
SF2930 Regression analysis

Questions to be considered for the written exam
This document contains a set of assignments and conceptual questions on the topics
treated in SF2930 Regression Analysis during the period 3 of 2020. Questions are
constructed by Per Wilhelmsson, Ekaterina Kruglov and Tatjana Pavlenko. Six of these
questions (or their slightly modified versions) will be selected to constitute the written
exam on Tuseday, the 10th of March, 2020, 08.00-13.00. Observe that Hint is given
after some of the questions; this hint summarizes the formulas which will be provided
for this type of question during the exam.

The answers and solutions can be obtained by study of the relevant chapters in the
main course textbook, Introduction to Linear Regression Analysis by D. Montgomery,
E. Peck, G. Vining, Wiley, 5th Edition (2012) (abbreviated in what follows by MPV),
other books suggested as a course literature and available on the course home page.
Observe that the derivations presented on the board during the lectures are also top-
ics of the examination. In addition, some proficiency in manipulating basic calculus,
probability, linear algebra and matrix calculus is required.

This same set of questions (may be some will be removed and new added) will be valid
in the re-exam. Hence we shall NOT provide a solutions manual.
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Simple linear regression

1. (a) Describe the principle of least-squares and use it to derive the normal equa-
tions

nβ̂0 + (

n∑
i=1

xi)β̂1 =

n∑
i=1

yi

(

n∑
i=1

xi)β̂0 + (

n∑
i=1

x2i )β̂1 =

n∑
i=1

xiyi.

for the linear regression model

yi = β0 + β1xi + εi, εi ∼ N(0, σ2), i = 1, . . . , n.

(b) Solve the normal equations to obtain the least-squares estimates of β0 and
β1.

2. Derive the estimate of β1 in the no-intercept model yi = β1xi+εi, i = 1, . . . , n ,
from the least squares criterion, that is to minimize S(β1) =

∑
(yi − β1xi)2.

Give examples of when such model can be appropriate/inappropriate.

3. Verify the properties of residuals presented in 1.– 5. (see p. 20 MPV).

4. Explain the difference between the confidence interval for estimating the mean
response for a given value of the predictor x and the prediction interval for pre-
dicting a new response for a given value of the predictor x in the simple linear
regression setting. To support your explanations, sketch the graph and describe
the relationship between the two confidence bands.

5. In the analysis-of-variance, ANOVA approach to testing the significance of re-
gression, the total variation in a response y is broken down/decomposed into two
parts - a component that is due to the regression or model, and a component that
is due to random error. Derive this decomposition, use it to explain the construc-
tion of the ANOVA table and derive the ANOVA F -test for testing significance
of regression.

6. Exercises from MPV: 2.25, 2.27, 2.29, 2.32, 2.33.

Multiple linear regression

1. (a) State the multiple linear regression model in matrix notations, form nor-
mal equations and derive the solution using ordinary least-squares (OLS)
estimation approach. State exactly model assumptions under which OLS
estimator of the vector of regression coefficients is obtained.

(b) Show formally that the OLS estimator of the vector of regression coeffi-
cients is an unbiased estimator under the model assumption specified in
part a).
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(c) Find the covariance matrix of the vector of estimated coefficients

(d) Find the covariance matrix of the vector of predicted responses

2. (a) For the model, y = Xβ+ε, (in matrix notations) obtain the OLS estimator
β̂ of β. Make the proper normality assumptions and derive the distribution
of β̂ under these assumptions.

(b) For the model specified in a) and proper normality assumptions on ε, ob-
tain the distribution of ŷ and e = y − ŷ.

(c) State the test of significance of a single slope parameter βj and derive the
test statistics (t-tests) in the multiple regression setting.

(d) Describe the situations in regression analysis where the assumption of nor-
mal distribution is crucial and where it is not (coefficients and mean re-
sponse estimates, tests, confidence intervals, prediction intervals). Clear
motivation must be presented.

3. (Gauss-Markov theorem). Prove the Gauss-Markov theorem. Assume that β̂
is the ordinary least-squares (OLS) estimator of β obtained as the solution to
normal equations X′Xβ̂ = X′y for the linear regression model y = Xβ +
ε (all in matrix notations), where ε has zero mean, Var(εi) = σ2 < ∞ and
Cov(εi, εj) = 0 for all i 6= j = 1, . . . , p. Show that β̂ is best linear unbiased
estimator (BLUE) of β in the sense that β̂ minimizes the variance for any linear
combinations of the estimated coefficients, `′β̂. (Hint: Use the fact that any other
estimator of β, say β̃, which is constructed as a linear combination of the data
can be expressed as

β̃ =
[
(X′X)−1X′ + B)

]
y + b0,

where B is a p× n matrix and b0 is p× 1 vector of constants that appropriately
adjusts the OLS estimator to form the alternative estimator. )

4. For the linear regression model y = Xβ + ε (in matrix notations) where ε ∼
N(0, σ2Ip), 0 < σ < ∞, show formally that the ordinary LS estimator of
the coefficient vector, β̂LS = (X′X)−1X′y, is equivalent to the maximum
likelihood (ML) estimator of β denoted by β̂ML. (Hint: To obtain ML estimator
of β, recall that the normal density function for the error terms is

f(εi) =
1

σ
√

2π
exp

(
− 1

2σ2
ε2i

)
,

and the likelihood function is the joint density of ε1, . . . , εn).

5. For the linear regression model y = Xβ + ε (in matrix notations) where ε has
zero mean, define the error sum of squares as

SSe(β) = (y −Xβ)′(y −Xβ).
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For the OLS estimator β̂, show that

SSe(β) = SSRes + (β − β̂)′X′X(β − β̂),

where SSRes = SSe(β̂).

6. Explain the problem of hidden extrapolation in predicting new responses and
estimating the mean response at given point x′0 = [1, x01, x02, . . . , x0k] in the
multiple linear regression. Motivate your explanations by sketching the graph
and explain how to detect this problem by using the properties of the hat matrix,
H = X(X′X)−1X′? Recall that the location of the point x′0 relative to the
regressor variable hull is reflected by h00 = x′0(X′X)−1x0.

7. Exercises from MPV: 3.27, 3.28, 3.29 (Hint: Recall that for the hat matrix, H,
each element hij can be expressed as hij = [1 xi](X

′X)−1[1 xj ]
′), 3.31,

3.32, 3.37, 3.38 (Hint: Recall that rank(X) = p and that the diagonal elements
hii of the hat matrix H can be expressed as x′i(X

′X)−1xi, where xi is the ith
row of X, i = 1, . . . , n.

Transforms and weighting. Detection of outliers, high leverage observations and
influential data points.

1. Define some different types of residuals (for example standardized, studentized
or PRESS), specify their properties, and explain how they can be used for de-
tecting outliers.

2. Derive the concept of an influential data point (sketch the graph) and explain
how such points can be detected using DFFITS and Cook’s distance measure.

3. Cook’s distance measure, denoted by Di and used for detecting potentially in-
fluential observations, is defined as

Di = Di(X
′X, pMSRes) =

(β̂(i) − β̂)′X′X(β̂(i) − β̂)

pMSRes
, i = 1, . . . , n,

where β̂ is OLS estimator of β obtained by using all n observations, β̂(i) is the
estimator obtained with point i deleted and MSRes = SSRes/(n− p).

Show formally that the Cook’s Di depends on both the residual, ei and the lever-
age, hii, and can be expressed as

Di =
r2i
p

hii
1− hii

, where ri =
ei√

MSRes(1− hii)

is the studentized residual and hii is the ith diagonal element of the hat matrix
H = X(X′X)−1X′. Explain why this representation of Di in terms of both
the location of the point in x space and the response variables is desirable (for
detecting influential points).
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Hint: Use the representation

β̂ − β̂(i) =
(X′X)−1xiei

1− hii

and recall that hii = x′i(X
′X)−1xi.

4. Exercises from MPV: 5.8, 5.14, 5.15 (Hint: For the case of simple linear re-
gression model without intercept, the weighted LS function is given by S(β) =∑n
i=1 wi(yi − βxi)2).

5. Suppose that the error component, ε, in the multiple regression model (in matrix
notations) y = Xβ + ε, has mean 0 and covariance matrix Var(ε) = σ2Ω,
where Ω is a known n × n positive definite symmetric matrix and σ2 > 0 is a
constant (possibly unknown but you do not need to estimate it). Let

β̂GLS =
(
X′Ω−1X

)−1
X′Ω−1y.

be the generalized least-squares estimator of β.

(a) Show that β̂GLS is obtained as the solution of the problem

Minimizeβ
[(

y −Xβ)′Ω−1 (y −Xβ)] .

(b) Show formally that β̂GLS is an unbiased estimator of β and determine its
covariance matrix.

Hint: Use the following general matrix derivatives rules. LetA be k × k matrix
of constants, a be a k×1 vector of constants and v be a k×1 vector of variables.
Then the following holds.

If z = a′v, then
∂z

∂v
=
∂a′v

∂v
= a.

If z = v′v, then
∂z

∂v
=
∂v′v

∂v
= 2v.

If z = a′Av, then
∂z

∂v
=
∂a′Av

∂v
= A′a.

If A is symmetric, then
∂v′Av

∂v
= 2Av.

Multicollinearity

1. Explain in detail (with formulas) the concept of multicollinearity in multiple
linear regression models. Describe in detail (with formulas) at least two effects
of multicollinearity on the precision accuracy of the regression analyses. Explain
why the ordinary LS parameter estimation in multiple regression model is not
applicable under strong multicollinearity.
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2. Derive in detail at least two diagnostic measures for detecting multicollinearity
in multiple linear regression and explain in which way these measures reflect the
degree of multicollinearity.

3. Suppose that there are two regressor variables, x1 and x2, in the linear regression
model. Assuming further that both regressors and the response variable y are
scaled to unit length, the model is yi = β1xi1 + β2xi2 + εi, where E(εi) = 0,
V(εi) = σ2 and Cov(εi, εj) = 0, i, j = 1, . . . , n.

State the least-squares normal equations in matrix notations and obtain the esti-
mators of β1 and β2. Show formally why the strong multicollinearity between x1
and x2 results in large variances and covariances for the least-squares estimators
of the regression coefficients.

Hint: Recall that in the unit length scaling, the matrix X′X is in the form of
correlation matrix and similarly, X′y is in the correlation form, that is

X′X =


1 r12 r13 · · · r1k
r12 1 r23 · · · r2k
r13 r23 1 · · · r3k

...
...

...
...

...
r1k r2k r3k · · · 1

 X′y =


r1y
r2y
r3y

...
rky

 ,

where rjl is the simple correlation between regressors xj and xl, and rjy is the
simple correlation between the regressor xj and the response y, j, l = 1, 2, . . . , k.
Recall further that in general, for the LS estimator of p-vector β, Var(β̂j) =

σ2(X′X)−1jj and Cov(β̂i, β̂j) = σ2(X′X)−1ij , where (X′X)−1jj and (X′X)−1ij
are diagonal and off-diagonal elements of the the matrix (X′X)−1, respectively,
i, j = 1, . . . , p.

4. Suppose that X′X is in the correlation form, Λ is the diagonal matrix of eigen-
values of X′X, and T is the corresponding matrix of eigenvectors. Show for-
mally that VIFs, variance inflation factors, are the main diagonal elements of the
matrix TΛ−1T′.

Biased regression methods and regression shrinkage

1. Explain the idea of the ridge regression (in relation to multicollinearity) and de-
fine the ridge estimator of the vector of regression coefficients for the linear
model y = Xβ+ε where the design matrix X is in the the centered form. Show
formally that the ridge estimator is a linear transform of the ordinary LS estima-
tor of regression coefficients. Explain why the ridge estimator is also called for
shrinkage estimator that shrinks the ordinary LS estimator towards zero.

2. Show that the ridge estimator of the vector of regression coefficients for the linear
model y = Xβ + ε produces a biased estimator of the parameter β. Assume
that design matrix X is in the centred form.
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3. For the linear model y = Xβ+ε in the orthonormal case, i.e. when the columns
of the design matrix X are orthogonal and have a unit norm, show that a ridge
regression estimator of β is proportional to its OLS estimator.

4. For the the linear model y = Xβ + ε, show that a generalized ridge regression
estimator,

β̂rr = (X′X + λΩ)
−1

X′y,

can be obtained as a solution of minimizing of SSres(β) subject to the ellipti-
cal constraint that β′Ωβ ≤ c, where Ω is known, positive-definite symmetric
matrix. Assume that both X′X and X′y are in correlation form. Hint: general
matrix derivatives rules from the end of this section.

5. For the the linear model y = Xβ + ε, derive the ridge regression estimator
β̂Ridge = β̂Ridge(λ) of β, where λ is the ridge parameter. The mean squared
error, MSE of the vector β̂Ridge is defined as

MSE(β̂Ridge) = E
(

(β̂Ridge − β)′(β̂Ridge − β)
)
.

ExpressMSE(β̂Ridge) in terms of bias and variance of the components of vector
β̂Ridge and explain the bias-variance trade-off in terms of the ridge parameter λ.
Explain why λ is often called for the bias parameter.

6. Explain in mathematical terms the idea of principal-component regression (PCR)
and how this approach combats the problem of multicollinearity in the linear
regression models.

7. Explain in mathematical terms the idea of the ridge and Lasso regression and
the difference between these two approaches. Specifically, which of this two
approaches behaves only as a shrinkage method and which one can directly per-
form variable selection? Motivate your explanations by sketching the graph with
traces of ridge- and Lasso coefficient estimators as tuning parameter is varied,
and explain the difference in trace shapes.

8. Show that the ridge regression estimator can be obtained by ordinary least squares
regression on an augmented data set. Specifically, we augment the the centered
matrix X with p additional rows

√
λI, and augment y with p zeros. I denotes

p× p identity matrix. By introducing artificial data having response value 0, the
fitting procedure is forced to shrink the coefficient towards zero.

9. Consider the multiple regression model y = Xβ+ ε and assume that both X′X
and X′y are in correlation form. Show that the ridge estimator of β, denoted by
β̂Ridge can be the obtained as the solution to the constraint optimization problem

Minimizeβ
[(
β − β̂LS)′X′X(β − β̂LS

)]
subject to β′β ≤ d,
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where β̂LS is the ordinary least-squares estimator of β and d > 0 is an arbitrary
constant. Sketch the graph (for the two-parameter case) representing the con-
straint β′β ≤ d, explain the role of constant d > 0 and the relationship of β̂Ridge

to β̂LS, specifically why β̂Ridge shrinks the LS estimator β̂LS towards the origin.

Hint: Form the function φ(β) = (β−β̂LS)′X′X(β−β̂LS)+λβ′β, where λ > 0

is the Lagrangian multiplier (or ridge parameter). Assuming that β̂LS is fixed and
does not depend on β, differentiate φ(β) with respect to β, set the result equal
to zero and, at the minimum, set β = β̂Ridge(λ).

Use the following general matrix derivatives rules. Let A be k × k matrix of
constants, a be a k × 1 vector of constants and v be a k × 1 vector of variables.
Then the following holds.

If z = a′v then
∂z

∂v
=
∂a′v

∂v
= a.

If z = v′v, then
∂z

∂v
=
∂v′v

∂v
= 2v.

If z = a′Av, then
∂z

∂v
=
∂a′Av

∂v
= A′a.

If A is symmetric, then
∂v′Av

∂v
= 2Av.

10. Bayesian estimation in ridge regression. Ridge regression is a regularization
method for the linear model which looks for the vector β that minimizes the
penalized residual sum of squares,

βRidge = arg min
β

{
(y −Xβ)

′
(y −Xβ) + λ‖β‖22

}
,

where ‖β‖22 =
∑p
i=1 β

2
j denotes the squared L2-norm of β and λ ≥ 0 is the

regularization parameter. Assume that the n × p design matrix X is fixed and
the components of β are independently distributed as normal random variables
with mean 0 and known variance 0 < τ2 < ∞, i.e. the prior knowledge about
the vector of coefficients β is summarized in terms of the normal prior, β ∼
Np(0, τ

2I). Assume further Gaussian sampling model for the response variable,
so that y|X,β ∼ Nn(Xβ, σ2I) where 0 < σ < ∞ is a known constant. Show
that the ridge regression estimator is the mean vector (and mode) of the posterior
distribution of β. Find the relationship between the regularization parameter λ
and the variances σ2 and τ2.

Hint: The density of k-dimensional normal distribution Nk(µ,Σ) (Σ assumed
to be a positive definite k × k matrix) is given by

f(y) =
1√

(2π)k det Σ
exp

(
−1

2
(y − µ)′Σ−1(y − µ)

)
,

Recall further that the posterior density of β is proportional to the likelihood
times the prior.
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Variable selection and model building

1. Regression analysis often utilities the variable selection procedure know as the
all possible regressions (also called for the best subsets regression).

(a) Describe thoroughly the steps of the all possible regressions procedure.
Specify at least two objective criteria that can be used for the model evalua-
tion, explain how to apply these criteria and motivate why they are suitable
for this type of variable selection. Explain advantages and disadvantages
of this approach to the regression model building.

(b) Suppose that there are three candidate predictors, x1, x2, and x3, for the fi-
nal regression model. Suppose further that the intercept term, β0 is always
included in all the model equations. How many models must be estimated
and examined if one applies all possible regressions approach? Motivate
you answer.

2. Exercise 10.13 from MPV: (Hint for part c): Observe that the correlation for
of the variables is used. Recall that for the full model y = Xβ + ε, with K
candidate regressors x1, . . . , xK , and with n ≥ K+1 observations, the following
partition can be obtained

y = Xpβp + Xrβr + ε,

where Xp is an n × p matrix whose columns represent intercept and (p − 1)
regressors, Xr is an n × r matrix whose columns represent the regressors to be
removed from the model, and βp and βr are corresponding parts of β. Then for
the OLS estimator of the coefficients in the reduced model, the following holds

E(β̂p) = βp + (X′pXp)
−1X′pXrβr.

(Hint for part d): Recall that the mean square error of an estimate θ̂ of the pa-
rameter θ id defined as

MSE(θ̂) = Var(θ̂) + [E(θ̂)− θ]2.

Logistic regression, GLM and bootstrapping in regression

1. Consider a continuous (latent) variable Y ∗ given as follows

Y ∗ = β
′
x + ε

where β
′
x = β0 + β1x1 + β2x2 + . . . + βpxp and ε ∈ N(0, 1) is independent

of x. Define further Y as the indicator

Y =

{
1 if Y ∗ > 0 i.e. − ε < β

′
x,

0 otherwise.
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(a) Show that for all real u,

P (−ε ≤ u) = P (ε ≤ u).

(b) Show that
P (Y = 1 | x) = Φ

(
β

′
x
)
,

where Φ(·) is the distribution function of N(0, 1).

You are likely to need (a) in this. But if you cannot solve (a), you are still
allowed to use the formula/result in (a)

2. Assume that the response variable Y in a regression problem is a Bernoulli ran-
dom variable, that is Y ∈ Be(π(β′x)), where π(β′x) is the logistic function,
β′x = β0 + β1x1 + β2x2 + . . . + βpxp and x = (1, x1, x2, . . . , xp), i.e., Y
follows a logistic regression.

Let (x1, y1), (x2, y2), . . . , (xn, yn) be a data set of independent samples, where
yi ∈ {0, 1} and xi = (1, xi1, xi2, . . . , xip), i = 1, . . . , n.

(a) Show that for all real β, the log likelihood function l(β) can be written as

l(β) =

n∑
i=1

yiβ
′xi −

n∑
i=1

ln
(
1 + exp(β′xi)

)
.

(b) Find the partial derivatives ∂
∂β0

l(β) and ∂2

∂β2
0
l(β) in the form they would

appear in a recursive algorithm like Newton-Raphson for finding the max-
imum likelihood estimate.

3. Properties of exponential family

(a) Show that the Poisson distribution

f(yi;λi) =
λyii e

−λi

yi!
,

is an exponential family, on the form

f (yi;λi) = exp {a(yi)b(λi) + c (λi) + d (yi)}.

(b) Determine the natural parameter b(λi) and the function c(λi) in terms of
λi.

(c) Show that the expected value and variance of yi are given by

E [a(Y )] = −c′(λi)/b′(λi),

and

Var [a(Y )] =
b′′(λi)c

′(λi)− b′(λi)c′′(λi)
[b′(λi )]

3
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from the two properties ∫
f(yi;λi)dy = 1, (1)

and, given that the order of differentiation and integration can be inter-
changed,

d

dλi

∫
f(yi;λi)dy =

d

dλi
1 = 0. (2)

(d) Apply the general expression E [a(Y )] and Var [a(Y )] in (c) to the Poisson
distribution.

4. In Logistic regression, the linear system of equations are mapped onto [0, 1]
using a logit function ln(p/(1− p)) as the link function. Express p as a function
of β and x.

5. Predicting trisomi 18. You have been given the task to create a model for pre-
dicting the probability of trisomi 18, also known as Edwards syndrom, for which
fetuses have 3 chromosomes instead of 2 in the 18th chromosome pair. The model
should be a generalized linear moodel (GLM) and the training data you have at
hand is based on prenatal screening using ultrasound. The explaining variables
in the data set you have been given are

• age of the pregnant woman,

• the nuchal translucency (spacing in the neck area seen on the ultra sound),

• the level of α–fetoprotein in a blood sample from the pregnant woman,

• the flow of blood in the umbilical coord, and

• weather or not the fetus hands are relaxed or not.

(a) Assume that the observations, yi, are independent Bernoulli random vari-
ables and choose a suitable link function, g( pi) where pi is the mean
probability of having trisomi 18 for a specific cell in the model. Motivate
your choice of link function.

(b) Given the binomial distribution

f(yi; pi) =

(
wi
yi

)
pyii (1− pi)wi−yi ,

show that the log-likelihood is given by

`(p, y) =
∑
i

yi ln(pi/(1− pi)) +
∑
i

wi ln(1− pi) +
∑
i

ln

(
wi
yi

)
where wi is the number of pregnant women in cell i.
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(c) During the work you wish to compare your currently most accurate model
(AM) consisting of

• 2 groups for the age of the woman,

• 3 groups for the nuchal translucency, and

• 2 groups for relaxed hands or not,

with a reduced model (RM) in which you have removed weather or not the
hands of the fetus are relaxed. How many more non-redundant parameters,
βj , are there in AM compared to RM?

(d) Describe the approach of testing the significance of the additional param-
eters in AM compared with RM using a Wald test.

6. Bootstrapping regression models.

(a) Two main sampling procedures for bootstrapping regression estimates are
usually referred to as bootstrapping residuals and bootstrapping cases.
Give in detail the steps of both procedures and specify the difference be-
tween these two approaches.

(b) Explain how to find a bootstrap estimate of the standard deviation of the
estimate of the mean response at a particular point x0. Explain how to ob-
tain approximate confidence intervals for regression coefficients through
bootstrapping.
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