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LEARNING OUTCOMES

e Ordinary multfiple regression model, k regressors x;, real
valued response Y

o Normal mulfiple regression model, k regressors x;, real valued
response Y with normal distribution

LSE 3 of the regression parameters
Geometry of LSE , the hat matrix H, H — 11,1}

Properties of 3: mean (unbiasedness), covariance matrix,
estimation of the variance sigma?

Properties of LSE residuals.
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The material of the present lecture and the next lecture is
covered with time 1:22:12 in the following item from
MITOpenCourseWare

MIT 18.5096 Topics in Mathematics with Applications in Finance,
Fall 2013

Peter Kempthorne Lecture 6: Regression Analysis
https://www.youtube.com/watch?v=11kLCrxL9Hk

MIT

OCWwW
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We have the fraining set

n 1k
Dy = {(Vi, X1y aXij>,':1}j:]
sampled n times from a source. The y;s are n
outcomes/instantiations of the dependent response variable Y
and are x; are corresponding instantiations of the k explanatory
variables, or covariates, or, prediction variables xi,. .., Xk.

A multiple linear regression model treats the relationship
between the dependent response variable y and the k of
expanatory variables as linear.

This relationship is enhanced with a statistical model through a
disturbance term or error variable ¢; for each y; — an
unobserved random variable that adds “noise” to the linear
relationship.
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MEASUREMENTS WITH NOISE, A CASE

In many situations we think first of

Y(1) =f(8,1) +e(f) M

We take a finite set of basis functions {<z>j(f)}/’.<:] and write as our
model

K
Y(1)=Bo+ Y By (1) +e(t) )
i=1
The observations: we sample n times the response and
covariates at fy,..., thandset y; = Y (), x; = ¢; (1;). €; = e (1;) for
i=1,....,1hj=1,..., k. Hence we obtain the ordinary multiple

regression model equations:
Yi=Bo+ Bbixn + -+ BXik + &i, i=1,...,n,
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MULTIPLE LINEAR REGRESSION MODEL

Dy is given. Multiple linear regression model:
Yi=Bo+ Brixn + -+ X +ei =X B + ey, i=1,....n,

where T is the transpose, and x,TB are the scalar products of the
vectors x; € Rt and B8 € RKt1. n > k + 1. These n equations are
conveniently written in a compact matrix notation as

Y=XB+¢

where (next slide)
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y=XB8+¢

1% x| T xn

y— Y2 X x5 T X
Yn x], T Xn
N

IB: ﬁ2 y E = 6.2

5 “
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X: DESIGN MATRIX

In general: Xis a p x p square matrix whose entries are either +1
or —1 and whose rows are mutually orthogonal = XX = pl,,. For
example:

1 1
=l )
T 1 1 1
T -1 1 =1
X=11 1 1
1T -1 -1 1

TiMoO KosK1 (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION xx-01 2023 8/81



OBSERVATIONAL X, MECHANICAL MODEL

The determination of the Earth’s gravity field from highly
accurate satellite measurements. The model' for gravitational
potential is

V(r,0,)) = G ( ) ZP,m c05(8)) [Cim cos(MA) + Sim(MA)]
=

where G is the gravitational constant, M is the Earth’s mass, R is
the Earth’s reference radius, P, represents the fully normalized
I-degree Legendre polynomials of order m, andC,, and S, are
the corresponding normalized harmonic coefficients. For the
mission, the chosen value for L is 300.

'Duff, lain S and Gratton, Serge: The parallel algorithms tfeam at CERFACS,
SIAM News, 39, 10, 2006
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L
V(r,0,)) = e;éw 3 ( ) Z Pin(c0s(8)) [Cim cos(mMA) + Sim(MA)]
1=0

We consider the following parameter estimation problem: Find
the harmonic coefficients Cj,, and S, as accurately as possible,
using the satellite observations. This results in a linear
least-squares problem involving millions of equations and 90,000
unknowns that engineers will need to solve on a daily basis on
an eight-processor Power 5 IBM machine.
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n>k+1, n<< k

REMARK

Assume n > k + 1. What is the mathematical relationship
between k and n? A formula or rule for this?

REMARK

n << k (meaning that n is much smaller than k). This is a situation
of big data, i.e., an observational study with a huge number of
possibly relevant explanatory/predictive factors observed.
Muiltiple regression in this case is freated Iater in Lecture XXXX
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THE (ORDINARY) MULTIPLE LINEAR REGRESSION
MODEL

BeRt  andn > k+1.

Y=XB+e. 3)
The following assumptions hold:

1) E[e]=0€R"
2) C. =E[ee’] =01, (homoscedasticity)
3) XX is invertible (to be discussed below)

The model is called ordinary normal regression model, if
additionally the following the following assumption holds:
4) g ~ Nn (0, 0'2]11'7)
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THE (ORDINARY) MULTIPLE LINEAR REGRESSION
MODEL

REMARK
Y=XB+e.

The assumption 4), i.e., e ~ Ny (0,021) implies by the results in
Lecture 2. that

Y ~ N (Xﬁ, JQ]In) :
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RESIDUALS

Let us now fix an arbitrary value of 8 € R¥*!. Then we can
compute the values of the observed residuals

T
eI:yl_xiﬁa I:.|7 an
These are estimatesofe; i=1,...,n. Set
€
e = : ,
€n
Now we can write
e=y-— X3
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LEAST SQUARES ESTIMATION (LSE)

We want to estimate 8 based on the fraining set Dy.. One
(respected and by Lecture 1 well known) way to do this is to
minimize the squared norm (length) of the observed residuals:

lel?=ly—-X8 |
ie. R
B = argming ||y — XB ||*
But by the definition of the norm || - || on the Euclidean space R”

we find )
n k

Iy -XB1P=> (yi - (50 + ZB/XU)) :
i=1 j=1

Hence this is nothing but an extension of the LSE in Lecture 1.
(Set k=1 to regain the simple linear regression therein).
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X

In three dimensional setting, with one response and two
predictors k = 2, LSE fits a plane to the training data. 2

2by Courtesy of James, Gareth and Witten, Daniela and Hastie, Trevor and
Tibshirani, Robert An infroduction to statistical learning; Chapter-3
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Radio

In three dimensional setfting, i.e. with one response and k = 2, LSE
fits a plane to the training data 3

by Courtesy of James, Gareth and Witten, Daniela and Hastie, Trevor and
Tibshirani, Robert An infroduction to statistical learning; Chapter-3
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OLS LINEAR REGRESSION IS ADALINE?

Consider our implementation of the ADApfive Linear
NEuron (Adaline) from Chapter 2, Training Machine
Learning Algorithms for Classification; we remember that
the artificial neuron uses a linear activation function and
we defined a cost function ( =Q in this lecture T.K.), which
we minimized fo learn the weights via optimization algo-
rithms, such as Gradient Descent (GD) and Stochastic
Gradient Descent (SGD). This cost function in Adaline is
the Sum of Squared Errors (SSE).

“4p. 285 in Sebastian Raschka: Python Machine Learning. PACKT Publishing,
Birmingham, 2015
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OLS LINEAR REGRESSION IS ADALINE..°

Essentially, OLS linear regression can be understood as
Adaline without the unit step function so that we ob-
tain continuous target values instead of the class labels
—1 and 1. To demonstrate the similarity, let’s fake the GD
implementation of Adaline from Chapter 2, Training Ma-
chine Learning Algorithms for Classification, ..."

5p. 285 in Sebastian Raschka: Python Machine Learning. PACKT Publishing,
Birmingham, 2015
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OLS LINEAR REGRESSION IS ADALINE..°

If you are interested in more information on how to obtain
the normal equations, | recommend you take a look at

%p. 290 in Sebastian Raschka: Python Machine Learning. PACKT Publishing,
Birmingham, 2015
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STANFORD ONLINE

Andrew Ng (Adjunct Professor of Computer Science) lecturing
Stanford C$229: Machine Learning - Linear Regression and
Gradient Descent | Lecture 2 (Autumn 2018)
https://www.youtube.com/watch?v=4b4MUYve U8&t=133s

5
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FULL COLUMN RANK IMPLIES THAT X'X IS
POSITIVE DEFINITE AND INVERTIBLE

In order to assist machine learning libraries and to find the
closed-form solution, we need an assumption.
DEFINITION

An n x k matrix X has full column rank as soon as the k columns
of X are linearly independent.

LEMMA
Let A be any n x p matrix. Then
1) ATA is symmetric positive semidefinite.

1) If A has full column rank, then AT A is symmetric and
positive definite.

TiMoO KosK1 (KTH, DEPT. MATHEMATICS) MULTIPLE LINEAR REGRESSION xx-01 2023 22 /81



FULL COLUMN RANK IMPLIES THAT X'X IS
POSITIVE DEFINITE AND INVERTIBLE

The proof of /l) is a short and clear one, and is recapitulated in
the Appendix XXXX.

COROLLARY
If X has full column rank, then XT X is invertible.

Proof. By the preceding lemma, if X has full column rank, then

XTX is positive definite. Hence XX has positive determinant, and
is therefore invertible. Ol
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EXQ FULL COLUMN RANK FOR SIMPLE LINEAR
REGRESSION

Consider X in simple linear regression, or, as seen in Lecture 2.:

1 X1
X
X = 1= anx
1 Xn

In which case shall X with k + 1 = 2 not have full rank? Give your
answer in terms of the n x 1 vectors 1, and X. J
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LEAST SQUARES ESTIMATION

Hence we set, for simplicity of writing,

Q(B) =|ly — X8 |? %)

and the LSE is the minimizer

~

B = argming Q(8).

PROPOSITION
If X has full column rank, then

B=X"X)"XTy. (5)
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B=(X"X)"'XTy

REMARK
Check that the matrix multiplications are compatible.

REMARK

If k is large, how hard is it to invert XTX computationally?
Computational maths & algorithmics reguested for.
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B = (X"X)"' Xy AND NEURAL ENGINES (!?)

However directly forming XX is unstable for all but the
most well-conditioned systems; in practice we would
avoid forming X'X directly. A much more reliable and
accurate method is based on QR factorization.

Citation from Zhang. Shaoshuai and Baharlouei, Elaheh and Wu,
Panruo: High accuracy matrix computations on neural engines:
A study of QR factorization and its applications. Proceedings of
the 29th International Symposium on High-Performance Parallel
and Distributed Computing, pp. 17-28, June 23-26, Stockholm,
2020.

On QR : Chapter 2.3 in Ake Bjorck: Numerical Methods in Matrix
Computations. Springer 2015
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COMPUTATIONAL METHODS FOR 8 = (X7X)' X"y

Teans in Applad Wathamares 59

Ake Bifirck

Numerical
Methods in Matrix
Computations

Q Springer

e HIE i

See chapter 2 for matrix calculus in linear regression.
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Proof OF B = (XTX)" ' XTy = argmingQ (3)

By the corollary above, X' X is invertible and fi is well defined.
Take any g and write

y-XB8=y-XB+XB-X3

Let us set for ease of writing U=y — XB and V := X (B - ,8). By
definition of the norm

Iy = XB [P= (y — XB) (y — XB)
Hence we have
Iy = X8 [IP= (U+ V) (U+ V)= (U"+ V) (U+ V)
= UU+UV+VIU+ VIV
Set e s := Y — XB. Thus
Uu=(y-XB)' (v~ XB) = e[sesse.
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Proof OF B = (XTX)" ' XTy = argmingQ (3)

Next

VIv=(x(B-6)) X (B-5) = (3-0) XX (- 5).

In the above, UV = VU, since these are scalar products. Let us
expand UTV.

v 38 (- 0) = (¥ (v ) (59

- (v xx3) (5
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Proof oF 8 = (X'X)"'X'y = argmin,Q (3)
But XTXB = X"y and thus the last expression equals zero, since
N\T /~ ~
(X'y-x"x8) (8-8) =0, (8-8)=0.
Hence we have established the following decomposition

QB) =y~ X8 = elserse + (B-8) X'X(B-8)  ©

In the right hand side we have two non-negative terms. The first
term in the right hand side of (6) does not depend on 3. Hence
we can minimize the expression by minimizing the second term,
which is a quadratic form.

Apply the lemma /l) to X, which assumed to have full column
rank p = k + 1. Then X' X is a positive definite matrix, hence the
quadratic form is zero if and only if we choose 3 — B to be the
zero vector 0. Hence we have shown the proposition as
claimed. Q.E.D.
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AN ADDITIONAL INSIGHT TO 8 = (X7X)' X"y

Let the k + 1 columns of the design matrix X be denoted by

Bo
o B
Xj ~ ~
xéc)_ xj(c)_ : j=1,....k, B=|0
] an BL
k

Let sp (X) = sp{x{”, x{?) ... x{*)} be the linear span of the

columns of X. Then XB = YK, x(¥F; € sp (X).
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HAT MATRIX

H:=XXTx)"1x. 7
Then the predicted values are y = X3 = X(X7X)~'XTy= Hy.

y = Hy € sp(X).

H is called’ hat matrix

"MPV p. 73: Hat matrix and its properties play a central role in regression
analysis. But MVP makes a suboptimal use of H
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PROPERTIES OF THE HAT MATRIX H

A) His symmetric,ie., H = H

B) Hisidempotent,ie., H2 = HH=H

c) Tr(H)=k+1
Proofs are found in the Appendix XX. The rule C) will be manifest
in Lecture 4. From linear algebra we recall by A) and B):

H is an orthogonal projection matrix in R" J
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LEAST SQUARE RESIDUALS
The n x 1 vector e, s of observed residuals that correspond to
the least square minimizer as computed by
ese=yY-XB=y—-Hy (=y-Y).
We have now
T o_al T Tyt
e Y =€ gHy =y Hy —y'H' Hy
and since H is symmetric, A) above,
=y'Hy — y'HHy
and since H is idempotent, B) above,

=y Hy —y Hy = 0.

That is,
.
Fitted valuesy are orthogonal to the LSE residuals e sr. }
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ORTHOGONAL PROJECTION

esr =Y - XB=y-Hyey=Hy+es
e/sHy = 0.

The LSE vector of residuals e se is orthogonal to sp (X). Hy €
sp (X) is the orthogonal projection ofy to sp (X).

Hence H?y = Hy by idempotence is a natural property, why ?
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MPV p. 581

Please note that X = [1 Xg], where Xy is the matrix formed by the actual values for
the regressors. Consequently, S5y involves a special case of a partitioned matrix. We
{hus may use the special ide riitioned matrices to show tha

X(XX)'X1=1) and IX(XX]'X=1

Consequently,we can show that [X(X'X)"'X' - 1(1'1)™1]is dempotent, Uner the

p— >
&
| .o/' a ]

-
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MPV p. 581

In our typing the claim of MPV in the lila "box’ is
XXTX) XMy =1, Hlp =1, (8)

where

]n =
1
Nofte that 1, is the first column in X. Hence 1, € sp (X) and thus

H1, = 1, follows, since H projects a vector in sp (X) to the vector
itself (idempotence).
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MPV p. 581

More formally: The orthogonal projector represented by the
matrix H splits up R" into a direct sum of two orthogonall
subspaces, sp (X) and its orthogonal complement sp (X)*, i.e.,
any e € sp (X)* is orthogonal to every z € sp (X), and every

y € R" is uniquely decomposed as

y=Hy+e,

where Hy € sp (X).and e e sp (X)*. As 1, e R", we sety = 1,
and thus
]n - H]n + e.

Hence e’1,=e’H1,+e'e. Since 1, € sp(X). e'1,=0. Since
H1, € sp(X), e"H1, =0. Hence e’e =0, i.e. | e ||>= 0. But this
means that e = 0. Thus we have

H]n:]n. (9)
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MPV p. 581

Now we may write the expression in MVP as

-1
X(XTX)‘]XT—1n<]nI,2) 1[,—/—/—:71,,1T. (10)
In Lecture 5 the need arises to find, whether the matrix H — %1,,1[,

is idempotent. Let us not keep ourselves in suspense.
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H — 11,1] IS IDEMPOTENT

(H— :)l,ﬂr) <H— :)1,,1[,) = HH—;HlnI,T,—;lnl,T,HJrr:Qlnl,T,lnl,T,.
But HH = H, since H is idempotent, H1,17 = 1,1] by (9). Next,
1,1/H = 1,1], since 1[H = (HTIn)T =(H1) =17, asHis
symmetric and by (9). As pointed out earlier, and is seen
immediately, 111, = n. Hence 1,171,1] = n1,1]. Therefore and
we have established the desired idempotence.
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EXQ PYTHAGORAS'S THEOREM

Show that
Iy IIP=] Y I + || ese |2

The data pointy is the hypotenuse of the right-angled triangle in
R" with the base of predicted/fitted values y and the altitude of
the LSE- residual e se. This is next illustrated in a Figure.
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By Courtesy of Puntanen, S. and Isotalo, J. and Styan, GPH:
Formulas Useful for Linear Regression Analysis and Related Matrix
Theory. In the Figure & < e g

Prediction space

Parameter space Data space

Figure 7.4 Geometric relationships of vectors associated with the multiple linear regression
model.
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PROJECTION GEOMETRICALLY FOR SIMPLE LINEAR
REGRESSION

In the next figure
C (1;x) + sp(X)
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PROJECTION GEOMETRICALLY FOR SIMPLE LINEAR
REGRESSION

Figure 8.3 Projecting y onto (1 : x).

From Puntanen S., Styan G.PH., Isotalo J.: Matrix Tricks for Linear
Statistical Models. Springer 2011.
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THE (ORDINARY) NORMAL MULTIPLE LINEAR
REGRESSION MODEL

where
g~ Nn <07 02Hn>

Then by known properties of the multivariate normal distribution

Y ~ N (xg, aQHn) (12)
and, since (62I,) "' = o2, and det 621, = 02"
i (y) = We—gzy—m? a13)
RTINS 1111101 Livens: Rormssio
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THE MAXIMUM LIKELIHOOD ESTIMATOR (MLE)

FOR NORMAL MULTIPLE LINEAR REGRESSION
MODEL 1

We have the —1. loglikelihood function

1
l, (,8,02) =—Infy(y) = gln(27r) + g |n(a2) + 5,2 ly — X3 H2

We choose 8 and o2 so that |, (3, 02) is minimized. The maximum

likelihood estimates BML and o), are found by computing the
gradient

T

Vi, (8,02) = (5%h (862 .. 5 (8.0%) . 5%, (8.6%)) . and
solving V1, (EML,aML) = 0y.0.
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MLE 2

n n 1
L (8.0%) = ~Infy(y) = 5In(2m) + 5 In(0?) + 55 ||y~ XB P
Forj=0,1,..., kit holds that
0 N1 9 , 1.0
ok (8:°) = 5,255 1Y = XBIP=5555Q0)

by (4). Hence BML can be found by solving first w.r.t. 8 the
equations

1
§V@(ﬂ) =0y

By expansion,
Q(B) =Yy -y'XB-8'X'y+8'X'X3. (14)
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MLE 2

Since y’X3 = 8'X"y we get

Q(B)=p'X"X38—-28"XTy +yy. (15)
Then : :
SVQ(B) =V |58'X'XB - p'XTy|.
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MLE 3

V%Q(ﬁ) =V %BTXTXﬁ —B'XTy| .

One checks easily that
VB'X'XB =2X"X3,vB Xy = Xy

Hence :
SVQ(B) =0, = X'xX8 =Xy

and, if X7X is invertible, 8,, = B = the least squares estimate.
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THE MLE FOR NORMAL MULTIPLE LINEAR
REGRESSION MODEL 4

Now one inserts 3 to get
~ n n 1
/y (,6, 0'2> = § |n(27T) + § |n(02) + @e[SEeLSE

0

r
eLSEeLSE
Oo? '

l, (,@, 02> =0« C/TEMLE = o

— T
The estimate oy = w is not used, since it is biased. For this
and other prpoperties of LSE in normal multiple linear regression

we need the notion of the true value of 3,
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THE True NORMAL MULTIPLE LINEAR
REGRESSION MODEL

€ € Nn (0, 0'2]1['))
Now we suppose that the exists an unknown 3, such that
Y=X3,+e. 16)

in the sense that 3, is the true value 8 in R, i.e., it underlies via
(16) the observed vector y, an outcome of Y.

Sounding
professorial
= docererande pa

_ svemska
8MPV uses the phrase ‘correct model’
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*

PROPERTIES OF 3: E [B} =0
We compute the expectation of B w.r.t. the true model in (16).
B=X"X)'XTY = (XTX) X (X8, +¢)

= (XTX)7'XTXB, + (X' X)"'Xe

Thus R
B =08, +XX)"Xe. an

Then by rules of computation with expectation vectors (see
Lecture 2.)

E[B| =8, +(XX)'XE[e] = 8.+ 0 = B..

,@' is unbiased J
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PROPERTIES OF (3: COVARIANCE MATRIX

5=02(X"X)"!
By definition:
cs=¢|(5-£[6]) (5-£[3)) |

But by the true model and preceding computations
B-E [B} =8, +(XX)'XTe - B, = (XX)'XTe.
Hence C; = E [(xfxwxfs (XTX)"1XTe) T}

= (X"X)"'X"E [Esq X(XTX)™
——
:Uzﬂn
=2 (XTX)IXTX(XTX)™! = 6?2 (XTX)!
~—_————
=l
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PROPERTIES OF (3

Since f-} is a linear transformation of the normal random vector Y:

B ~ Nyt (,8*, aQ(XTX)—1> .
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BIAS OF U2MLE

The residual vector e g is the outcome of the random vector
e=Y-XB
Then by (16) and (17)
e = XB,+e—XB
= XB,+e—X (B* + (XTX)—1XT5)
= (1= XX"X)7'XT) e
= (In—H)e. (18)
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Bi1AS OF U2MLE
Hence :
E |Pme] = €[4 =
= 1 TrE [E@T}
n
where we evoked rule 2. in Appendix C for Traces. In view of (18)

E[ee] = E [ - H)= (T - H)2)']| =

= (I, — H)E [557} (In — H)" = 02 (I — H) (I — H)T
——

:(72]In

We have (I, — H) =1, - H =1, - H
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BIAS OF U2MLE

E [EET} = 62 (Ip — H) (I, — H)
In—H)Tn—H) =Tn—-H-H+HH=T,—2H+H=T,—H
By property 3. in Appendix C and the rule C) above

TrE [zzq — o2Tr(Ip — H) = 02 (Trl, — TrH) = o2(n— k — 1).

and
E [@Te] —o2(n—k—1)

Hence
- 1

. T

is an unbiased estimator of 2.

- - = — Ty
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PROPOSITION

° Y ~ Ny, (XB*,(;?H). (19)
>}

&~ Ny (o,,, o2 (I — H)) (20)
Proof:

QO Y=HY= HX3, + He. By definition of the hat matrix
HXB3, = X3,. Hence E [\A(] = X3,. By the known rules
Cy = Ho’InH" = 0*HH' = 0®HH = o*H.

Since Y is a multivariate normal vector, the assertion in (19)
follows.
@ It has been shown in (18) that

/E\:(Hn*H)E
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Then the assertion about the dis’rrAibuTion of the LSE residualerna
follows as with the distribution of Y using the idempotency of

I, — H.

We see also that Y is unbiased in the sense that

E[\?] — E]Y].
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SUMMARY PART 2

Y ~ Ny (XB*,azH) : @1)
e~ Ny (o,,, o2 (Ip — H)) (22)
Iy 2= II” + || ese |17 (23)

esc=yY—-XB=y—Hy
— 1

:
o = K —T)eLsesis

C.f. s2when k = 1in Lecture 1
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APPENDIX B: CHECK 8 = (X"X)"'X"y IN THE CASE
k=1

1% T X

1 x

y= |2 x=] ® ,ﬂ:<ﬁ0>
: P B
Yn 1 Xn
n
XTX _ ( n Zi:'l Xi>
Sy Xi YLy X

By Cramers rule

_ 1 Zn X2 _Zn X
XTX) 1 = ( i=1% =1 /)
S S s (el S s
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APPENDIX B: CHECK 8 = (X"X)"'X"y IN THE CASE

k=1

1 (ZP:A Xi2
”Z/ X2 — (L xi)2 \ - iz Xi

We deal first with the determinant

det(X an - Zx, _n[Zx

(X7X)~"

= nz = NSxx

by the algebra in Lecture 1.
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APPENDIX B: CHECK 8 = (X"X)"'X"y IN THE CASE
k=1

Thus : ho ;
XTx)-1 — < i1 X~ i Xi) 24
( ) NSyx _Z?:]Xi n @D
Next
14
1 1 ... 1\|Iw Sy
on O
Y= % - x : Sy XiYi
Yn
o NT
Then with (50, 51) — (XTX)"'XTy
/EO _ ] <ZP1&Z?1XE—ZP1XI;P1XI)’/> (25)
B NSoc \ = iz Yid2oim Xi + Ny XiYi
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APPENDIX B: CHECK

_ AR RE D SRS D SRV
X" X)Xy = ( i=1 Y1 24i=17% =12 2 ai=1A1Yi
(XX Y= s, =Xyl X+ n ik xy;
Here

n n n n
ZV/ZX/Q —ZXIZXIVI
] nl:] i=1 /?1 i=1 . .
o[]S o3
i=1 i=1 i=1 i=1 =1

where by the identity from Lecture 1 noted above

n

n n n
= SXXZy,++n>‘(QZy,-— ZX/ZXU/"
i=1 i=1 =1

i=1

n n n
=Su Y _Vi+nX*> yi—nx> Xy
i=1 i=1 =
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APPENDIX B: CHECK
Contnd

n n n n
SxeViJrn)‘(QZy/— n)_(zxiyi = Sxxzyi‘i‘n)_(
i=1 i=1 i=1 i=1

n n
O ZXIY/]
i=1 i=1

n
= SXXZ Yi+ nx
i=1

n
nxy — ZXiyi]

i=1
n
= Sxx Z Yi— n)_(Sxy
i=1
by an identity established in Lecture 1. i.e.,

Zx,y, nxy = Z = Sy
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APPENDIX B: CHECK

W.r.t (25) we have at this point established

fo=— | Zn:y- nx$ Zn:y—sxy' y— 2x
0 — XX' I Xy i SXX - SXX

that is

~ Sy
XyX

— 26
o=y — S (26)

Next, from (25)

nSxx [ Zy,Zx,+an,V:] " NS« [ (i&y;—n?})]
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APPENDIX B: CHECK

Contnd, by an identity in Lecture 1.

1 Sxy
nSxx! (me nyX>] 5 [;x,y, ny><] =5

Hence we have
@7

which is the LSE for the slope in simple linear regression. When we
insert (27) in (26) we get

Bo =7 - BX, (28)

which is the LSE for the intercept in simple linear regression.
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APPENDIX C: MATRICES
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e Aand B conformal, (AB)T = BTA”. A and Binvertible,
(AB)~1 =B TA-T(AT) = A
e Aand B conformal, (A+ B)'= AT + BT

A is n x n and invertible.

() = ()

o Proof. AT (A=) = (A-1A)" =1 =1, and
(AN AT = (AA ) =1 =1,
Hence, as XX is k x k, and symmetric

(7)) = (X!
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FULL COLUMN RANK IMPLIES THAT X'X IS
POSITIVE DEFINITE AND INVERTIBLE

LEMMA

Let A be any n x (k + 1) matrix. If A has full column rank, then
AT A is symmetric positive definite.

Proof. Take any x € RK+1, Then x” ATAx = (Ax)" Ax =|| Ax ||2. The
squared norm || Ax || is = O if and only if Ax = 0,. We need fo
show that Ax = 0, if and only if x = 0, ;.

Let the k + 1T column vectors of the matrix A be denoted by
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FULL COLUMN RANK IMPLIES THAT X'X IS
POSITIVE DEFINITE AND INVERTIBLE

By definition of a matrix multiplying a vector, Ax is a linear
combination of its column vectors, i.e.,

Ax = xal® + xzqgc) + .. F xk+1af<i)]

But since A has full column rank, the column vectors are linearly
independent, and therefore a linear combination of them is 0, if
andonlyifx; =X =... =X =0. O
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TRACE OF A SQUARE MATRIX

Let A be asquare matrix. The trace Tr A of A is the sum of the
entries in main diagonal:

an - Qi
L A R Y
Tr| @ 0 1 =29
Q1 - Ok

The following facts are easily established; the proofs are left as
exercises:
o 1.If Ais a k x n-matrix, and B an n x k-matrix, then
Tr(AB) = Tr(BA)
e 2. In particular, if ais a column-vector, then a’a = Tr (aa’) .
e 3. aand b are real numbers, Tr(aC + bD) = aTr C + bTr D
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APPENDIX C: PROOFS OF THE STATEMENTS
ABOUT H

The rule (29), ((XTX)”)T = (X"X)~is applied.
A) HT :(X(XTX)JXT)T — (XT)T(X(XTX)J)T
— X(XTX)" )Y XT=X(X"X)"'XT = H
B) H2 = HH = X(XTX)~ ' XTX(XTX)~ 1 XT=
X (XTX)] (XTX) (XTX)IXT = X(XTX)~ ' XT = H.

=1
Note that XX is (k + 1) x (k + 1).
c) Set A= X(X'X)~1,B= X'. By 1. above in this Appendix,

TrH=TrAB=TrBA=Tr X' X(X'X)™' =Trl ., =k +1.
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APPENDIX C: GENERAL PROPERTIES OF
IDEMPOTENT MATRICES
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The only invertible idempotent matrix is the identity matrix 1. J

e Proof: Let A be an idempotent matrix. Assume that A~!
exists. By idempotency A2 = A. We multiply this by A~ to get

ATAZ - A TA-TL
But in the left hand side
ATAZ - A TAA = A

Hence A=1. ]
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APPENDIX D: AN EXPRESSION FOR SSges

Let us recall from Lecture 1 SSges, The Residual Sum of Squares
defined fork =1 as

n
SSres = Y (Vi — 91)°
i=1
The same definition is valid for any k > 1, and now we can write

n
SSes = > (vi— 9)° =Ily = Hy I>=]| y - XB |’= @ (B)
=1

In (15) we have

QB)=y'y-28"X"y + 8'X"X8.
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APPENDIX D: AN EXPRESSION FOR SSges

Hence r r N
SSkes = @ (B) =¥y~ 2B Xy + B X'XB

We rewrite the third term in the right hand side. As
B =(X"X)""XTy we have

XTXB = X"X(X"X)"' XTy = XTy.
~—_——

=l
Hence B’ X"X8 = B’ XTy and we have in (30)

SSres = Q(B) =¥y - B'X'y
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APPENDIX D: AN EXPRESSION FOR SSges

SSres = Q(B) =¥'y — B'XTy @3

This expression will turn out to be very useful in the sequel, e.g.. in
Lecture 6.
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