
SF 2930 REGRESSION ANALYSIS

LECTURE 2
Multivariate Random Vectors, Multivariate Normal Distribution

and Multivariate Normal Random Vectors, Simple Linear
Regression in Matrix Terms

Timo Koski

KTH Royal Institute of Technology

19-01- 2023

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIVARIATE NORMAL DISTRIBUTION 19-01 2023 1 / 117



LEARNING OUTCOMES

Random vectors, mean vector, covariance matrix, rules of
transformation
Multivariate normal R.V., rules of transformation

Density of a multivariate normal RV
Joint PDF of bivariate normal RVs
Conditional distributions in a multivariate normal
Joint PDF of normal RVs distribution

Matrix algebra related to Multivariate normal R.V.
Standard normal R.V., Rules of transformation,
Simple Linear Regression by Random vectors, Likelihood
Diagonalization of a Covariance Matrix
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PART 0: Euclidean Vector Space Rn, Matrices
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LINEAR ALGEBRA

REMARK

These lectures/this course are/is heavily dependent on
application of matrix calculus in Euclidean vector spaces. There
is a four page matrix calculus Appendix C.1-C.3 in MPV. A more
comprehensive presentation and refresher (with several proofs) is
Chapter 2 in

Rencher, Alvin C and Schaalje, G Bruce: Linear Models in
Statistics, 2008, John Wiley & Sons

The results on symmetric, non-negative definite and idempotent
matrices and distributions of quadratic forms found in this book
are especially useful. Linear Models in Statistics is digitally
available via KTHB.
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REMARK

Random Vectors and Multivariate normal distribution are
treated, e.g., in Chapters 3 and 4 of
Rencher, Alvin C and Schaalje, G Bruce: Linear Models in
Statistics, 2008, John Wiley & Sons
and in Chapter 5 of
Gut, Allan:An Intermediate Course in Probability. Second Edition,
Springer, 2009

The statements in this lecture 2 are proved by means of moment
generating functions (c.f. the references above) and are
omitted, for reasons of time budgeting, here.
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NOTATION : EUCLIDEAN VECTOR SPACE Rn

x1, x2, . . . xn is an n-tuple of real numbers. Then we write

x =


x1
x2
...

xn

 ∈ Rn xT = (x1, x2, . . . xn) ∈ Rn

Such x is said to be a n × 1 vector. xT is times a 1 × n vector, the
transpose of x.
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A REFRESHER ITEM: EUCLIDEAN VECTOR SPACE

Rn, SCALAR PRODUCT, NORM, DISTANCE

A Euclidean vector space is a finite-dimensional inner product
(scalar product) space over the real numbers. For x ∈ Rn and
y ∈ Rn, the scalar product xT y is defined as

xT y :=
n∑

i=1

xiyi .

xT y = (x1, x2, . . . xn)


y1
y2
...

yn



TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIVARIATE NORMAL DISTRIBUTION 19-01 2023 7 / 117



A REFRESHER ITEM: EUCLIDEAN VECTOR SPACE

Rn, SCALAR PRODUCT, NORM, DISTANCE

xT y =
n∑

i=1

xiyi =
n∑

i=1

yixi = yT x

xT (y1 + y2) = xT y1 + xT y2

xT x > 0 if x ̸= 0n=the n × 1 vector with all n components = 0,

xT x = 0 if x = 0n

.
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EXQ

Show that it follows from the preceding that

(y1 + y2)
T x = yT

1x + yT
2x
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ORTHOGONAL AND ORTHONORMAL VECTORS IN

THE EUCLIDEAN SPACE Rn:

DEFINITION

x ∈ Rn and y ∈ Rn are called orthogonal, if

xT y = 0.

DEFINITION

A set of vectors {ei}i∈I is said to be orthonormal, if

eT
i ej =

{
1 if i = j,

0 if i ̸= j.
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If x ∈ Rn and y ∈ Rn are orthogonal, then

∥ x − y ∥2=∥ x ∥2 + ∥ y ∥2

Please check this!
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THE STANDARD BASIS OF VECTORS IN THE

EUCLIDEAN SPACE Rn:

E1 =


1
...
0
...
0

 . . . Ej =


0
...
1
...
0

 . . . En =


0
...
0
...
1


is an orthonormal set of vectors in Rn known as the standard
basis of Rn. This means that every x ∈ Rn can be uniquely written
as

x =
n∑

i=1

ciEi ,

where ci = xTEi .
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A REFRESHER ITEM: EUCLIDEAN VECTOR SPACE

Rn, NORM, DISTANCE

We have also a norm ∥ x ∥ in Rn defined by

∥ x ∥=
√

xT x =

√√√√ n∑
i=1

x2
i

This norm gives a distance (i.e., a metric) between x and y by

∥ x − y ∥=

√√√√ n∑
i=1

(xi − yi)
2

∥ x ∥2= 0 ⇔ x = 0n & ∥ x − y ∥= 0 ⇔ x = y
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NORMS

REMARK

To be mathematially precise we are actually here dealing with
the so-called l2- norm ∥ x ∥2 on Rn. There are other known norms,
like ∥ x ∥∞= maxi |xi | or the lp-norm ∥ x ∥p=

(∑n
i=1 |xi |p

)1/p, p ≥ 1.
The norm ∥ x ∥1 will appear in the regression with Lasso. But since
there is at the moment no risk of confusion, we stay with the
simpler notation, i.e., ∥ x ∥.
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MATRIX ADDITION

A is an m × n matrix and B is an m × n.

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 , B =


b11 b12 · · · b1n
b21 b22 · · · b2n

...
...

. . .
...

bm1 bn2 · · · bmn


The matrix sum A + B is

A + B =


a11 + b11 a12 + b12 · · · a12 + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn


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MATRIX MULTIPLICATION

A is an m × n matrix and B is an n × p, we say that A and B are
conformable for the multiplication AB.

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 , B =


b11 b12 · · · b1p
b21 b22 · · · b2p

...
...

. . .
...

bn1 bn2 · · · bnp


The matrix product C := AB is defined to be the m × p matrix

C =


c11 c12 · · · c1p
c21 c22 · · · c2p

...
...

. . .
...

cm1 cm2 · · · cmp


where cij = ai1b1j + ai2b2j + · · ·+ ainbnj =

∑n
k=1 aikbkj .
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MATRIX MULTIPLICATION

I.e., the entrycij of C is found by calculating the scalar product
of the ith row vector of A and the jth column vector of B.
Therefore, C = AB is

C =


a11b11 + · · ·+ a1nbn1 · · · a11b1p + · · ·+ a1nbnp

...
. . .

...
am1b11 + · · ·+ amnbn1 · · · am1b1p + · · ·+ amnbnp

 (1)
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MATRIX MULTIPLICATION: A SPECIAL CASE

xT y = (x1, x2, . . . xn)


y1
y2
...

yn

 =
n∑

i=1

xiyi .

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIVARIATE NORMAL DISTRIBUTION 19-01 2023 18 / 117



MULTIPLICATION BY A SCALAR

cA =


ca11 ca12 · · · ca1n
ca21 ca22 · · · ca2n

...
...

. . .
...

cam1 cam2 · · · camn


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MATRIX MULTIPLICATION: xxT

x is an n × 1 vector (matrix), xT is 1 × n. Then xxT is by (1) an n × n
matrix

xxT =


x1
x2
...

xn

 (x1, x2, . . . , xn) =


x2

1 x1x2 · · · x1xn

x2x1 x2
2 · · · x2xn

...
...

. . .
...

xnx1 xnx2 · · · x2
n

 (2)

xT x =
n∑

i=1

x2
i

The trace of a square matrix A, denoted by Tr A, is the sum of its
elements of the main diagonal. Hence

Tr xxT = xT x (3)
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MATRIX MULTIPLICATION: y = Ax

x =


x1
x2
...

xn

 A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn



y = Ax =


a11x1 + · · ·+ a1nxn
a21x1 + · · ·+ a2nxn

...
am1x1 + · · ·+ amnxn

 .

y is an m × 1 (matrix) vector.

By = BAx, A (x1 + x2) = Ax1 + Ax2
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THE n × n IDENTITY MATRIX

In =


1 0 0 . . . 0
0 1 0 . . . 0

0
. . .

... . . . 0
0 0 0 . . . 1

 . (4)

Inx = x, InA = A if A is conformable
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A SYSTEM OF LINEAR EQUATIONS

The general form of a system of linear equations is

a11x1 + · · ·+ a1nxn = b1
a21x1 + · · ·+ a2nxn = b2

...
am1x1 + · · ·+ amnxn = bm

.

The system is by the multiplication rule above equivalent with the
single matrix equation

Ax = b.

If m = n and A has an inverse matrix A−1, i.e., A−1A = AA−1 = In,
then

x = A−1b.
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MATRIX TRANSPOSE: AT

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 m × n

AT =


a11 a21 · · · am1
a12 a22 · · · am2

...
...

. . .
...

a1n a2n · · · amn

 n × m

(AB)T = BT AT , (A + B)T = AT + BT .

By conformability: AT A is n × n and AAT is m × m.
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SYMMETRIC MATRIX

DEFINITION

A matrix A is said to be symmetric, if

AT = A

EXAMPLE

Any diagonal matrix

Dn =


d1 0 0 . . . 0
0 d2 0 . . . 0

0
. . .

... . . . 0
0 0 0 . . . dn

 (5)

is clearly symmetric. A special case: In in (4).
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INVERSE OF DIAGONAL MATRIX

EXAMPLE

If all elements di on the main diagonal of a diagonal matrix Dn
are positive, then the inverse D−1

n exists and is a symmetric matrix
given by

D−1
n =


1/d1 0 0 . . . 0

0 1/d2 0 . . . 0

0
. . .

... . . . 0
0 0 0 . . . 1/dn

 (6)

Easy to check: D−1
n Dn = DnD−1

n = In
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A MATRIX OF USEFULNESS/IMPORTANCE IN

REGRESSION ANALYSIS

Let us define the n × n matrix Cce by

Cce := In − 1
n

1n1T
n where 1n :=


1
1
...
1

 (7)

Note that as a special case of (2)

1n1T
n =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 n × n, 1T
n1n = n
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THE CENTERING MATRIX (IS OF

USEFULNESS/IMPORTANCE IN REGRESSION

ANALYSIS)

Take an n × 1 vector x. x̄ = 1
n
∑n

i=1 xi . Then, since 1T
nx =

∑n
i=1 xi ,

Ccex = Inx − 1
n

1n1T
nx = x − x̄


1
1
...
1

 =


x1 − x̄
x2 − x̄

...
xn − x̄

 . (8)

Thus Cce does a centering of x.
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EXQ: SYMMETRY AND IDEMPOTENCY OF Cce

DEFINITION

An n × n- matrix A is said to be idempotent, if

A2 = AA = A

Show/check that

Cce is symmetric.

Cce is idempotent.

To check that Cce is symmetric should be easy. For idempotency,
note that 1T

n1n = n.
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ORTHOGONAL PROJECTION

DEFINITION

I an n × n- matrix A is

symmetric.

and idempotent,

then it called an orthogonal projection matrix

An orthogonal projection matrix splits Rn into a direct sum of two
subspaces, its range space and its null space.
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A QUADRATIC FORM

Since Cce is idempotent and symmetric,

xT Ccex = xT CceCcex = xT CT
eCcex = (Ccex)T Ccex.

The scalar product (Ccex)T Ccex is by (8) equal to nothing else
but

xT Ccex = (Cex)T Ccex =
n∑

i=1

(xi − x̄)2

The right hand side is = Sxx in Lecture 1. Hence, we get also in
Lecture 1

xT Ccey = (Cex)T Ccey =
n∑

i=1

(xi − x̄)(yi − ȳ) = Sxy
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Recall the total variation SST in the Fundamental Analysis of
Variance Identity in Lecture 1. SST is by the above also a
quadratic form

SST =
n∑

i=1

(yi − ȳ)2 = yT Ccey
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A is an n × p matrix. Then 1T
nA is 1 × p vector given by the rule (1)

as

1T
nA =

 n∑
j=1

aj1,

n∑
j=1

aj2 . . .

n∑
j=1

ajp


which contains the column sums of A. The matrix A1p is n× 1 and

A1p =


∑n

j=1 a1j∑n
j=1 a2j

...∑n
j=1 anj

 .

contains the row sums of A.
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ORTHOGONAL MATRIX

DEFINITION

An n × n matrix A is called orthogonal, if it holds that

AT A = AAT = In

This means that the column vectors in A are orthogonal.
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PART 1: Mean vector, Covariance matrix, Rules of
Transformation
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VECTOR NOTATION: RANDOM VECTOR

A random vector X is a column vector

X =


X1
X2
...

Xn

 = (X1,X2, . . . ,Xn)
T

Each Xi is a random variable.
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A VECTOR OF SAMPLE VALUES

x =


x1
x2
...

xn

 = (x1, x2, . . . , xn)
T

We have now xi as a notation for an outcome of Xi
1 and x as an

outcome of X. Marginal cdf (=cumulative distribution function)
FXi

(xi) = P (Xi ≤ xi). Of course, x designates also a generic vector
used for mathematical computation.

1MVP makes no distinction here. x is sometimes a sample vector, sometimes
a random variable.
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JOINT CDF, JOINT PDF

The joint cdf (=cumulative distribution function) of a continuous
random vector X is

FX (x) = FX1,...,Xn (x1, . . . , xn) = P (X ≤ x) =

= P (X1 ≤ x1, . . . ,Xn ≤ xn)

Joint probability density function (PDF)

fX (x) =
∂n

∂x1 . . . ∂xn
FX1,...,Xn (x1, . . . , xn)
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MEAN VECTOR

µ =


µ1
µ2
...
µn

 = µX = E [X] =


E [X1]
E [X2]

...
E [Xn]

 ∈ Rn,

a column vector of means (=expectations) of X, µi = E [Xi ].
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MATRIX, SCALAR PRODUCT

If XT is the transposed column vector (i.e., a row vector), then, by
(2)

XXT =


X2

1 X1X2 · · · X1Xn

X2X1 X2
2 · · · X2Xn

...
...

. . .
...

XnX1 XnX2 · · · X2
n

 (9)

is an n × n random matrix, and the scalar product,

XT X =
n∑

i=1

X2
i

is a real valued r.v..
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MATRIX, SCALAR PRODUCT

By (9) the random matrix (X − µ) (X − µ)T is
(X1 − µ1)

2 (X1 − µ1) (X2 − µ2) · · · (X1 − µ1) (Xn − µn)

(X2 − µ2) (X1 − µ1) (X2 − µ2)
2 · · · (X2 − µ2) (Xn − µn)

...
...

. . .
...

(Xn − µn) (X1 − µ1) (Xn − µn) (X2 − µ2) · · · (Xn − µn)
2


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COVARIANCE MATRIX OF A RANDOM VECTOR

Covariance matrix (also denoted by CX)

C := E
[
(X − µX) (X − µX)

T
]

where the array in position (i, j) is

cij = E
[
(Xi − µi)

(
Xj − µj

)]
is the covariance of Xi and Xj . The variances of the components
of X are the elements on the main diagonal, i.e.,

cii = E
[
(Xi − µi)

2
]
= Var (Xi) = σ2

i .
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COVARIANCE & NON-LINEAR DEPENDENCE

X and Y are independent ⇒ Cov(X ,Y ) = 0.

The converse implication is not true in general, as shown in the
next example.
Let X ∼ N(0, 1), the pdf of N(0, 1) is denoted by ϕ(x). Set Y = X2.
Then Y is clearly functionally dependent on X . But we have

Cov(X ,Y ) = E [(X · Y )]− E [X ] · E [Y ] = E
[
X3
]
− 0 · E [Y ]

= E
[
X3
]
= 0.

The last equality holds, since one has g(x) = x3ϕ(x), so that
g(−x) = −g(x). Hence E

[
X3
]
=
∫ +∞
−∞ g(x)dx = 0, c.f., (15) in the

sequel, too.
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PROPERTIES OF A COVARIANCE MATRIX

Covariance matrix is nonnegative definite, i.e., for all x we
have

xT Cx ≥ 0

Hence
detC ≥ 0.

The covariance matrix is symmetric

C = CT

It can be shown: every symmetric nonnegative definite
matrix is a covariance matrix (for some random vector). See
later.
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PROPERTIES OF A COVARIANCE MATRIX

The covariance matrix is symmetric

C = CT

since
cij = E

[
(Xi − µi)

(
Xj − µj

)]
= E

[(
Xj − µj

)
(Xi − µi)

]
= cji
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PROPERTIES OF A COVARIANCE MATRIX

A covariance matrix is positive definite, if

xT Cx > 0

holds for all x ̸= 0. Then
detC > 0

(i.e. C is invertible).
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PROPERTIES OF A COVARIANCE MATRIX

PROPOSITION

xT Cx ≥ 0

Proof:

xT Cx =
n∑

i=1

n∑
j=1

xixjcij =
n∑

i=1

n∑
j=1

xixjE
[
(Xi − µi)

(
Xj − µj

)]
= xT E

[
(X − µX) (X − µX)

T
]

x

= E
[
xT (X − µX) (X − µX)

T x
]
= E

[
xT w · wT x

]
where we have set w = (X − µX). Then by xT w = wT x =

∑n
i=1 wixi ,

E
[
xT wwT x

]
= E

( n∑
i=1

wixi

)2
 ≥ 0.
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PROPERTIES OF A COVARIANCE MATRIX

In terms of the entries ci,j of a covariance matrix C =
(
cij
)n,n,

i=1,j=1
there are the following necessary properties.

1 cij = cji (symmetry).
2 cii = Var (Xi) = σ2

i ≥ 0 (the elements in the main diagonal are
the variances, and thus all elements in the main diagonal
are nonnegative).

3 c2
ij ≤ cii · cjj (Cauchy-Schwartz’ inequality).
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COEFFICIENT OF CORRELATION

The Coefficient of Correlation ρ of X and Y is defined as

ρ := ρX ,Y :=
Cov(X ,Y )√

Var(X) · Var(Y )
,

where Cov(X ,Y ) = E [(X − µX ) (Y − µY )]. This is normalized

−1 ≤ ρX ,Y ≤ 1

For random variables X and Y ,
Cov(X ,Y ) = ρX ,Y = 0 does not always mean that X ,Y are
independent.
ρX ,Y = ρY ,X !
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SPECIAL CASE: COVARIANCE MATRIX OF A
BIVARIATE VECTOR

X = (X1,X2)
T .

C =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
,

where ρ is the coefficient of correlation of X1 and X2, and
σ2

1 = Var (X1), σ2
2 = Var (X2). C is invertible iff ρ2 ̸= 1, to see this we

note that
detC = σ2

1σ
2
2

(
1 − ρ2

)
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AN EXAMPLE OF A COVARIANCE MATRIX

EXAMPLE

In is the n × n identity matrix, see (4). In is a symmetric and
positive definite matrix, hence

In is a (diagonal) covariance matrix. (10)

It is the covariance matrix of X = (X1,X2, . . . ,Xn)
T , where the

component r.v.’s are pairwise uncorrelated and Var[Xi ] = 1 for
every i.
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SIMPLE LINEAR REGRESSION MODEL IN MATRIX

FORM

The simple linear regression model equations for the training set

Yi = µi + εi = β0 + β1xi + εi , i = 1, . . . ,n

are usefully written in matrix terms. Set

Y =


Y1
Y2
...

Yn

 ,X =


1 x1
1 x2
...
1 xn

 ,β =

(
β0
β1

)

n × 1 -vector, n × 2 - matrix, 2 × 1 -vector. The simple linear
regression is now given as

Y = Xβ + ε,

where ε = (ε1, . . . , εn)
T is n × 1 random vector.
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THE ASSUMPTIONS OF THE SIMPLE LINEAR

REGRESSION MODEL

Y = Xβ + ε.

1) Correct: E [ε] = 0n (= the n × 1 zero vector), i.e., 0n ∈ Rn.

2) Uncorrelated The covariance matrix Cε of ε = (ε1, . . . , εn)
T is

Cε = σ2In.

The identity matrix In as defined (4).
3) Homoscedastic ε: σ2 does not depend on X
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COLORED NOISE

Y = Xβ + ε.

1) Correct: E [ε] = 0n (= the n × 1 zero vector), i.e., 0n ∈ Rn.

2) Correlated The covariance matrix Cε of ε = (ε1, . . . , εn)
T is

Cε = Dn.

where Dn is a positive definite matrix.
3) Homoscedastic Variance of ε does not depend on X
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THE ASSUMPTIONS OF THE SIMPLE LINEAR

REGRESSION MODEL

y = Xβ + ε.

4) As discussed in the first lecture, 1) X can be a designed
matrix, and is then not a r.v.. Or, 2) X contains the observed
values (x1, . . . , xn) of a covariate/predicting variable. This
means in particular that there is no measurement error in the
covariate x . Theoretical regression line represents in general
an approximation E[Y|X = (x1, . . . , xn)

T ].
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COMPUTATION RULES

PROPOSITION

Y and X are random vectors, µY = E [Y], µX = E [X], X has
covariance matrix CX, A and B are m × n matrices. a and b are
vectors of suitable dimensions. Then we have

E [X + Y] = µX + µY (11)

Z = AX + b,
E [Z] = AµX + b, (12)

CZ = ACXAT . (13)

CX = E
[
XXT

]
− µXµ

T
X

Var
[
aT X

]
= aT CXa
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VARIANCE OPERATOR OF MVP

The rule (13) above, i.e.

CZ = ACXAT .

is in MVP, p. 580, 4. of C.2.3, written as

Var (Z) = ACXAT ,

where Var (Z) is called a variance operator. This notion is not
found in the INDEX of MVP, and it is perhaps not really defined in
the text, c.f., p. 80.
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WE CONTROL ONE OF THE RULES ABOVE

C = E
[
XXT

]
− µµT . By definition and matrix rules

C = E
[
(X − µ) (X − µ)T

]
= E

[
XXT − XµT − µXT + µµT

]
(Note that all matrices in the right hand side are n × n, and
hence matrix addition is defined.) Now use the rules (11) and
(12)

= E
[
XXT

]
− E [X]︸︷︷︸

=µ

µT − µ E
[
XT
]

︸ ︷︷ ︸
=µT

+µµT

= E
[
XXT

]
− µµT .

This is clearly a matrix version of the univariate formula:

E [(X − µX ) (Y − µY )] = E [XY ]− µXµY .
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COMPUTATION RULES

PROPOSITION

X is a random vector, µX = E [X], with the covariance matrix CX,
For A is n × n matrix. Then we have

E
[
XT AX

]
= tr (ACX) + µT

XAµX, where tr(B) =
∑n

i=1 bii
(=trace of B) is the sum of the entries on the main
diagonal of a square matrix B.
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COMPUTATION RULES: PROOF OF CZ = ACXAT ,
WHERE Z = AX + b

By definition, CZ = E
[
(Z − E [Z])(Z − E [Z])T

]
. By (2), E [Z] = AµX + b,

and thus

Z − E [Z] = AX + b − (AµX + b) = A (X − µX) .

This gives

CZ = E
[
A (X − µX) (A (X − µX))

T
]
= E

[
A (X − µX) (X − µX)

T AT
]

= AE
[
(X − µX) (X − µX)

T
]

AT = ACXAT .
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DIAGONALIZING COVARIANCE MATRICES

If C is a covariance matrix, then there exists an orthogonal matrix
P such that

PT CP = D, (14)

where D is diagonal (with the eigenvalues of C on the main
diagonal2). Suppose X has mean 0 and covariance matrix C.
Then if Y = PT X, Y has mean 0 and covariance matrix D, i.e., the
components of Y have zero means and are pairwise
non-correlated.

2The eigenvalues of a covariance matrix are non-negative, see Appendix
TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIVARIATE NORMAL DISTRIBUTION 19-01 2023 61 / 117



REMARK: EVERY SYMMETRIC AND NONNEGATIVE

DEFINITE SQUARE MATRIX IS COVARIANCE MATRIX

Let Σ be an n × n symmetric and positive definite matrix. Then Σ
can be Cholesky factored to a lower triangular matrix A such
that

Σ = AAT .

Take a random vector X with In as covariance matrix. Set
Y = AX. Rule (13) for computation of covariance matrices of
linear transformations yields that

CY = ACXAT = AInAT = AAT = Σ.

A matrix is a Cholesky factor for a covariance matrix if and only if
it is lower triangular, the diagonal entries are positive,
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PART 2: THE MULTIVARIATE NORMAL

DISTRIBUTION

We recall first some of the properties of univariate normal
distribution. Most of the facts on multivariate normal distribution
stated below are found with proofs in chapter 5 of Gut, Allan: An
Intermediate Course in Probability. Second Edition Springer,
2009.3

3You do not need these proofs in Gut loc.cit to pass this course. It is only the
statements that count. But there are other proofs needed.
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NORMAL (GAUSSIAN) ONE-DIMENSIONAL RVS

X is a normal random variable if its pdf is

fX (x) =
1

σ
√

2π
e− 1

2σ2 (x−µ)2

where µ is real and σ > 0.
A symbolic shorthand notation: X ∼ N(µ, σ2)

Properties: E(X) = µ, Var(X) = σ2
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CENTRAL MOMENTS NORMAL (GAUSSIAN)
ONE-DIMENSIONAL RVS

X ∼ N(0, σ2). Then

E
[
Xn] = { 0 n is odd

(2k)!
2k k! σ

2k n = 2k , k = 0, 1, 2, . . ..
(15)
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LINEAR TRANSFORMATION

X ∼ N(µX , σ
2) ⇒ Y = aX + b ∼ N(aµX + b,a2σ2)

Thus Z = X−µX
σX

∼ N(0, 1) and

P(X ≤ x) = P
(

X − µX

σX
≤ x − µX

σX

)
or

FX (x) = P
(

Z ≤ x − µX

σX

)
= Φ

(
x − µX

σX

)
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MULTIVARIATE NORMAL: DEFINITION

DEFINITION

An n × 1 random vector X has a (multivariate) normal distribution
iff for every n × 1-vector a the one-dimensional random vector
aT X has a normal distribution.

We write X ∼ Nn (µ,C), when µ is the mean vector and C is the
covariance matrix. Mean and covariance matrix, when they
exist, do not in general determine the joint distribution of a
multivariate r.v.. However, a normal random vector X is
completely determined by µ and C.
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PROPERTIES

An n × 1 vector X ∼ Nn (µ,C) iff the one-dimensional random
variable aT X has a normal distribution for every n-vector a .
Now we know that (take A = aT and note the transformation
rules above )

E
[
aT X

]
= aTµ,Var

[
aT X

]
= aT Ca

Hence
aT X ∼ N

(
aTµ,aT Ca

)
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PROPERTIES

Let D be a diagonal covariance matrix with σ2
i s on the main

diagonal, i.e.,

D =


σ2

1 0 0 . . . 0
0 σ2

2 0 . . . 0
0 0 σ2

3 . . . 0

0
. . .

... . . . 0
0 0 0 . . . σ2

n

 ,

PROPOSITION

If X ∼ Nn (µ,D), then X1,X2, . . . ,Xn are independent real valued
normal variables, Xi ∼ N

(
µi , σ

2
i

)
.
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FURTHER PROPERTIES OF THE MULTIVARIATE

NORMAL

X ∼ Nn (µ,C)

Every component Xk is one-dimensional normal. To prove
this we take the orthonormal basis vector

Ek = (0, 0, . . . , 1︸︷︷︸
position k

, 0, . . . ,0)T

and the conclusion follows by Def. I.
X1 + X2 + · · ·Xn is one-dimensional normal. Note: The terms in
the sum need not be independent.
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PROPERTIES OF THE MULTIVARIATE NORMAL

X ∼ Nn (µ,C)

Every marginal distribution of k variables ( 1 ≤ k < n ) is
normal. To prove this we consider any k variables Xi1 ,Xi2 . . .Xik
and then take a such that aj = 0 for j ̸= i1, . . . ik and then
apply Def. I.
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PROPERTIES OF MULTIVARIATE NORMAL

PROPOSITION

X ∼ Nn (µ,C) and Y = BX + b, B is m × n. Then

Y ∼ Nm

(
Bµ+ b,BCBT

)
. (16)
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DIAGONALIZING COVARIANCE MATRIX AND

MULTIVARAITE NORMALS

If X ∼ Nn (0,C) and P is as in (14). Then if Y = PT X, we have that

Y ∼ Nn (0,D) .

In other words, Y is a normal vector that has independent
components ∼ N(0, λj). This trick has several important
applications, e.g., for heteroscedastic multiple linear regression.
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MULTIVARIATE NORMAL: JOINT PDF

DEFINITION

A random vector X with mean vector µ and an invertible
covariance matrix C is Nn (µ,C), iff its joint pdf is

fX (x) =
1

(2π)n/2
√
det(C)

e− 1
2 (x−µ)T C−1(x−µ) (17)

It can be shown that this definition and the definition given first
(which does not require an invertible covariance matrix) are
equivalent, as soon as the covariance matrix is invertible.
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MULTIVARIATE NORMAL

It can be checked that∫
Rn

1
(2π)n/2

√
det(C)

e− 1
2 (x−µ)T C−1(x−µ)dx = 1.

For aid on this, see EXQ in one of the Appendices below.

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIVARIATE NORMAL DISTRIBUTION 19-01 2023 75 / 117



STANDARD NORMAL VECTOR: DEFINITION

In is the n × n is a covariance matrix, as pointed out in (10). Then
Z ∼ Nn (0, In) is called a standard normal vector. When we insert
C = In in (17) above we get, as I−1

n = In,

fZ (z) =
1

(2π)n/2
√

det(In)
e− 1

2 (z−0)T I−1
n (z−0) =

1
(2π)n/2 e− 1

2 zT z

=
1

(2π)n/2 e− 1
2

∑n
i=1 z2

i =
n∏

i=1

1
(2π)1/2 e− 1

2 z2
i

which is a product of n pdf’s for i.i.d. Zi ∼ N(0, 1).
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RULE OF TRANSFORMATION OF A PDF

PROPOSITION

If X has the joint density fX (x), Y = AX+b, and A is invertible, then

fY (y) =
1

| detA |
fX
(

A−1 (y − b)
)

(18)

This is an example of the rule for transformation of variables in a
pdf, see Thm 2.1., p. 21 in the book by Allan Gut, mentioned in
one of the first slides. A proof, is necessary here, is sketched in an
Appendix.
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MULTIVARIATE NORMAL AND SIMPLE LINEAR

REFRESSION
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SIMPLE NORMAL LINEAR REGRESSION

Recall

Y =


y1
y2
...

yn

 , X =


1 x1
1 x2
...
1 xn

 , β =

(
β0
β1

)

and
Y = Xβ + ε, (19)

where ε = (ε1, . . . , εn)
T . We add a fourth assumption to the three

model assumptions above: ε ∼ Nn

(
0, σ2In

)
. Then (19) is simple

normal linear regression model in matrix form.
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SIMPLE NORMAL LINEAR REGRESSION: JOINT

DENSITY OF ε

Let ε ∼ Nn

(
0, σ2In

)
. This we can represent ε as ε d

= σZ,
Z ∼ Nn (0, In). Take A = σIn and X = Z and Y = ε. Then (18) yields

fε (e) =
1

| detσIn |
fZ
(
σ−1e

)
=

1
(2π)n/2 | detσIn |

e− 1
2σ2 eT e

Here | detσIn |= σn, a known rule for the determinant of a
diagonal matrix. Hence one gets

fε (e) =
1

(2π)n/2σn
e− 1

2σ2 eT e (20)
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SIMPLE NORMAL LINEAR REGRESSION: JOINT

DENSITY OF Y

We apply (18) with Y = Xβ + ε, fε, that is, X = ε, A = In and
b = Xθ, detA = det In = 1. Then equation (18) gives,

fY (y) =
1

| det In |
fε (y − Xβ)

(21)

=
1

σn(2π)n/2 e− 1
2σ2 (y−Xβ)T (y−Xβ)

,

=
1

σn(2π)n/2 e− 1
2σ2 ∥y−Xβ∥2

When this is compared with the pdf in (17), one sees that

Y ∼ Nn

(
Xβ, σ2In

)
,

which, of course, agrees with (16) .
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SIMPLE NORMAL LINEAR REGRESSION: JOINT

DENSITY OF Y

Y ∼ Nn

(
Xβ, σ2In

)
(22)

REMARK

As far as this lecturer can see, (22) is nowhere to be seen in MVP.
Of course, MVP does not maintain multivariate the normal
distribution except in the case n = 2.
The statement in (22) and its derivation hold even for multiple
linear regression,where X is n × k + 1 (here k = 1) and β is
k + 1 × 1.
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MAXIMUM LIKELIHOOD ESTIMATE (MLE) OF β IS

LSE OF β

Next the least squares criterion in simple linear regression is equal
to (recall xT x =∥ x ∥2=

∑n
i=1 x2

i ).

Q(β0, β1) =
n∑

i=1

(yi − β0 − β1xi)
2 =∥ y − Xβ ∥2

Hence (21) with k = 1 defines the likelihood function

Ly(β) =
1

σn(2π)n/2 e− 1
2σ2 Q(β0,β1) (23)

For k = 1, minimization of Q(β0, β1) equivalent to maximization of
Ly(β) (Here one is to estimate σ2, but this does not change the
MLE of β).
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PART 3: MULTIVARIATE NORMAL: THE BIVARIATE

CASE
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MULTIVARIATE NORMAL: THE BIVARIATE CASE

As soon as ρ2 ̸= 1, the matrix

C =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
is invertible, and the inverse is

C−1 =
1

σ2
1σ

2
2(1 − ρ2)

(
σ2

2 −ρσ1σ2
−ρσ1σ2 σ2

1

)
.
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MULTIVARIATE NORMAL: THE BIVARIATE CASE

X = (X1,X2)
T is bivariate (n = 2) normal N2(µ,C), µ = (µ1, µ2)

T .
Assume ρ2 ̸= 1. Then X has the PDF

fX (x) =
1

2π
√
detC

e− 1
2 (x−µ)T C−1(x−µ)

=
1

2πσ1σ2

√
1 − ρ2

e− 1
2 C(x1,x2),

where
C(x1, x2) =

1
(1 − ρ2)

·

[(
x1 − µ1

σ1

)2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
+

(
x2 − µ2

σ2

)2
]

For this, invert the matrix C and expand the quadratic form !
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ρ = 0
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CONDITIONAL DENSITIES FOR THE BIVARIATE

NORMAL

Complete the square of the exponent to write

fX ,Y (x , y) = fX (x)fY |X (y)

where

fX (x) =
1

σ1
√

2π
e
− 1

2σ2
1
(x−µ1)

2

fY |X (y) =
1

σ̃2
√

2π
e
− 1

2σ̃2
2
(y−µ̃2(x))2

µ̃2(x) = µ2 + ρ
σ2

σ1
(x − µ1), σ̃2 = σ2

√
1 − ρ2
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BIVARIATE NORMAL PROPERTIES

1 E(X) = µ1

2 Given X = x, Y has a univariate normal distribution

3 Conditional mean of Y given X = x:

µ̃2(x) = µ2 + ρ
σ2

σ1
(x − µ1) = E(Y |X = x)

4 Conditional variance of Y given X = x:

Var(Y |X = x) = σ2
2

(
1 − ρ2

)
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BIVARIATE NORMAL PROPERTIES

1 Conditional mean of Y given X = x :

µ̃2(x) = µ2 + ρ
σ2

σ1
(x − µ1) = E(Y |X = x)

2 Conditional variance of Y given X = x :

Var(Y |X = x) = σ2
2

(
1 − ρ2

)

I.e., the conditional mean of Y given X in a bivariate normal
distribution is also in the mean square sense the best LINEAR
predictor of Y based on X, and the conditional variance is the
variance of the estimation error. C.f., the theoretical simple
regression line in Lecture 1.

3
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REGRESSION IN BIVARIATE NORMAL R.V.S IS

SYMMETRIC

Of course, the conditional mean of X given Y in a bivariate
normal distribution is also a linear predictor, the preceding
computation can be exactly repeated with fX |Y . You can just as
well predict Y by X as X by Y .
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A QUOTE. GORROOCHURN, P.: ON GALTON’S
CHANGE FROM “REVERSION” TO “REGRESSION”,
VOL. 70, 3, 227−231, THE AMERICAN

STATISTICIAN, 2016
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That is, the maths we are handling here is dated back to 1886
and is due to James Douglas Hamilton Dickson (1849–1931), a
Scottish mathematician and expert in electricity... in-depth
knowledge in fields of electricity and electrostatics and also a
great interest in low temperature physics. (according to
Wikipedia)
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PROOF OF CONDITIONAL PDF

Consider

fX ,Y (x , y)
fX (x)

=
σ1

√
2π

2πσ1σ2

√
1 − ρ2

e
− 1

2 Q(x ,y)+ 1
2σ2

1
(x−µ1)

2

where
−1

2
C(x , y) +

1
2σ2

1

(x − µ1)
2

= −1
2

H(x , y),

where (next slide)

TIMO KOSKI (KTH, DEPT. MATHEMATICS) MULTIVARIATE NORMAL DISTRIBUTION 19-01 2023 98 / 117



PROOF OF CONDITIONAL PDFS

H(x , y) =

1
(1 − ρ2)

·

[(
x − µ1

σ1

)2

− 2ρ(x − µ1)(y − µ2)

σ1σ2
+

(
y − µ2

σ2

)2
]

−
(

x − µ1

σ1

)2

Here we see: ρ = 0 ⇔ bivariate normal X ,Y are independent.
H(x , y) can be rewritten as
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PROOF OF CONDITIONAL PDF

H(x , y) =

ρ2

(1 − ρ2)

(x − µ1)
2

σ2
1

− 2ρ(x − µ1)(y − µ2)

σ1σ2(1 − ρ2)
+

(y − µ2)
2

σ2
2(1 − ρ2)

and we get

H(x , y) =

(
y − µ2 − ρσ2

σ1
(x − µ1)

)2

σ2
2(1 − ρ2)
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CONDITIONAL PDF

fY |X=x(y) =
fX ,Y (x , y)

fX (x)
=

1√
1 − ρ2σ2

√
2π

e

− 1
2

(
y−µ2−ρ

σ2
σ1

(x−µ1)
)2

σ2
2(1−ρ2)



This establishes the bivariate normal properties claimed above.
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BIVARIATE NORMAL PROPERTIES : ρ

PROPOSITION

(X ,Y ) bivariate normal ⇒ ρ = ρX ,Y

Proof:
E [(X − µ1)(Y − µ2)]

now use the rule of double expectation:

= E(E([(X − µ1)(Y − µ2)] |X))

= E((X − µ1)E [Y − µ2] |X))
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BIVARIATE NORMAL PROPERTIES : ρ

= E((X − µ1)E [(Y − µ2)] |X))

= E(X − µ1) [E(Y |X)− µ2]

= E((X − µ1)

[
µ2 + ρ

σ2

σ1
(X − µ1)− µ2

]
= ρ

σ2

σ1
E [(X − µ1)(X − µ1)]
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BIVARIATE NORMAL PROPERTIES : ρ

= ρ
σ2

σ1
E [(X − µ1)(X − µ1)]

= ρ
σ2

σ1
E
[
(X − µ1)

2
]

= ρ
σ2

σ1
σ2

1

= ρσ2σ1
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BIVARIATE NORMAL PROPERTIES : ρ

In other words we have checked that

ρ =
E [(X − µ1)(Y − µ2)]

σ2σ1
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APPENDIX: TRANSFORMATIONS, DIAGONALIZATION

OF COVARIANCE MATRICES
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RULE OF TRANSFORMATION OF A PDF

X has the joint density fX (x), Y = AX + b, and A is invertible. Then
we invert the linear (affine) transformation y = Ax + b on Rn by

x = A−1 (y − b)

Then the Jacobian matrix is

J =
∂

∂y
x = A−1

and then the Jacobian determinant is

det J =
1

detA
.

Now we can apply Thm 2.1., p. 21 in the book by Allan Gut to
obtain (18).
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STANDARD NORMAL VECTOR BY FACTORIZATION

OF A COVARIANCE MATRIX

X ∼ Nn (µ,C), and A is such that

C = AAT

An invertible matrix A with this property exists always, if C is
positive definite, we need the symmetry of C, too. Then

Z = A−1 (X − µ)

is by (16) a standard normal vector.
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FACTORIZATION OF A COVARIANCE MATRIX: THE

BIVARIATE CASE

If

C =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
,

then C = AAT , where

A =

(
σ1 0
ρσ2 σ2

√
1 − ρ2

)
,
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CHANGE OF VARIABLES IN A MULTIPLE INTEGRAL

Show that ∫
Rn

1
(2π)n/2

√
det(C)

e− 1
2 (x−µ)T C−1(x−µ)dx = 1.

Aid: It holds that C = AAT . Make the change of variables
x = Az + µ in the multiple integral above. Then the integral can
be easily evaluated. Note that the Jacobian determinant of this
transformation is detA. Then

detC = detA · detAT = detA · detA = detA2

The integrand is a pdf, hence the absolute value of the
Jacobian determinant is required, so that | detA| =

√
detC.
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PARTIONED RANDOM VECTORS AND PARTITIONED

COVARIANCE MATRICES

Let X, n × 1, be partitioned (= written as a vector with entries
that are vectors ) as

X = (X1,X2)
T ,

where X1 is p × 1 and X2 is q × 1, n = q + p. Let the covariance
matrix C be partitioned in the sense that it is represented as a
matrix with entries that are matrices, i.e.,
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C =

(
C11 C12
C21 C22

)
, (24)

C11 is p × p, C22 is q × q e.t.c.. The mean vector is partitioned
correspondingly as

µ =

(
µ1
µ2

)
(25)
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PARTIONED RANDOM VECTORS AND PARTITIONED

COVARIANCE MATRICES

Let X ∼ Nn (µ,C), with C and µ partitioned as in (24)-(25). Then
marginal distribution of X2 is

X2 ∼ Nq (µ2,C22) .

as soon as C22 is invertible.
Then the conditional distribution of X1 given by X2 = x2 is

X1 | X2 = x2 ∼ Np

(
µ1|2,C1|2

)
,

where
µ1|2 = µ1 + C12C−1

22 (x2 − µ2)

and
C1|2 = C11 − C12C−1

22 C21.
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DIAGONALIZABLE MATRICES

An n × n matrix A is orthogonally diagonalizable, if there is an
orthogonal matrix P such that

PT AP = D,

where D is a diagonal matrix.
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AN APPENDIX IN MATRIX CALCULUS

THEOREM

If A is an n × n matrix, then the following are equivalent:

(I) A is orthogonally diagonalizable.

(II) A has an orthonormal set of eigenvectors.

(III) A is symmetric.

Since covariance matrices are symmetric, we have by the
theorem above that all covariance matrices are orthogonally
diagonalizable.
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DIAGONALIZABLE MATRICES

THEOREM

If A is a symmetric matrix, then

(I) Eigenvalues of A are all real numbers.

(II) Eigenvectors from different eigenspaces are orthogonal.

That is, all eigenvalues of a covariance matrix are real.
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DIAGONALIZABLE MATRICES

Hence we have for any covariance matrix the spectral
decomposition

C =
n∑

i=1

λiuiuT
i , (26)

where Cui = λiui . We normalize these and denote the
orthogonal eigenvectors with ui . Since C is nonnegative definite,

0 ≤ uT
i Cui = λiuT

i ui = λi ,

and thus the eigenvalues of a covariance matrix are
nonnegative.
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