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LEARNING OUTCOMES

@ Random vectors, mean vector, covariance matrix, rules of

fransformation
e Multivariate normal R.V., rules of transformation

e Density of a multivariate normal RV

e Joint PDF of bivariate normal RVs

e Conditional distributions in a multivariate normal
e Joint PDF of normal RVs distribution

e Maitrix algebra related to Multivariate normal R.V.

e Standard normal R.V., Rules of transformation,
e Simple Linear Regression by Random vectors, Likelihood
e Diagonalization of a Covariance Matrix
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PART O: Euclidean Vector Space R”, Matrices
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LINEAR ALGEBRA

REMARK

These lectures/this course are/is heavily dependent on
application of matrix calculus in Euclidean vector spaces. There
is a four page matrix calculus Appendix C.1-C.3 in MPV. A more
comprehensive presentation and refresher (with several proofs) is
Chapter 2in

Rencher, Alvin C and Schaadlje, G Bruce: Linear Models in
Statistics, 2008, John Wiley & Sons

The results on symmetric, non-negative definite and idempotent
matrices and distributions of quadratic forms found in this book
are especially useful. Linear Models in Statistics is digitally
available via KTHB.

TiMO KOsKI (KTH, DEPT. MATHEMATICS) MULTIVARIATE NORMAL DISTRIBUTION 19-01 2023 4/117



REMARK

Random Vectors and Multivariate normal distribution are
freated, e.g., in Chapters 3 and 4 of

Rencher, Alvin C and Schaalje, G Bruce: Linear Models in
Statistics, 2008, John Wiley & Sons

and in Chapter 5 of

Gut, Allan:An Intermediate Course in Probability. Second Edition,
Springer, 2009

The statements in this lecture 2 are proved by means of moment
generating functions (c.f. the references above) and are
omitted, for reasons of time budgeting, here.
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NOTATION : EUCLIDEAN VECTOR SPACE R"

X1, Xo, . .. Xp IS AN n-tuple of real numbers. Then we write
X
Xo T
x=| | eR” x'=(x,%,...X) € R"
Xn
Such x is said to be a n x 1 vector. x” is times a 1 x n vector, the
transpose of x.
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A REFRESHER ITEM: EUCLIDEAN VECTOR SPACE

R", SCALAR PRODUCT, NORM, DISTANCE

A Euclidean vector space is a finite-dimensional inner product

(scalar product) space over the real numbers. For x € R” and

y € R", the scalar product x’y is defined as

n
xy = ZX/')/:'-
i=1

Y
) 2)
Xy = (x1,%,...x3) | )

Yn
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A REFRESHER ITEM: EUCLIDEAN VECTOR SPACE
R", SCALAR PRODUCT, NORM, DISTANCE

o
n n
xTy = inyi = Z yiXi = y'x
i=1 i=1
o
X (y1+y2) =xy1 + Xy,
]

x'x >0 ifx # 0p=the n x 1 vector with all n components = 0,
x'x=0 ifx=0,
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Show that it follows from the preceding that

(Y1 +¥2) X = y{x +ylx ]
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ORTHOGONAL AND ORTHONORMAL VECTORS IN

THE EUCLIDEAN SPACE R":

DEFINITION
x € R" andy € R" are called orthogonal, if

x'y =0.

DEFINITION
A set of vectors {e;}¢, is said to be orthonormal, if

1 ifi=]
T 9
e e =

= {o ifi < J.
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Ifx e R" andy € R" are orthogonal, then

Ix =y PP=ll x| + ||y |17

Please check this! )
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THE STANDARD BASIS OF VECTORS IN THE
EUCLIDEAN SPACE R":

1 0 0
¢, =|of ... e¢=|1] ... e=]0
0 0 1

is an orthonormal set of vectors in R” known as the standard
basis of R". This means that every x € R can be uniquely written

as
n
x=>Y c¢,
=1

where ¢; = x’¢;.
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A REFRESHER ITEM: EUCLIDEAN VECTOR SPACE
R", NORM, DISTANCE

We have also a norm || x || in R" defined by

n
I x )= Vxix= |3 x?
i=1

This norm gives a distance (i.e., a metric) between x and y by

Ix=y = > iy

i=1

‘|X||2:O<:>X:0n & ||X—y||:0<:>x:y
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NORMS

REMARK

To be mathematially precise we are actually here dealing with
the so-called - norm || X ||» on R". There are other known norms,
like || X ||lso= max; |X| or the lp-norm || X ||p= (X7, \x,-]p)vp, p>1.
The norm || X || will appear in the regression with Lasso. But since

there is at the moment no risk of confusion, we stay with the
simpler notation, i.e., || X ||.
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MATRIX ADDITION

Ais an m x nmatrix and Bis an m x n.

an O - Qg by by - by

Qy QO -+ Opp by by -+ bgp
A= , , _ ] , B=

Gm 9mz2 -+ Omn bm brp -+ bmn

The matrix sum A + Bis

app+by apt+biy - Ot bip

Qo1+ b1 Qx4+ by -+ Qpp+ bop
A+B= , , . )

Am +bm1 O +bp2 -+ Omn+ Bmn
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MATRIX MULTIPLICATION

Ais an m x n matrix and Bis an n x p, we say that A and B are
conformable for the multiplication AB.

a;p O -0 Qg by, by - bip
A Qp1 QO - O.2n B b.2] by - bop
Am Om2 9mn by br - bpp
The matrix product C := ABis defined to be the m x p matrix
Cn Ci2 -+ Cip
Cc_ C?1 Co Cl2p
Cm Cm2 Cmp

where Cj= CI,']b]j + O/2b2j
TiMoO KosK1 (KTH, DEPT. MATHEMATICS)
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MATRIX MULTIPLICATION

l.e., the entryc; of C is found by calculating the scalar product
of the ith row vector of A and the jth column vector of B.
Therefore, C = ABis

ap by +--+aipbm - anbip -+ Qipbnp
C= , . , M

Ambi +-+ Amnbpr -+ A bip+ - + Amnbnp
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MATRIX MULTIPLICATION: A SPECIAL CASE

V1
. ) i
X'y = (%1, %, ... xn) | " => XY
- =1
Yn

TiMO KOsK1 (KTH, DEPT. MATHEMATICS) MULTIVARIATE NORMAL DISTRIBUTION 19-01 2023 18/117



MULTIPLICATION BY A SCALAR

Can Cdy;p - COa1n

CQa9 Cdyy .- CQon
CA = _ ,

Cam CAmp -+ COmn
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MATRIX MULTIPLICATION: XX’

Xis an n x 1 vector (matrix), x"is 1 x n. Then xx" isby (1) an n x n

maftrix
Xy X2
T X9 X X1
XX = (X]>X25 aXn) = .
Xn XnX1

X1Xo X1Xn
2
X XoXn
? @
XpXp - Xr%

The frace of a square matrix A, denoted by Tr A, is the sum of its

elements of the main diagonal. Hence
Trxx’ = x"x
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MATRIX MULTIPLICATION: Y = AX

X dnn dpp -+ Qip

X0 a1 dpp -+ Qop
X = A= .

Xn 9m 9m2 -+ dmn

anXxy + -+ OipXn
021X + -+ + QopXn
y=AX = )
OmX1 + -+ OmnXn
y is an m x 1 (matrix) vector.

By = BAX, A(X; +Xp) = AXj + AXy
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THE n x N IDENTITY MATRIX

10 O 0
: 01 0 0
"“lo o 0

00 O 1

Inx=x, I,A=A if Aisconformable
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A SYSTEM OF LINEAR EQUATIONS

The general form of a system of linear equations is
anxy + -+ OipXn = by
Q21X1 + - + QopXn = D2
Am1X) + -+ + AmnXn = bm

The system is by the multiplication rule above equivalent with the
single matrix equation

Ax = b.
If m= nand A has aninverse matrix A=, i.e., ATA= AA~ =1,
then
x=A"b.

TiMO KOsKI (KTH, DEPT. MATHEMATICS) MULTIVARIATE NORMAL DISTRIBUTION 19-01 2023 23/117



MATRIX TRANSPOSE: AT

an ap - Onp
Q1 G -+ Qo

A= , , . , mxn
9m 9m2 -+ dmn
an a1 - dm
Qi G -+ Opp

Al =1 - _ nxm
Oin Qon -+ Omn

(AB) =BTAT, (A+B) =A"+8.

By conformability: ATAis nx nand AAT is m x m.
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SYMMETRIC MATRIX

DEFINITION
A matrix A is said to be symmetric, if

AT = A
EXAMPLE
Any diagonal matrix
d 0 0 . 0
O o 0 . 0
Dn — . (5)
0 Lo 0
O 0 0 ... gy

is clearly symmetric. A special case: 1, in (4).

v
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INVERSE OF DIAGONAL MATRIX

EXAMPLE

If all elements d; on the main diagonal of a diagonal matrix Dy,

are positive, then the inverse D, 1 exists and is a symmetric matrix
given by

1/ch O 0 .. O
0 1/d, O ... 0

DF,]: / 2 ' (6)
0 . Lo 0
0 0 0 .. 1/d

Easy to check: D;'D, = DpD;' =1,
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A MATRIX OF USEFULNESS/IMPORTANCE IN
REGRESSION ANALYSIS

Let us define the n x n matrix Cee by

1 1

Cee ;:]1,,—51,,1[, where 1, := %)

Note that as a special case of (2)
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THE CENTERING MATRIX (IS OF

USEFULNESS/IMPORTANCE IN REGRESSION
ANALYSIS)

¥ _ 15N - Ty — §N
Take an nx 1 vectorx. x = =%, x;. Then, since 1,x =3 ;" X;,

1 X]—)_(

1 T _ 1 XQ—)_(
Ccex:HnX*Eln]nx:X*X (8)

1 Xn — X

Thus C.e does a centering of x.
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EXQ: SYMMETRY AND IDEMPOTENCY OF Cce

DEFINITION
An n x n- matrix A is said fo be idempotent, if

A2 = AA=A

Show/check that
o Cqe Is symmetric.
o C.c isidempotent.

To check that Cee is symmetric should be easy. For idempotency,
note that 11, = n.
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ORTHOGONAL PROJECTION

DEFINITION
lan nx n-matrix A is
e symmetric.
e and idempotent,
then it called an orthogonal projection matrix

An orthogonal projection matrix splits R" info a direct sum of two
subspaces, its range space and its null space.

v
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A QUADRATIC FORM

Since Cce is idempotent and symmetric,
XTCCeX = XTCCeCceX - XTCLCceX = (Ccex)TCcex.

The scalar product (CeeX)’ CeeX is by (8) equal to nothing else
but

n
X CeeX = (CeX)' CeeX = > (X — X)?
=1
The right hand side is = Syx in Lecture 1. Hence, we get also in
Lecture 1

n
XTCcey = (Cex)rccey = Z(Xi —X)(Vi— V) =Sy

i=1
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Recall the total variation SSr in the Fundamental Analysis of
Variance Identity in Lecture 1. SSy is by the above also a
quadratic form

n
SSr = Z(yi - )_/)2 = YTCcey
i=1
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Alis an n x p matrix. Then ILA is 1 x p vector given by the rule (1)
as

n n n
VA=Y an,> ap...> ap
j=1 j=1 j=1
which contains the column sums of A. The maftrix Al is nx 1 and

E,::] el
>ojm1 O
A]p _ J .] J
pRyiyer

contains the row sums of A.
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ORTHOGONAL MATRIX

DEFINITION
An n x n matrix A is called orthogonal, if it holds that

ATA = AAT =1,

This means that the column vectors in A are orthogonal.
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PART 1: Mean vector, Covariance matrix, Rules of
Transformation
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VECTOR NOTATION: RANDOM VECTOR

A random vector X is a column vector
X=| " |=0X%,....X)"
Xn

Each X; is a random variable.
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A VECTOR OF SAMPLE VALUES

X
Xo T
X = : = (X1, X0,...,Xn)

Xn

We have now x; as a notation for an outcome of X;' and x as an
outcome of X. Marginal cdf (=cumulative distribution function)

Fx.(x)) = P(X; < x;). Of course, x designates also a generic vector
used for mathematical computation.

"MVP makes no distinction here. x is sometimes a sample vector, sometimes
a random variable.
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JOINT CDF, JOINT PDF

The joint cdf (=cumulative distribution function) of a continuous

random vector X is

Fx (X) = Fx,..x, (X1, ., Xn) = P(X < X) =
= P(X] S X])"'aXn S Xn)
Joint probability density function (PDF)

an
fx (X) = m/:xl ,,,,, X, (X1, .., Xn)
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MEAN VECTOR

1 E[Xi]
E[X
P R IV B )
in E [X0]

a column vector of means (=expectations) of X, u; = E[X]].
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MATRIX, SCALAR PRODUCT

If X" is the transposed column vector (i.e., a row vector), then, by
@

X2 X1)2(2 e X Xn
XoXe X5 - XoX
xx = | 0Tt ©

is an n x n random matrix, and the scalar product,
n
XX =3¢
i=1
is a real valued r.v..

TiMO KOsKI (KTH, DEPT. MATHEMATICS) MULTIVARIATE NORMAL DISTRIBUTION 19-01 2023 40/117



MATRIX, SCALAR PRODUCT

By (9) the random matrix (X — ) (X — p)  is

Xy — 1) X1 — 1) (X —p2) - (X — 1) (Xn — pn)
(Xo — p2) (X — 1) (Xo — pg)? o (Xe = p2) (X — pn)
G i) (5 — ) 1)Ko —pi2) (X o)
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COVARIANCE MATRIX OF A RANDOM VECTOR

Covariance matrix (also denoted by Cy)
C = E[(X— ) (X~ )]
where the array in position (i, ) is

cj=E[(X — ) (5 — )]

is the covariance of X; and X;. The variances of the components
of X are the elements on the main diagonal, i.e.,

ci = E (X — wi)?| = var(X) = of.
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COVARIANCE & NON-LINEAR DEPENDENCE

The converse implication is not frue in general, as shown in the
next example.

Let X ~ N(0O, 1), the pdf of N(0, 1) is denoted by ¢(x). Set Y = X2.
Then Y is clearly functionally dependent on X. But we have

cmWXquEKX-ny-ﬂxypr:EVﬂ-O-Ew]

:EVﬂ:Q

The last equality holds, since one has g(x) = x3¢(x). so that
g(—x) = —g(x). Hence E [X3] = [7> g(x)dx =0, c.f., (15) in the
sequel, too.
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PROPERTIES OF A COVARIANCE MATRIX

e Covariance matrix is nonnegative definite, i.e., for all x we

have
x'Cx>0

Hence
det C > 0.

o The covariance matrix is symmetric
c=cC_

e It can be shown: every symmetric nonnegative definite

maltrix is a covariance matrix (for somne random vector). See

later,
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PROPERTIES OF A COVARIANCE MATRIX

The covariance maitrix is symmmetric

c=C"
since
Cj = E[(Xi = mi) (X = )]
= E[(X — 1) (X — )] = G
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PROPERTIES OF A COVARIANCE MATRIX

A covariance matrix is positive definite, if

x'Cx>0
holds for all x # 0. Then
detC >0
(i.e. Cisinvertible).
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PROPERTIES OF A COVARIANCE MATRIX

PROPOSITION

x'Cx>0

Proof.
n n
x'Cx =3 % xxcj= ZZXIXJ (Xi = i) (% = )]
i=1 j=1

=x'E [(X— ) (X = 1) ] x
—F [xT (X — px) (X — MX)TX} —F [XTW : wrx}

where we have set w = (X — ux). Then by x’'w = wix = 37, wix;,

E[X'ww'x| = £ Kf; w,-x,-) 2] >0
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PROPERTIES OF A COVARIANCE MATRIX

n,n,

In terms of the entries ¢;; of a covariance matrix C = (c,-j),.:] -1

there are the following necessary properties.
Q c¢j = cj (symmetry).
Q cj=Var(X) = 0,2 > 0 (the elements in the main diagonal are
the variances, and thus all elements in the main diagonal
are nonnegative).

@ cj < ¢ - ¢; (Cauchy-Schwartz’ inequality).
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COEFFICIENT OF CORRELATION

The Coefficient of Correlation p of X and Y is defined as

 Cov(X.Y)
PXY = Nar(X) - Var(Y)’

where Cov(X,Y) = E[(X — ux) (Y — ny)]. This is normalized

pi=

—1<pxy <1

For random variables X and Y,

@ Cov(X,Y) = pxy = 0 does not always mean that X, Y are
independent.

® pxy =pyx!
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SPECIAL CASE: COVARIANCE MATRIX OF A
BIVARIATE VECTOR

X = (X1, %)".

o2
o < T ) |
po10y 05
where p is the coefficient of correlation of X; and X,, and
02 = Var (X)), 03 = Var (X,). Cisinvertible iff p> # 1, fo see this we
note that

det C = 01205 (1 - p2>
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AN EXAMPLE OF A COVARIANCE MATRIX

EXAMPLE
I, is the n x n identity matrix, see (4). 1, is a symmeftric and
positive definite matrix, hence

I, is a (diagonal) covariance matrix. 10)

It is the covariance matrix of X = (X1, Xo, . .. ,Xn)T, where the
component r.v.'s are pairwise uncorrelated and Var[Xj] = 1 for
every .
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SIMPLE LINEAR REGRESSION MODEL IN MATRIX
FORM

The simple linear regression model equations for the fraining set
Yi=pi+ei=pF+bX+e, =1,....n

are usefully written in matrix terms. Set

Y, 1 X
Y. 1 X

v=| *|.x=] . 7 ’g:(%)
: : B
Yn 1 Xp

nx 1-vector, n x 2 - matrix, 2 x 1 -vector. The simple linear
regression is now given as

Y=X3+e¢,
where e = (eq,. .. ,sn)T is N x 1 random vector,
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THE ASSUMPTIONS OF THE SIMPLE LINEAR
REGRESSION MODEL

Y=X3+e.

1) Correct: E [e] =0, (= the n x 1 zero vecton), i.e., 0, € R".
2) Uncorrelated The covariance matrix C, of e = (g7, ... ,an)T is

CE = 0'2]11’7

The identity matrix I, as defined (4).
3) Homoscedastic e: o2 does not depend on X
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COLORED NOISE

Y=XB+e.

1) Correct: E[e] = 0, (=the n x 1 zero vector), i.e., 0, € R".
2) Correlated The covariance matrix C, of e = (g7, .. ., an)T is

CE - ]D)n.

where Dp is a positive definite matrix.
3) Homoscedastic Variance of ¢ does not depend on X
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THE ASSUMPTIONS OF THE SIMPLE LINEAR
REGRESSION MODEL

y=X3+ec¢.

4) As discussed in the first lecture, 1) X can be a designed
matrix, and is then not a r.v.. Or, 2) X contains the observed
values (x, ..., Xp) of a covariate/predicting variable. This
means in particular that there is no measurement error in the
covariate x. Theoretical regression line represents in general
an approximation E[Y|X = (xi,...,Xn)’].
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COMPUTATION RULES

PROPOSITION

Y and X are random vectors, py = E Y], ux = E[X], X has
covariance matrix Cyx, A and B are m x n matrices. a and b are
vectors of suitable dimensions. Then we have

o
EX+Y] = px + py an
oZ=AX+b,
E[Z] = Aux + b, (12)
C; = ACKA. (13)

e Cx=E [XXT] - ,uxu)T(
e Var [a’X] =a’Cxa
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VARIANCE OPERATOR OF MVP

The rule (13) above, i.e.
Cz = ACAT.
is in MVPE p. 580, 4. of C.2.3, written as
Var (Z) = ACKAT,

where Var (Z) is called a variance operator. This notion is not
found in the INDEX of MVP and it is perhaps not really defined in
the text, c.f., p. 80.
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WE CONTROL ONE OF THE RULES ABOVE

C = E[XXT] — pp'. By definition and maitrix rules
C= E[(X—u)(x—u)q = E[XXT—XuT—uXT+uuT

(Note that all matrices in the right hand side are n x n, and
hence matrix addition is defined.) Now use the rules (11) and
a2

= EXT] - EPg T — wE [XT| +papd”

_ S——
—E [XXT} — .

This is clearly a matrix version of the univariate formula:

E[(X — px) (Y = py)] = E[XY] — pxpy.
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COMPUTATION RULES

PROPOSITION

X is a random vector, uy = E [X], with the covariance matrix Cx,
For A is n x n matrix. Then we have

o E [XTAX] = tr (ACx) + puyApx. where tr(B) = 37 by
(=frace of B) is the sum of the enfries on the main
diagonal of a square maitrix B.
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COMPUTATION RULES: PROOF OF C; = ACKA',
WHERE Z = AX+b

By definition, C; = E [(Z —E[Z))(Z - E[Z])T]. By (2), E[Z] = Aux + b,
and thus

Z-E[Z]=AX+b— (Auyx+b)=A(X— py).

This gives
Cr = E[AX = 1x) (A(X = 1)) | = E [AX = i) (X = )| AT

= AE [(X = ) (X — )| AT = ACKAT.

TiMO KOsKI (KTH, DEPT. MATHEMATICS) MULTIVARIATE NORMAL DISTRIBUTION 19-01 2023 60/117



DIAGONALIZING COVARIANCE MATRICES

If Cis a covariance matrix, then there exists an orthogonal matrix
P such that
PTCP =D, (14)

where D is diagonal (with the eigenvalues of C on the main
diagonal®). Suppose X has mean 0 and covariance matrix C.
Then if Y = PTX, Y has mean 0 and covariance matrix D, i.e., the
components of Y have zero means and are pairwise
non-correlated.

°The eigenvalues of a covariance matrix are non-negative, see Appendix
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REMARK: EVERY SYMMETRIC AND NONNEGATIVE
DEFINITE SQUARE MATRIX IS COVARIANCE MATRIX

Let ¥ be an n x n symmetric and positive definite matrix. Then ¥
can be Cholesky factored to a lower triangular matrix A such
that

¥ = AAT.
Take a random vector X with I, as covariance matrix. Set
Y = AX. Rule (13) for computation of covariance matrices of
linear tfransformations yields that

Cy = ACYAT = AIL,AT = AAT = 5.

A matrix is a Cholesky factor for a covariance matrix if and only if
it is lower triangular, the diagonal entries are positive,
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PART 2: THE MULTIVARIATE NORMAL
DISTRIBUTION

We recall first some of the properties of univariate normal
distribution. Most of the facts on multivariate normal distribution
stated below are found with proofs in chapter § of Gut, Allan: An

Intermediate Course in Probability. Second Edition Springer,
20093

3You do not need these proofs in Gut loc.cit to pass this course. It is only the
statements that count. But there are other proofs needed.
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NORMAL (GAUSSIAN) ONE-DIMENSIONAL RVS

e X is a normal random variable if its pdf is

() = ——e m2

oV 2w

where pisrealand o > 0.
e A symbolic shorthand notation: X ~ N(u, o?)
e Properties: E(X) = u, Var(X) = o2
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CENTRAL MOMENTS NORMAL (GAUSSIAN)
ONE-DIMENSIONAL RVs

X ~ N(0,0?). Then
E[X”]—{ 0 nis odd

G2 ok, k=0,1,2,... (15
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LINEAR TRANSFORMATION

@ X ~ N(ux,0%) =Y =aX+b~ N(aux + b, a°c?)
e Thus Z = X2 . N(0, 1) and

ox
P(XSX):P(X—MX <x—ux)

ox 0¥

or
X — X —
Fx(x)=P(z2<Z=EX) — ¢ a2
ax ax
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MULTIVARIATE NORMAL: DEFINITION

DEFINITION

|
An n x 1 random vector X has a (multivariate) normal distribution

iff for every n x 1-vector a the one-dimensional random vector
a’X has a normal distribution.

We write X ~ Nj (1, C), when p is the mean vector and Cis the
covariance matrix. Mean and covariance matrix, when they
exist, do not in general determine the joint distribution of a
multivariate r.v.. However, a normal random vector X is
completely determined by . and C.
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PROPERTIES

An n x 1 vector X ~ N (u, C) iff the one-dimensional random
variable a’X has a normal distribution for every n-vector a.

Now we know that (tfake A = a’ and note the fransformation
rules above )

E [OTX} =a’p, Var [GTX} =a'Ca

Hence
a’X~N (aTu, aTCa)
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PROPERTIES

Let D be a diagonal covariance matrix with o?s on the main
diagonal, i.e.,

0—12 0O O 0
0 a% 0 0
D= 0 O a§ 0 |,
0 : 0
0O 0 O o?
PROPOSITION
IfX ~ Np(u, D), then X, Xo, ..., Xy are independent real valued

normal variables, X; ~ N (u;, o?).
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FURTHER PROPERTIES OF THE MULTIVARIATE
NORMAL

X~ Nn (H) C)
@ Every component X is one-dimensional normal. To prove
this we take the orthonormal basis vector
¢ =(00,.... 1 ,0,...,0)
position k

and the conclusion follows by Def. .

o Xy + X5 + -+ Xn is one-dimensional normal. Note: The terms in
the sum need not be independent.
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PROPERTIES OF THE MULTIVARIATE NORMAL

X~ Np (s, C)

e Every marginal distribution of k variables (1 < k <n)is
normal. To prove this we consider any k variables X; , X;, ... X;,
and then take asuch that g; = 0 forj # iy, ..., and then
apply Def. I.
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PROPERTIES OF MULTIVARIATE NORMAL

PROPOSITION
X~ Nn(p,C) and¥ = BX+ b, Bism x n. Then

Y ~ Np (Bu+b, BCBT). (16)
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DIAGONALIZING COVARIANCE MATRIX AND
MULTIVARAITE NORMALS

If X ~ Np(0,C) and Pis as in (14). Then if Y = PTX, we have that
Y ~ Nnh(0,D).

In other words, Y is a normal vector that has independent
components ~ N(0, A;). This frick has several important
applications, e.g., for heteroscedastic multiple linear regression.
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MULTIVARIATE NORMAL: JOINT PDF

DEFINITION

A random vector X with mean vector u and an invertible
covariance matrix C is Ny (u, C). iff its joint pdf is

1 1 T
— —5(X—p) C 1 (x—p)
e 2 17
(27)"/2, /det(C) (7

It can be shown that this definition and the definition given first
(which does not require an invertible covarionce matrix) are
equivalent, as soon as the covariance matrix is invertible.

fx (X)
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MULTIVARIATE NORMAL

It can be checked that

e 23— CTI (X1 gy — 1.

1
//?n (2m)n/2, /det(C)

For aid on this, see EXQ in one of the Appendices below.
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STANDARD NORMAL VECTOR: DEFINITION

I, is the n x nis a covariance matrix, as pointed out in (10). Then
Z ~ Np(0,I,) is called a standard normal vector. When we insert
C =1,in (17) above we get, as ;' =1,

1 ef%(sz)TH;] (z-0) _ 1 —127z
(2m)"/2, /det(I) (2m)n/2

fz(2) =

1
(27)"/2

n
e 3mZ — H ] o 1%

which is a product of n pdf’s for i.i.d. Z ~ N(O, T).
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RULE OF TRANSFORMATION OF A PDF

PROPOSITION
If X has the joint density fx (X)., Y = AX+b, and A is invertible, then

1

N(Y)= fo

(A* (y - b)) (18)

V.

This is an example of the rule for fransformation of variables in a
pdf, see Thm 2.1., p. 21 in the book by Allan Gut, mentioned in
one of the first slides. A proof, is necessary here, is sketched in an
Appendix.
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MULTIVARIATE NORMAL AND SIMPLE LINEAR
REFRESSION
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SIMPLE NORMAL LINEAR REGRESSION

Recall

12 T X

X;
S R B e AR

: : B

Yn 1 X
and

Y=XB+e¢, ae

where € = (¢1,...,2n)". We add a fourth assumption to the three

model assumptions above: e ~ Nj (0, ozﬂn). Then (19) is simple
normal linear regression model in matrix form.
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SIMPLE NORMAL LINEAR REGRESSION: JOINT
DENSITY OF €

Lete ~ Np (0, az]In>. This we can represent € as 9 51,
Z~ Np(0,I5). Take A=ol,and X =Z and Y = e. Then (18) yields

1 1 _ 1 el
f.e)= ——Ff(oc 'e)= e 22°%°
(®) = Getoln | (o7 e) 2m)72 [detoln |©

Here | detol, |= o™, a known rule for the determinant of a
diagonal matrix. Hence one gets

f.(e) = #e‘ﬁere (20)
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SIMPLE NORMAL LINEAR REGRESSION: JOINT
DENSITY OF Y

We apply (18) withY = X3 + ¢, f., thatis, X =¢, A =1, and
b = X0, det A = detl, = 1. Then equation (18) gives,
1
N(Yy) = mfs (y — XB)
@2n

_ 1 — L (y-XB) (y-XB)

U”(27r)”/26 202 7
_ 1 — L lly-XBl?
= O'n(27r)n/2 e 252

When this is compared with the pdfin (17), one sees that
Y~ No (X8,0°Tn) .

which, of course, agrees with (16) .
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SIMPLE NORMAL LINEAR REGRESSION: JOINT
DENSITY OF Y

Y ~ N (xg, 021[,,) 22)

REMARK |
As far as this lecturer can see, (22) is nowhere to be seen in MVP

Of course, MVP does not maintain mulfivariate the normal
distribution exceptin the case n = 2.

The statement in (22) and its derivation hold even for multiple
linear regression,.where X isn x k+ 1 (herek =1) and 3 is
k+1xT1.
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MAXIMUM LIKELIHOOD ESTIMATE (MLE) OF 3 IS
LSE ofF 3

Next the least squares criterion in simple linear regression is equal
to (recall x™x =|| x ||°= 31, x?).

n

QBo, B1) =D (Vi — Bo— Bix)> =l 'y — XB |2

i=1

Hence (21) with k = 1 defines the likelihood function

1 -1 Q(B,
Ly(8) = on(2myz° 22 o) (23)

For k = 1, minimization of (g, £1) equivalent fo maximization of
Ly(B) (Here one is to estimate o2, but this does not change the
MLE of 3).
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PART 3: MULTIVARIATE NORMAL: THE BIVARIATE
CASE
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MULTIVARIATE NORMAL: THE BIVARIATE CASE

As soon as p? # 1, the matrix

C:< 0'12 pO']UQ)
pPo102 O’%

is invertible, and the inverse is

o1 1 ( o2 —poyoy >
01205(1 —p?) \ —poyo2 012
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MULTIVARIATE NORMAL: THE BIVARIATE CASE

X = (X1, X)" is bivariate (n = 2) normal No(p, C), g = (1, 1)
Assume p? # 1. Then X has the PDF

i (X) | o dxemcm)

- 2mvdet C

= ] e_%C(XhXQ)’
2wo09y/ 1 — p?

where
C(xy,Xx) =

- _]pz) . [<X1 ;M])Q ~ 2p(x —5]132)(2 —h2) | (Xz ;2#2>2]

For this, invert the matrix C and expand the quadratic form !
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Fig. 2.2: Density functions of a two-dimensional normal distribution for uncorre-
lated factors, p=0, with gy =2 =0, 0y = 13, ;p = 1)
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CONDITIONAL DENSITIES FOR THE BIVARIATE
NORMAL

Complete the square of the exponent to write

fx.v(X,y) = fx(X)fyx(¥)

where

1 —%(X—m)z
fy(x) = e 1
x(X) =

1 *%(V*ﬂz(x)y

fyx(y) = P

y oo 3
fio(X) = po + P;](X — 1), 60 =00/ 1 = p?
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BIVARIATE NORMAL PROPERTIES

> E(X) = J

) Given X = x, Y has a univariate normal distribution J

) Conditional mean of Y given X = x:

fin(X) = p2 +pj—f(x—m> = E(Y|IX =x)

) Conditional variance of Y given X = x:

Var(Y|X = X) = o2 (1 - p2)
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BIVARIATE NORMAL PROPERTIES

@ Conditional mean of Y given X = x:

. o
fio(X) = pp + Pf(X —m) = E(Y|X =X)
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BIVARIATE NORMAL PROPERTIES

@ Conditional mean of Y given X = x:

~ g

fia(X) = po + Pf(X —m) = E(Y|X =X)
© Conditional variance of Y given X = x:

Var(Y|X = X) = 03 (1 - ,02>
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BIVARIATE NORMAL PROPERTIES

@ Conditional mean of Y given X = x:

~ g

fio(X) = pg + Pf(X —m) =E(Y|X =X)
© Conditional variance of Y given X = x:

Var(Y|X = X) = o2 (1 - p2)

l.e., the conditional mean of Y given X in a bivariate normal
distribution is also in the mean square sense the best LINEAR
predictor of Y based on X, and the conditional variance is the
variance of the estimation error. C.f., the theoretical simple
regression line in Lecture 1.

o
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REGRESSION IN BIVARIATE NORMAL R.V.S IS
SYMMETRIC

Of course, the conditional mean of X given Y in a bivariate
normal distribution is also a linear predictor, the preceding
computation can be exactly repeated with fyy. You can just as
well predictY by X as X by Y.
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A QUOTE. GORROOCHURN, P.: ON GALTON’S
CHANGE FROM “REVERSION” TO “REGRESSION”,
voL. 70, 3, 227—231, THE AMERICAN
STATISTICIAN, 2016

irefutable confirmation needed a proper mathematical analy-
s, a sk that Galton thought was beyond his analytical skill.
Therefore, he solicted the help of the able mathematician |.
Hamilton Dickson. In modern mathematical language (this i
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A QUOTE. GORROOCHURN, P.: ON GALTON’S
CHANGE FROM “REVERSION” TO “REGRESSION”,
voL. 70, 3, 227—231, THE AMERICAN
STATISTICIAN, 2016

tace of frequency of p’ (Galton 1886), Dickson was provided with
the information that Y ~ N(0, 67) and X|Y ~ N(Bxv, dﬁ%’lﬁ’ ¥
and was asked the following questions:
1. What is the joint density of (X, Y) , and what is the shape
of the contours of equal probability density?
How can the regression coefficient Sy|x be calculated?
What is the density of Y given X?

. What is the relationship between fyx and Bxy?

D1ck50n answered each of the above questions without much
trouble, and the solution was published as an Appendix to Gal-
ton’s (1886) paper “Family Likeliness in Stature” In modern

e
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That is, the maths we are handling here is dated back to 1886
and is due to James Douglas Hamilton Dickson (1849-1931), a
Scottish mathematician and expert in electricity... in-depth
knowledge in fields of electricity and electrostatics and also a
great interest in low temperature physics. (according to
Wikipedia)
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Fig. 2.3: Density functions of a two-dimensional normal distribution, p = 0.8,
p=p=00=0=10
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Fig. 2.4: Density functions of a two-dimensional normal distribution, p = 0.8,
p=pa=0,0=0y=10

TiMO KOsKI (KTH, DEPT. MATHEMATICS) MULTIVARIATE NORMAL DISTRIBUTION 19-01 2023 97 /117



PROOF OF CONDITIONAL PDF

Consider
y(6Y) _  oV2r aQ0 g temy
fx(x) 2no109y/1 — p?
where : :
__ VR
2C(X7 y) + 20_]2()( M])
—LHexy)
- 2 7y )

where (next slide)
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PROOF OF CONDITIONAL PDFs

H(X7 y) =

[ (X—m>2 _ 20— )y = p2) | <Y— uz)z
2
(1—p?) o 7102 72
(X 2
op
Here we see: p = 0 < bivariate normal X, Y are independent.
H(x,y) can be rewritten as
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PROOF OF CONDITIONAL PDF

H(X7 y) =
PP (x=m) 2p(x—m)(y — ) | (v — 1)
(1-p%) o2 a10o(1 — p?) a3(1 = p?)

and we get
2
(y— po — p2(X — m))
a3(1 = p?)

H(Xv y) =
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CoONDITIONAL PDF

1 (yfugfpg%(xfm))z
B fX,Y(X7 y) B 1 2 ag(W—PQ)
=00 T T e

This establishes the bivariate normal properties claimed above.
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BIVARIATE NORMAL PROPERTIES : p

PROPOSITION
(X,Y) bivariate normal = p = px.y

Proof:
EI(X = p1)(Y — po2)]
now use the rule of double expectation:

= E(E([(X — ) (Y — )] 1X))

= E((X — u1)E[Y — po] IX))
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BIVARIATE NORMAL PROPERTIES : p

= E((X = m)E[(Y — p2)]1X))
= E(X — 1) [E(Y[X) — o]
= E((X — 1) |p2 +p;2(X—m) — p2

= pj—fE[(X—m)(X—m)l

(o}
1
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BIVARIATE NORMAL PROPERTIES : p

= p—=E[(X — ) (X — m1)]

a1
02 2
a1
= po20
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BIVARIATE NORMAL PROPERTIES : p

In other words we have checked that
. E[(X — p1)(Y — p2)]

0207
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APPENDIX: TRANSFORMATIONS, DIAGONALIZATION
OF COVARIANCE MATRICES
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RULE OF TRANSFORMATION OF A PDF

X has the joint density fx (X), Y = AX + b, and A is invertible. Then
we invert the linear (affine) fransformation y = Ax + b on R" by

x=A""(y-b)

Then the Jacobian matrix is

_ 0 a0
J—WX—A

and then the Jacobian determinant is

1

Now we can apply Thm 2.1., p. 21 in the book by Allan Gut to
obtain (18).
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STANDARD NORMAL VECTOR BY FACTORIZATION
OF A COVARIANCE MATRIX

X ~ Nn(p, C), and Ais such that

C=AAT
An invertible matrix A with this property exists always, if C is
positive definite, we need the symmetry of C, too. Then
Z=A" (X~ p)
is by (16) a standard normal vector.
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FACTORIZATION OF A COVARIANCE MATRIX: THE

BIVARIATE CASE

C— 012 pPO109
pPO109 0% ’
then C = AAT, where
o1 O

A= ,
(paz 02\/1—/)2)
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CHANGE OF VARIABLES IN A MULTIPLE INTEGRAL

Show that

e 3(x—)CT(x-1) gy — 1.

1
//?n (27)n/2,/det(C)

Aid: It holds that C = AAT. Make the change of variables

X = Az + p in the multiple infegral above. Then the integral can
be easily evaluated. Note that the Jacobian determinant of this
fransformation is det A. Then

det C = det A - det AT = det A - det A = det A2

The integrand is a pdf, hence the absolute value of the
Jacobian determinant is required, so that | det A| = vdet C.
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PARTIONED RANDOM VECTORS AND PARTITIONED
COVARIANCE MATRICES

Let X, n x 1, be partitioned (= written as a vector with entries
that are vectors ) as
X=(X1,X)",

where Xjispx land X, isgx 1, n= g+ p. Let the covariance
matrix C be partitioned in the sense that it is represented as a
matrix with entries that are matrices, i.e.,
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Cii Gz >
C= , 24
< Co1 Cox @9

Chisp x p. Cxpis g x ge.t.c.. The mean vector is partitioned

correspondingly as
_ M 25
n ( o ) (25)
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PARTIONED RANDOM VECTORS AND PARTITIONED

COVARIANCE MATRICES

Let X ~ Nn (p, C), with C and p partitioned as in (24)-(25). Then

marginal distributfion of X, is
Xo ~ Ng (12, Co) -

as soon as Cy, is invertible.
Then the conditional distribution of X; given by X, = x5 is

X1 | Xo = X ~ No (1, Cipo)

where
-1
H]|2 = M + C]QCQQ (K2 - HQ)

and
Cip = Cy1 — C12C5,) Coy.
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DIAGONALIZABLE MATRICES

An n x nmatrix A is orthogonally diagonalizable, if there is an
orthogonal matrix P such that

PTAP = D,

where D is a diagonal matrix.
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AN APPENDIX IN MATRIX CALCULUS

THEOREM

If Ais an n x N matrix, then the following are equivalent:
(1) Ais orthogonally diagonalizable.
(11) A has an orthonormal set of eigenvectors.

(111) A is symmetric.

Since covariance matrices are symmetric, we have by the
theorem above that all covariance matrices are orthogonally
diagonalizable.
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DIAGONALIZABLE MATRICES

THEOREM

If Ais a symmetric matrix, then
(1) Eigenvalues of A are all real numbers.
(11) Eigenvectors from different eigenspaces are orthogonal.

That is, all eigenvalues of a covariance matrix are real.
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DIAGONALIZABLE MATRICES

Hence we have for any covariance matrix the spectral
decomposition

n
C=> xuu/, (26)
i=1

where Cu; = \u;. We normalize these and denote the
orthogonal eigenvectors with u;. Since C is nonnegative definite,

T T
0 <u;Cu; = \uju; =\,

and thus the eigenvalues of a covariance matrix are
nonnegative.
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