
])T
]

But by the true model and preceding computations

β̂ − E
[
β̂
]
= β∗ + (X T X)−1X Tε− β∗ = (X T X)−1X Tε.

Hence C
β̂
= E

[
(X T X)−1X Tε

(
(X T X)−1X Tε

)T
]

= (X T X)−1X T E
[
εεT
]

︸ ︷︷ ︸
=σ2In

X(X T X)−1

= σ2 (X T X)−1X T X︸ ︷︷ ︸
=Ik+1

(X T X)−1 = σ2(X T X)−1
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PROPERTIES OF β̂

Since β̂ is a linear transformation of the normal random vector Y:

β̂ ∼ Nk+1

(
β∗, σ

2(X T X)−1
)
.
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BIAS OF σ̂2
MLE

The residual vector eLSE is the outcome of the random vector

ε̂ = Y − X β̂

Then by (16) and (17)

ε̂ = Xβ∗ + ε− X β̂

= Xβ∗ + ε− X
(
β∗ + (X T X)−1X Tε

)
=

(
In − X(X T X)−1X T

)
ε

= (In − H) ε. (18)
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BIAS OF σ̂2
MLE

Hence
E
[
σ̂2

MLE

]
=

1
n

E
[
ϵ̂T ϵ̂
]
=

=
1
n

Tr E
[
ϵ̂ϵ̂T
]

where we evoked rule 2. in Appendix C for Traces. In view of (18)

E
[
ϵ̂ϵ̂T
]
= E

[
(In − H) ε ((In − H) ε)T

]
=

= (In − H) E
[
εεT
]

︸ ︷︷ ︸
=σ2In

(In − H)T = σ2 (In − H) (In − H)T

We have (In − H)T = IT
n − HT = In − H

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION XX-01 2023 57 / 81



BIAS OF σ̂2
MLE

E
[
ϵ̂ϵ̂T
]
= σ2 (In − H) (In − H)

(In − H) (In − H)T = In − H − H + HH = In − 2H + H = In − H

By property 3. in Appendix C and the rule C) above

Tr E
[
ϵ̂ϵ̂T
]
= σ2 Tr (In − H) = σ2 (Tr In − Tr H) = σ2(n − k − 1).

and
E
[
ϵ̂T ϵ̂
]
= σ2(n − k − 1)

Hence

σ̂2 :=
1

(n − k − 1)
eT

LSEeLSE

is an unbiased estimator of σ2.
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PROPOSITION

1

Ŷ ∼ Nn

(
Xβ∗, σ

2H
)
. (19)

2

ε̂ ∼ Nn

(
0n, σ

2 (In − H)
)

(20)

Proof:
1 Ŷ = HY = HXβ∗ + Hε. By definition of the hat matrix

HXβ∗ = Xβ∗. Hence E
[
Ŷ
]
= Xβ∗. By the known rules

CŶ = Hσ2InHT = σ2HHT = σ2HH = σ2H.

Since Y is a multivariate normal vector, the assertion in (19)
follows.

2 It has been shown in (18) that

ε̂ = (In − H) ε
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Then the assertion about the distribution of the LSE residualerna
follows as with the distribution of Ŷ using the idempotency of
In − H.

We see also that Ŷ is unbiased in the sense that

E
[
Ŷ
]
= E [Y] .
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SUMMARY PART 1

ε ∼ Nn

(
0n, σ

2In

)
Y = Xβ∗ + ε.

β̂ = (X T X)−1X T Y

β̂ ∼ Nk+1

(
β∗, σ

2(X T X)−1
)
.

β̂ = β∗ + (X T X)−1X Tε.
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SUMMARY PART 2

Ŷ ∼ Nn

(
Xβ∗, σ

2H
)
. (21)

ε̂ ∼ Nn

(
0n, σ

2 (In − H)
)

(22)

∥ y ∥2=∥ ŷ ∥2 + ∥ eLSE ∥2 (23)

eLSE = y − X β̂ = y − Hy

σ̂2 =
1

(n − k − 1)
eT

LSEeLSE

C.f. s2 when k = 1 in Lecture 1
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APPENDIX A: INNER PRODUCT SPACES
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APPENDIX B: CHECK β̂ = (X T X )−1X T y IN THE CASE

k = 1

y =


y1
y2
...

yn

 ,X =


1 x1
1 x2
...

...
1 xn

 ,β =

(
β0
β1

)

X T X =

(
n

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 x2
i

)
By Cramer,s rule

(X T X)−1 =
1

n
∑n

i=1 x2
i − (

∑n
i=1 xi)2

( ∑n
i=1 x2

i −
∑n

i=1 xi
−
∑n

i=1 xi n

)
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APPENDIX B: CHECK β̂ = (X T X )−1X T y IN THE CASE

k = 1

(X T X)−1 =
1

n
∑n

i=1 x2
i − (

∑n
i=1 xi)2

( ∑n
i=1 x2

i −
∑n

i=1 xi
−
∑n

i=1 xi n

)
We deal first with the determinant

det(X T X) = n
n∑

i=1

x2
i − (

n∑
i=1

xi)
2 = n

[
n∑

i=1

x2
i − nx̄2

]

= n
n∑

i=1

(xi − x̄)2 = nSxx

by the algebra in Lecture 1.
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APPENDIX B: CHECK β̂ = (X T X )−1X T y IN THE CASE

k = 1

Thus

(X T X)−1 =
1

nSxx

( ∑n
i=1 x2

i −
∑n

i=1 xi
−
∑n

i=1 xi n

)
(24)

Next

X T y =

(
1 1 · · · 1
x1 x2 · · · xn

)
y1
y2
...

yn

 =

( ∑n
i=1 yi∑n

i=1 xiyi

)

Then with
(
β̂0, β̂1

)T
= (X T X)−1X T y(

β̂0

β̂1

)
=

1
nSxx

(∑n
i=1 yi

∑n
i=1 x2

i −
∑n

i=1 xi
∑n

i=1 xiyi
−
∑n

i=1 yi
∑n

i=1 xi + n
∑n

i=1 xiyi

)
(25)
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APPENDIX B: CHECK

(X T X)−1X T y =
1

nSxx

(∑n
i=1 yi

∑n
i=1 x2

i −
∑n

i=1 xi
∑n

i=1 xiyi
−
∑n

i=1 yi
∑n

i=1 xi + n
∑n

i=1 xiyi

)
Here

n∑
i=1

yi

n∑
i=1

x2
i −

n∑
i=1

xi

n∑
i=1

xiyi

=
n∑

i=1

yi

[
n∑

i=1

x2
i − nx̄2

]
+

n∑
i=1

yinx̄2 −
n∑

i=1

xi

n∑
i=1

xiyi

where by the identity from Lecture 1 noted above

= Sxx

n∑
i=1

yi ++nx̄2
n∑

i=1

yi −
n∑

i=1

xi

n∑
i=1

xiyi

= Sxx

n∑
i=1

yi + nx̄2
n∑

i=1

yi − nx̄
n∑

i=1

xiyi
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APPENDIX B: CHECK

Contnd

Sxx

n∑
i=1

yi + nx̄2
n∑

i=1

yi − nx̄
n∑

i=1

xiyi = Sxx

n∑
i=1

yi + nx̄

[
x̄

n∑
i=1

yi −
n∑

i=1

xiyi

]

= Sxx

n∑
i=1

yi + nx̄

[
nx̄ȳ −

n∑
i=1

xiyi

]

= Sxx

n∑
i=1

yi − nx̄Sxy

by an identity established in Lecture 1. i.e.,

n∑
i=1

xiyi − nx̄ȳ =
n∑

i=1

(xi − x̄)(yi − ȳ) = Sxy
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APPENDIX B: CHECK

W.r.t (25) we have at this point established

β̂0 =
1

nSxx

[
Sxx

n∑
i=1

yi − nx̄Sxy

]
=

1
n

n∑
i=1

yi −
Sxy

Sxx
x̄ = ȳ − Sxy

Sxx
x̄

that is

β̂0 = ȳ − Sxy

Sxx
x̄ . (26)

Next, from (25)

β̂1 =
1

nSxx

[
−

n∑
i=1

yi

n∑
i=1

xi + n
n∑

i=1

xiyi

]
=

1
nSxx

[
n

(
n∑

i=1

xiyi − nȳx̄

)]
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APPENDIX B: CHECK

Contnd, by an identity in Lecture 1.

β̂1 =
1

nSxx

[
n

(
n∑

i=1

xiyi − nȳx̄

)]
=

1
Sxx

[
n∑

i=1

xiyi − nȳx̄

]
=

Sxy

Sxx
.

Hence we have

β̂1 =
Sxy

Sxx
(27)

which is the LSE for the slope in simple linear regression. When we
insert (27) in (26) we get

β̂0 = ȳ − β̂1x̄ , (28)

which is the LSE for the intercept in simple linear regression.
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APPENDIX C: MATRICES
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A and B conformal, (AB)T = BT AT . A and B invertible,
(AB)−1 = B−1A−1.(AT )T = A.

A and B conformal, (A + B)T= AT + BT

A is n × n and invertible.(
AT
)−1

=
(

A−1
)T

Proof: AT
(
A−1

)T
=
(
A−1A

)T
= IT

n = In and(
A−1

)T
AT =

(
AA−1

)T
= IT

n = In

Hence, as X T X is k × k , and symmetric(
(X T X)−1

)T
= (X T X)−1 (29)
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FULL COLUMN RANK IMPLIES THAT X T X IS

POSITIVE DEFINITE AND INVERTIBLE

LEMMA

Let A be any n × (k + 1) matrix. If A has full column rank, then
AT A is symmetric positive definite.

Proof: Take any x ∈ Rk+1. Then xT AT Ax = (Ax)T Ax =∥ Ax ∥2. The
squared norm ∥ Ax ∥2 is = 0 if and only if Ax = 0n. We need to
show that Ax = 0n if and only if x = 0k+1.
Let the k + 1 column vectors of the matrix A be denoted by

a(c)
j =


a1j
a2j
...

anj

 j = 1, . . . , k + 1
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FULL COLUMN RANK IMPLIES THAT X T X IS

POSITIVE DEFINITE AND INVERTIBLE

By definition of a matrix multiplying a vector, Ax is a linear
combination of its column vectors, i.e.,

Ax = x1a(c)
1 + x2a(c)

2 + . . .+ xk+1a(c)
k+1

But since A has full column rank, the column vectors are linearly
independent, and therefore a linear combination of them is 0n if
and only if x1 = x2 = . . . = xk+1 = 0.
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TRACE OF A SQUARE MATRIX

Let A be a square matrix. The trace Tr A of A is the sum of the
entries in main diagonal:

Tr

a11 · · · a1k
...

. . .
...

ak1 · · · akk

 =
∑k

j=1 ajj

The following facts are easily established; the proofs are left as
exercises:

1.If A is a k × n-matrix, and B an n × k-matrix, then
Tr(AB) = Tr(BA)

2. In particular, if a is a column-vector, then aT a = Tr
(
aaT

)
.

3. a and b are real numbers, Tr(aC + bD) = a Tr C + b Tr D
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APPENDIX C: PROOFS OF THE STATEMENTS

ABOUT H

The rule (29),
(
(X T X)−1

)T
= (X T X)−1 is applied.

A) HT =(X(X T X)−1X T )T = (X T )T (X(X T X)−1)T

= X(X T X)−1)T X T= X(X T X)−1X T = H

B) H2 = HH = X(X T X)−1X T X(X T X)−1X T=

X (X T X)−1
(

X T X
)

︸ ︷︷ ︸
=Ik+1

(X T X)−1X T = X(X T X)−1X T = H.

Note that X T X is (k + 1)× (k + 1).
C) Set A = X(X T X)−1, B = X T . By 1. above in this Appendix,

Tr H = Tr AB = Tr BA = Tr X T X(X T X)−1 = Tr Ik+1 = k + 1.
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APPENDIX C: GENERAL PROPERTIES OF

IDEMPOTENT MATRICES
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The only invertible idempotent matrix is the identity matrix I.

Proof: Let A be an idempotent matrix. Assume that A−1

exists. By idempotency A2 = A. We multiply this by A−1 to get

A−1A2 = A−1A = I.

But in the left hand side

A−1A2 = A−1AA = A.

Hence A = I.
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APPENDIX D: AN EXPRESSION FOR SSRes

Let us recall from Lecture 1 SSRes, the Residual Sum of Squares
defined for k = 1 as

SSRes :=
n∑

i=1

(yi − ŷi)
2

The same definition is valid for any k ≥ 1, and now we can write

SSRes =
n∑

i=1

(yi − ŷi)
2
=∥ y − Hy ∥2=∥ y − X β̂ ∥2= Q

(
β̂
)

In (15) we have

Q (β) = yT y − 2βT X T y + βT X T Xβ.
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APPENDIX D: AN EXPRESSION FOR SSRes

Hence
SSRes = Q

(
β̂
)
= yT y − 2 β̂

T
X T y + β̂

T
X T X β̂ (30)

We rewrite the third term in the right hand side. As
β̂ = (X T X)−1X T y we have

X T X β̂ = X T X(X T X)−1︸ ︷︷ ︸
=Ik+1

X T y = X T y.

Hence β̂
T
X T X β̂ = β̂

T
X T y and we have in (30)

SSRes = Q
(
β̂
)
= yT y − β̂

T
X T y
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APPENDIX D: AN EXPRESSION FOR SSRes

SSRes = Q
(
β̂
)
= yT y − β̂

T
X T y (31)

This expression will turn out to be very useful in the sequel, e.g., in
Lecture 6.
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