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Motivation

The central objects of this lecture are manifolds which are some kind of curved objects. Roughly speaking, one can
describe manifolds as objects which locally look like Euclidean space but in generally not globally. One usually
visualizes submanifolds as surfaces in the three-dimensional Euclidean space, for example the sphere

S2 =
{
(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥2 + 𝑦2 + 𝑧2 = 0

}
or the torus

T2 =

{
(𝑥, 𝑦, 𝑧) ∈ R3 :

√︃
𝑥2 + 𝑦2 − 2 + 𝑧2 − 1 = 0

}
.

In contrast, objects such as the union of the coordinate axes{
(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥𝑦𝑧 = 0

}
or the union of the 𝑧-axix and the orthogonal plane{

(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥𝑧 = 𝑦𝑧 = 0
}

are not considered as manifolds. They have points whose neighborhoods certainly do not look like an Euclidean
space. There is a well-developed theory for surfaces of R3 which can be generalized to a theory of 𝑛-dimensional
submanifolds of R𝑚. In this theory, submanifolds can be for example defined as zero sets of suitable functions.
This theory can be understood with a solid background in multi-dimensional analysis.

For our purposes we need to define and understand manifolds as independent objects which do not nessecarily lie
in a surrounding space R𝑚. A central motivation of this comes from general relativity and astrophysics, because
the universe is a curved object which however is not located in a surrounding space. In an abstract and intrinsic
definition of manifolds, we aim to describe the manifold by charts, which are bĳective maps from parts of the
manifold to parts of Euclidean space. A collection of charts whose domains cover the whole manifold forms an
atlas of the manifold provided that the transition between the charts behave well. Thinking of the earth, we would
try to describe its surface just by studying the charts in an ordinary atlas. In order to make these definitions precise,
we need addition to multi-dimensional analysis also some solid background in topology.

As it turns out, such an atlas is all we need to describe the geometry and topology of the manifold as well as the
physics that happens on it. With the additional structure of a semi-Riemannian metrics, it allows us to define and
describe length of curves, distances between points, volumes of subsets, curvature, motion of particles, distribution
of heat and electromagnetic waves and many other things.

The theory of manifolds has many applications in other fields. Within mathematics, manifold theory is very
relevant in topology. Moreover, solution sets (for example of differential equations) need sometimes to be regarded
as manifolds. Outside of mathematics, the main application is certainly theoretical physics. General relativity,
particle physics, and especially more modern theories like string theory require a lot of knowledge in differential
geometry. But also outside mathematics and physics, there are surprisingly many applications, for example
in biology (cell membrane structures), geology (structure description), engineering (digital signal processing),
computer science (digital analysis of shapes), medicine (medical image analysis) and architecture (statics, design).
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Chapter 1

Foundations of Manifold theory

1.1 Topology
Definition 1.1.1: Topological space

Let 𝑋 be a set and 𝒪 a collection of subsets of 𝑋 . Then the pair (𝑋,𝒪) is called a topological space, if 𝒪
satisfies the following:

(i) ∅, 𝑋 ∈ 𝒪;

(ii) Given an index set 𝐼, and open sets𝑈𝑖 ∈ 𝒪 (for 𝑖 ∈ 𝐼), we have
⋃
𝑖∈𝐼 𝑈𝑖 ∈ 𝒪.

(iii) Given𝑈1,𝑈2 ∈ 𝒪, we have𝑈1 ∩𝑈2 ∈ 𝒪.

The collection 𝒪 is a topology and its elements are called open sets. Given 𝑥 ∈ 𝑋 and𝑈 ∈ 𝒪 with 𝑥 ∈ 𝑈, we
say𝑈 is an open neighborhood (or briefly a neighborhood) of 𝑥.

By induction, (iii) holds for any finite intersection of open sets.

Example 1.1.2. Consider 𝑋 = R𝑛. For 𝑥 ∈ R𝑛 and 𝑟 > 0, we define

𝐵𝑟 (𝑥) = {𝑦 ∈ R𝑛 : ∥𝑥 − 𝑦∥ < 𝑟} .

We call 𝐵𝑟 (𝑥) an open ball centered at 𝑥 with radius 𝑟 . We can equip R𝑛 with different topologies:

(i) The Euclidean topology 𝒪𝑒 generated by the basis

B = {𝐵𝑟 (𝑥) : 𝑥 ∈ R𝑛, 𝑟 > 0}

of all open balls in R𝑛. (See the remark following Defn. 1.1.3)

(ii) The coarse topology 𝒪𝑐 := {∅,R𝑛}

(iii) The trivial topology 𝒪𝑡 := P(R𝑛) = {𝑈 : 𝑈 ⊂ R𝑛}.

Definition 1.1.3: Basis

Let (𝑋,𝒪) be a topological space. A collection of sets B ⊂ 𝒪 is called a basis of the topology if every𝑈 ∈ 𝒪
can be written as a union of elements in B. In other words, given 𝑈 ∈ 𝒪, we can find open sets 𝐵𝑖 ∈ B such
that𝑈 =

⋃
𝑖∈𝐼 𝐵𝑖 .

Remark. Note that every topology has a basis: take B = 𝒪. We have the alternative characterization of a basis: A
basis is a collection B of subsets of 𝑋 satisfying

(i)
⋃
𝐵∈B 𝐵 = 𝑋 (or equivalently, given any 𝑥 ∈ 𝑋 , there exists 𝐵 ∈ B with 𝑥 ∈ 𝐵),

1



1.1. TOPOLOGY 2

(ii) Given any 𝐵1, 𝐵2 ∈ B, and any 𝑥 ∈ 𝐵1 ∩ 𝐵2, there exists 𝐵3 ∈ B such that

𝑥 ∈ 𝐵3 ⊂ 𝐵1 ∩ 𝐵2.

In some sense, basis sets are a “generalization of open balls”. Given a basis B of 𝑋 , we may form a topology 𝒪 on
𝑋 as follows: define a subset𝑈 ⊂ 𝑋 to be open if and only if for all 𝑥 ∈ 𝑈, we can find 𝐵 ∈ B such that 𝑥 ∈ 𝐵 ⊂ 𝑈.

This topology 𝒪 is called the topology generated by B. It can be verified that this is indeed a topology, and that
B is a basis for 𝒪 in the sense of Defn. 1.1.3.

We are interested in specific kinds of topological spaces.

Definition 1.1.4: Hausdorff & Second Countable

A topological space (𝑋,𝒪) is called

(i) Hausdorff if for any two distinct points 𝑥, 𝑦 ∈ 𝑋 , we may find disjoint open sets 𝑈 and 𝑉 such that
𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉 .

(ii) Second Countable if 𝒪 has a basis B that is second countable.

Remark. In some sense, the Hausdorff-condition ensures there are “not too few” open sets, while the second
countable condition ensures there are “not too many” open sets. The addition of these conditions also make
topological spaces more similar to R𝑛 under the euclidean topology. To be more precise, it can be shown the
following statements hold in the corresponding spaces. (See the definitions in the remainder of this section.)

Hausdorff: (i) Compact sets are closed.

(ii) Limits of convergent sequences are unique.

(iii) One point sets are closed.

Second Countable: (i) Every open set may be written as a countable union of open sets.

(ii) Every open cover of 𝑋 has a countable subcover.

(iii) 𝑋 has a countable dense subset. That is, 𝑋 has a countable subset whose closure is equal to 𝑋 .

Example 1.1.5. Let us consider the different topologies on R𝑛 given in Example 1.1.2.

(i) The Euclidean topology is Hausdorff and second countable. Given 𝑥 ≠ 𝑦, we can pick

𝑟 <
1
2
∥𝑥 − 𝑦∥ .

The triangle inequality shows 𝐵𝑟 (𝑥) and 𝐵𝑟 (𝑦) are disjoint neighborhoods of 𝑥 and 𝑦. Since Q𝑛 is dense in
R𝑛, a countable basis is given by

B𝑒 = {𝐵𝑟 (𝑥) : 𝑥 ∈ Q𝑛, 𝑟 ∈ Q ∩ (0,∞)} .

(ii) The coarse topology is second countable but not Hausdorff. (Too few open sets.)

(iii) The trivial topology is Hausdorff but not second countable. (Too many open sets.)
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Definition 1.1.6: Constructions of New Topological Spaces

Let (𝑋,𝒪𝑋) be a topological space.

(i) If 𝑌 ⊂ 𝑋 , then the subspace topology on 𝑌 is defined by

𝒪𝑌 := {𝑈 ∩ 𝑌 : 𝑈 ∈ 𝒪𝑋} .

(ii) If 𝑓 : 𝑋 ! 𝑌 is a map, we may define the quotient topology on 𝑌 by

𝒪𝑌 :=
{
𝑉 ⊂ 𝑌 : 𝑓 −1 (𝑉) ∈ 𝒪𝑋

}
.

This construction is particularly used when 𝑓 : 𝑋 ! 𝑋/∼ is the projection map of an equivlence
relation ∼.

(iii) If (𝑌,𝒪𝑌 ) is a topological space, we may define the product topology on 𝑋 × 𝑌 to be the topology
generated by the basis

B𝑋×𝑌 := {𝑈 ×𝑉 : 𝑈 ∈ 𝒪𝑋, 𝑉 ∈ 𝒪𝑌 } .

In other words, the open sets of the product topology consist of all sets of the form
⋃
𝑖∈𝐼 (𝑈𝑖 × 𝑉𝑖),

where 𝐼 is an index set,𝑈𝑖 ∈ 𝒪𝑋, and 𝑉𝑖 ∈ 𝒪𝑌 .

Notation 1.1.7

To avoid cumbersome notation, we will denote topological space just by 𝑋 instead of (𝑋,𝒪) whenever the
topology is clear from the context.

Definition 1.1.8: Continuity & Homeomorphisms

Let 𝑋,𝑌 be topological spaces and 𝑓 : 𝑋 ! 𝑌 . Then

(i) 𝑓 is continuous if for every open 𝑉 ⊂ 𝑌 , its preimage 𝑓 −1 (𝑉) ⊂ 𝑋 is open.

(ii) 𝑓 is a homeomorphism if 𝑓 is bĳective and continuous, and the inverse map 𝑓 −1 is also continuous.

(iii) 𝑋 and 𝑌 are homeomorphic if there exists a homeomorphism between them.

Note that the quotient topology is constructed precisely so that 𝑓 : 𝑋 ! 𝑌 is continuous.

Definition 1.1.9: A few more topological definitions

Let 𝑋 be a topological space. Then

(i) 𝑋 is compact if every open cover of 𝑋 admits a finite subcover. That is, for any collection {𝑈𝑖} of open
sets with

⋃
𝑖𝑈𝑖 = 𝑀 , there exist 𝑖1, . . . , 𝑖𝑛 so that 𝑀 = 𝑈𝑖1 ∪ · · · ∪𝑈𝑖𝑛 .

(ii) 𝑋 is connected if 𝑋 cannot be written as a union of disjoint open sets.

(iii) A path 𝑐 in 𝑋 is a continuous map 𝑐 : [0, 1] ! 𝑋 , where [0, 1] is viewed as a subspace of R under the
Euclidean topology. We say that 𝑐 is a path from 𝑥 to 𝑦 if 𝑐(0) = 𝑥 and 𝑐(1) = 𝑦.

(iv) 𝑋 is path-connected if for any points 𝑥, 𝑦 ∈ 𝑋 , there exists a path 𝑐 from 𝑥 to 𝑦.

Exercise 1.1.10. Let 𝑋,𝑌 be topological spaes and 𝑍 ⊂ 𝑋 an arbitrary subset. Show that 𝑍 (equipped with the
subspace topology) is alos Hausdorff and second countable.

Exercise 1.1.11. Let 𝑋,𝑌 be topological spaces and 𝑓 : 𝑋 ! 𝑌 be a continuous map. Show that if 𝑋 is
compact/connected/path-connected, then 𝑓 (𝑋) is also compact/connected/path-connected.



1.2. SMOOTH MANIFOLDS 4

1.2 Smooth Manifolds
From now on R𝑛 is always equipped with the Euclidean topology and subsets of R𝑛 are equipped with the
corresponding subspace topology, unless stated otherwise. For open subsets 𝑈 ⊂ R𝑚, 𝑉 ⊂ R𝑛, we call a map
𝜑 : 𝑈 ! 𝑉 a diffeomorphism, if it is infinitely often differentiable (we say 𝐶∞, or smooth), bĳective, and the
inverse is also infinitely often differentiable.

Definition 1.2.1: Manifolds & Charts

A topological space 𝑀 is a manifold of dimension 𝑛 if the following hold:

(i) 𝑀 is second countable.

(ii) 𝑀 is Hausdorff.

(iii) For every 𝑝 ∈ 𝑀 , there exists an open neighborhood𝑈 of 𝑝 such that𝑈 � R𝑛.

Let 𝑀 be a manifold and 𝑝 ∈ 𝑀 . Let 𝜑 : 𝑈 � R𝑛 be a homeomorphism. The pair (𝑈, 𝜑) is called a chart of
𝑀 .

Two charts (𝑈1, 𝜑1), (𝑈2, 𝜑2) are 𝐶∞-compatible if𝑈1 ∩𝑈2 = ∅ or the transition map

𝜑2 ◦ 𝜑−1
1 : 𝜑1 (𝑈1 ∩𝑈2) ! 𝜑2 (𝑈1 ∩𝑈2)

is a diffeomorphism.

Any transition map is a priori just a homeomorphism. Thus, 𝐶∞-compatibility demands much more.

Notation 1.2.2

(i) If we want to emphasize the dimension of a manifold, we sometimes 𝑤 rite 𝑀𝑛.

(ii) If (𝑈, 𝜑) is a chart, we get component functions 𝑥𝑖 : 𝑈 ! R such that

𝑥 = 𝜑(𝑝) =
(
𝑥1 (𝑝), . . . , 𝑥𝑛 (𝑝)

)
.

If we want to emphasize the component functions, we sometimes write (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛)).

Definition 1.2.3: Atlas

Let 𝑀 be a topological manifold. A set𝒜 = {(𝑈𝑖 , 𝜑𝑖) : 𝑖 ∈ 𝐼} of charts of 𝑀 is called a 𝐶∞-atlas(or smooth
atlas of 𝑀 if

(i) the charts are pairwise 𝐶∞-compatible,

(ii) 𝑀 =
⋃
𝑖𝑈𝑖

Two 𝐶∞-atlases 𝒜1 and 𝒜2 of a topological manifold 𝑀 are equivalent, written 𝒜1 ∼ 𝒜2 if any two charts in 𝒜1
and𝒜2 are 𝐶∞-compatible. In other words,

𝒜1 ∼ 𝒜2 ⇐⇒ 𝒜1 ∪𝒜2 is a 𝐶∞ atlas.

We will verify this forms an equivalence relation.

Proof. Reflexive: Follows from Defn. 1.2.3.

Symmetric: Follows from the definition of 𝐶∞-compatibility.

Transitive: Suppose𝒜1 ∼ 𝒜2 and𝒜2 ∼ 𝒜3. Let (𝑈1, 𝜑1) ∈ 𝒜1 and (𝑈3, 𝜑3) ∈ 𝒜3. Suppose𝑈1∩𝑈3 ≠ ∅. Recall
𝜑3 ◦ 𝜑−1

1 : 𝜑1 (𝑈1 ∩𝑈3) ! 𝜑3 (𝑈1 ∩𝑈3) is a homeomorphism. We will show 𝜑3 ◦ 𝜑−1
1 is a diffeomorphism.

It will thus suffice to show that for all 𝑥 ∈ 𝜑1 (𝑈1 ∩ 𝑈3), there is an open neighborhood 𝑉 of 𝑥 such that
𝜑3 ◦ 𝜑−1

1 |𝑉 : 𝑉 ! 𝜑3 ◦ 𝜑−1
1 (𝑉) is a diffeomorphism.
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Let 𝑥 ∈ 𝜑1 (𝑈1 ∩𝑈3) and set 𝑝 = 𝜑−1
1 (𝑥) ∈ 𝑈1 ∩𝑈3. Since𝒜2 is an atlas, there exists a chart (𝑈2, 𝜑2) ∈ 𝒜2

such that 𝑝 ∈ 𝑈2. Set
𝑈 = 𝑈1 ∩𝑈2 ∩𝑈3

and define 𝑉 = 𝜑1 (𝑈). Since 𝒜2 ∼ 𝒜3, we see that (𝜑3 ◦ 𝜑−1
2 ) |𝜑2◦𝜑−1

1 (𝑉 ) is a diffeomorphism. Since
𝒜1 ∼ 𝒜2, we see that 𝜑2 ◦ 𝜑−1

1 |𝑉 is a diffeomorphsim. Hence,

𝜑3 ◦ 𝜑−1
1 |𝑉 = (𝜑3 ◦ 𝜑−1

2 ) |𝜑2◦𝜑−1
1 (𝑉 ) ◦ 𝜑2 ◦ 𝜑−1

1 |𝑉

is a diffeomorphism. This shows𝒜1 ∼ 𝒜3. □

Usually, it is straightforward to see that transition maps are diffeomorphisms. However, checking the Hausdorff and
second countable conditions and that the charts are homeomorphisms is quite tedious in general. We will discuss
some criterions which will give us these conditions for free.

Remark 1.2.4. If 𝑀 is a priori just a set, we can turn it into a smooth manifold as follows: Suppose that there exist
an index set 𝐼 and for each 𝑖 ∈ 𝐼 a subset 𝑈𝑖 ⊂ 𝑀 , an open subset 𝑉𝑖 ⊂ R𝑛 and a bĳective map 𝜑𝑖 : 𝑈𝑖 ! 𝑉𝑖 such
that

(i)
⋃
𝑖∈𝐼 𝑈𝑖 = 𝑀

(ii) 𝜑𝑖 (𝑈𝑖 ∩𝑈 𝑗 ) ⊂ R𝑛 is open for all pairs 𝑖, 𝑗 ∈ 𝐼

(iii) All transition maps 𝜑 𝑗 ◦ 𝜑−1
𝑖

: 𝜑𝑖 (𝑈𝑖 ∩𝑈 𝑗 ) ! 𝜑 𝑗 (𝑈𝑖 ∩𝑈 𝑗 ) are continuous

Now we define a subset𝑈 ⊂ 𝑀 to be open if and only if 𝜑𝑖 (𝑈𝑖 ∩𝑈) is open for all 𝑖 ∈ 𝐼. The obtained topology 𝒪
is unique topology in 𝑀 for which all 𝑈𝑖 ⊂ 𝑀 are open and the maps 𝜑𝑖 : 𝑈𝑖 ! 𝑉𝑖 are homeomorphisms, i.e. the
unique topology which satisfies (ii) in Definition 1.2.1 of a topological manifold. If additionally

(iv) 𝐼 is countable, then 𝒪 is second countable

(v) If for all 𝑝, 𝑞 ∈ 𝑀 𝑝 ≠ 𝑞, there exists 𝑈𝑖 such that 𝑝, 𝑞 ∈ 𝑈𝑖 or disjoint sets 𝑈𝑖 ,𝑈 𝑗 such that 𝑝 ∈ 𝑈𝑖 or
𝑞 ∈ 𝑈 𝑗 , then the topology is Hausdorff.

Thus, if (i)-(v) hold, (𝑀,𝒪) is a topological manifold. Finally if

(vi) All transition maps 𝜑 𝑗 ◦ 𝜑−1
𝑖

: 𝜑𝑖 (𝑈𝑖 ∩𝑈 𝑗 ) ! 𝜑 𝑗 (𝑈𝑖 ∩𝑈 𝑗 ) are 𝐶∞,𝒜 := {(𝑈𝑖 , 𝜑𝑖) : 𝑖 ∈ 𝐼} is a 𝐶∞-atlas on
𝑀 , so that (𝑀, [𝒜]) is a 𝐶∞-manifold.

In view of this remark, we can also forget about any potential a-priori topology on 𝑀 since the maps 𝜑𝑖 do not
leave much choice for the topology on 𝑀 .

Example 1.2.5. We start with some examples one usually has in mind when thinking about manifolds.

(i) The atlas𝒜 = {(R𝑛, id)}, induces a smooth structure on R𝑛, called the canonical smooth structure on R𝑛.
All the points (i)-(vi) in Remark 1.2.4 are obvious. Unless stated otherwise, R𝑛 will from now on always be
equipped with this smooth structure.

(ii) We define the following maps on S1 := {𝑥 ∈ R2 : ∥𝑥∥ = 1}:

𝜑1 : 𝑈1 := {𝑥 ∈ S1 : 𝑥1 > 0} ! (−1, 1), 𝜑1 (𝑥) = 𝑥2,

𝜑2 : 𝑈2 := {𝑥 ∈ S1 : 𝑥2 > 0} ! (−1, 1), 𝜑2 (𝑥) = 𝑥1

𝜑3 : 𝑈3 := {𝑥 ∈ S1 : 𝑥1 < 0} ! (−1, 1), 𝜑3 (𝑥) = 𝑥2

𝜑4 : 𝑈4 := {𝑥 ∈ S1 : 𝑥2 < 0} ! (−1, 1), 𝜑4 (𝑥) = 𝑥1

It is obvious that 𝑀 =
⋃4
𝑖=1𝑈𝑖 . The sets 𝜑𝑖

(
𝑈𝑖 ∩𝑈 𝑗

)
are all of the form (−1, 0) or (0, 1), hence open and

the transition maps are all of the form 𝑡 7! ±
√

1 − 𝑡2, thus smooth. Finally (iv)-(v) in Remark 1.2.4 are also
clear.
In this example, it is also pretty straightforward to see that the topology induced by the maps 𝜑𝑖 (according
to 1.2.4) coincide with the subspace topolgy coming from R2.

The advantage of the abstract notion of manifold that we are using is that it allows more sophisticated constructions,
as the following examples show:
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(iii) Define R/Z := {[𝑥] : 𝑥 ∈ R}, where 𝑥 ∼ 𝑦 if and only if 𝑥 − 𝑦 ∈ Z. We define two (hence countably many)
maps

1 : 𝑈1 := R/Z ∖ {[0]} ! (0, 1), [𝑥] 7! unique representative in (0, 1)
𝜑2 : 𝑈1 := R/Z ∖ {[1/2]} ! (−1/2, 1/2) , [𝑥] 7! unique representative in (−1/2, 1/2) .

Clearly, 𝑀 = 𝑈1 ∪𝑈2. It is straightfoward to check that

𝜑1 (𝑈1 ∩𝑈2) = (0, 1/2) ∪ (1/2, 1),
𝜑2 (𝑈1 ∩𝑈2) = (−1/2, 0) ∪ (0, 1/2)

and thus are open. Furthermore,

𝜑2 ◦ 𝜑−1
1 : 𝑥 7!

{
𝑥, if 𝑥 < 1/2
𝑥 − 1 if 𝑥 > 1/2,

𝜑1 ◦ 𝜑−1
2 : 𝑥 7!

{
𝑥 + 1, if 𝑥 < 0
𝑥 if 𝑥 > 0,

which are both smooth. Thus we have verified all points in Remark 1.2.4 except (v), which also holds for
all pairs of points 𝑝, 𝑞 ∈ R/Z, except the pair 𝑝 = [0], 𝑞 = [1/2]. In this case, we check it manually: Let
Y ∈ (0, 1/4) and 𝑉1 := {[𝑥] : |𝑥 | < Y}, 𝑉2 := {[𝑥] : |𝑥 − 1/2| < Y}. By the triangle inequality, these sets
are disjoint. One quickly verifies that 𝜑𝑖 (𝑈𝑖 ∩ 𝑉 𝑗 ) is open for 1 ≤ 𝑖, 𝑗 ≤ 2, hence 𝑉1 and 𝑉2 are the desired
disjoint open neighborhoods of 𝑝, 𝑞,respectively.

(iv) Consider the set RP𝑛 := (R𝑛 ∖ {0})/∼, where

𝑥 ∼ 𝑦 ⇐⇒ ∃_ ∈ R ∖ {0} such that 𝑥 = _𝑦.

This set can be often thought as being the set of lines through the origin. We use projective coordinates here,
that is [𝑥1 : . . . : 𝑥𝑛+1] := [𝑥], if 𝑥 = (𝑥1, · · · 𝑥𝑛). In particular [𝑥1 : · · · : 𝑥𝑛+1] = [_𝑥1 : · · · : _𝑥𝑛+1] for any
_ ∈ R ∖ {0}. Now for 𝑖 ∈ {1, . . . , 𝑛 + 1}, let

𝑈𝑖 := {[𝑥1 : · · · : 𝑥𝑛+1] : 𝑥𝑖 ≠ 0}

and define 𝜑𝑖 : 𝑈𝑖 ! R𝑛 by

𝜑𝑖 ( [𝑥1 : · · · : 𝑥𝑛+1]) :=
(
𝑥1

𝑥𝑖
, . . .

𝑥𝑖−1

𝑥𝑖
,
𝑥𝑖+1

𝑥𝑖
, . . .

𝑥𝑛+1

𝑥𝑖

)
Clearly𝑀 =

⋃𝑛+1
𝑖=1 𝑈𝑖 since each point inRP𝑛 has at least one nonvanishing (projective) coordinate. Moreover,

the 𝜑𝑖 are bĳective maps and

𝜑𝑖 (𝑈𝑖 ∩𝑈 𝑗 ) =
{
R𝑛 ∖ {𝑥 𝑗−1 = 0} if 𝑖 < 𝑗 ,

R𝑛 ∖ {𝑥 𝑗 = 0} if 𝑗 < 𝑖,

hence open in all cases. For 𝑖 < 𝑗 , the transition map is

𝜑 𝑗 ◦ 𝜑−1
𝑖 : R𝑛 ∖ {𝑥 𝑗−1 = 0} ! R𝑛 ∖ {𝑥𝑖 = 0}

(𝑥1, . . . , 𝑥𝑛) 7!
(
𝑥1

𝑥 𝑗−1 , . . .
𝑥𝑖−1

𝑥 𝑗
,

1
𝑥 𝑗−1 ,

𝑥𝑖

𝑥 𝑗−1 , . . . ,
𝑥 𝑗−2

𝑥 𝑗−1 ,
𝑥 𝑗

𝑥 𝑗−1 , . . .
𝑥𝑛

𝑥 𝑗−1

)
while for 𝑗 < 𝑖, it is

𝜑 𝑗 ◦ 𝜑−1
𝑖 : R𝑛 ∖ {𝑥 𝑗 = 0} ! R𝑛 ∖ {𝑥𝑖−1 = 0}

(𝑥1, . . . , 𝑥𝑛) 7!
(
𝑥1

𝑥 𝑗
, . . . ,

𝑥 𝑗−1

𝑥 𝑗
,
𝑥 𝑗+1

𝑥 𝑗
, . . .

𝑥𝑖−1

𝑥 𝑗
1
𝑥 𝑗
,
𝑥𝑖

𝑥 𝑗
, . . .

𝑥𝑛

𝑥 𝑗

)
,

so the all the transition maps are smooth. Moreover, for any pair of points 𝑝, 𝑞, we find 𝑈𝑖 containing
both points, unless 𝑝, 𝑞 have no common nonvanishing coordinates. In this case, we have to add a manual
argument in the spirit of example (iii).



1.2. SMOOTH MANIFOLDS 7

Finally, we discuss two constructions where we obtain a new manifold from given ones:

(v) If (𝑀, [𝒜]) is a smooth manifold, any open set 𝑈 ⊂ 𝑀 is again a 𝐶∞-manifold in a canonical way: If
𝒜 = {(𝑈𝑖 , 𝜑𝑖) : 𝑖 ∈ 𝐼} is a smooth atlas of 𝑀 , 𝒜 |𝑈 = {(𝑈𝑖 ∩𝑈, 𝜑|𝑈𝑖∩𝑈) : 𝑖 ∈ 𝐼} is a smooth atlas on 𝑈.
From now on we equip an open subset 𝑈 of a smooth manifold (𝑀, [𝒜]) always with [𝒜 |𝑈], unless stated
otherwise.

(iv) If (𝑀, [𝒜𝑀 ]), (𝑁, [𝒜𝑁 ]) are smooth manifolds, the product 𝑀 × 𝑁 can be equipped with a canonical 𝐶∞-
structure as follows: If 𝒜𝑀 = {(𝑈𝑖 , 𝜑𝑖) : 𝑖 ∈ 𝐼} and 𝒜𝑁 = {(𝑉 𝑗 , 𝜓 𝑗 ) : 𝑗 ∈ 𝐽} are smooth atlases of 𝑀, 𝑁 ,
respectively, then

𝒜𝑀×𝑁 = {(𝑈𝑖 ×𝑉 𝑗 , 𝜑𝑖 × 𝜓 𝑗 ) : (𝑖, 𝑗) ∈ 𝐼 × 𝐽}

is a smooth atlas of 𝑀 × 𝑁 . We call (𝑀 × 𝑁, [𝒜𝑀×𝑁 ]) a product manifold.

Notation 1.2.6

(i) From now on, we will usually write 𝑀 instead of (𝑀, [𝒜]) if the smooth structure is clear from the
context. If 𝑀 is a smooth manifold, we will also say from now on that (𝑈, 𝜑) is a chart of 𝑀 if it
is 𝐶∞-compatible with any chart in a given atlas 𝒜 of 𝑀 . The open set 𝑈 is often called coordinate
neighborhood.

(ii) A 1-dimensional manifold is called line, a 2-dimensional manifold surface.

Finally, in order to complement the above examples of manifolds, we also want to mention some spaces which are
locally homeomorphic to R𝑛 but not Hausdorff or not second countable.

Example 1.2.7. Let 𝑀 be a set,𝑈𝑖 , 𝑉𝑖 , 𝜑𝑖 , 𝑖 ∈ 𝐼 as in Remark 1.2.4 and suppose (i)-(iii) in Remark 1.2.4 hold. Then
with the induced topology, 𝑀 is not always a topological manifold as the topology will in general not be Hausdorff
or countable:

(i) Let 𝑀 = R ∖ {0} ∪ {𝑝1} ∪ 𝑝2. For 𝑖 = 1, 2, set 𝑈𝑖 = R ∖ {0} ∪ {𝑝𝑖} and define the map 𝜑𝑖 : 𝑈𝑖 ! R as
𝜑𝑖 (𝑥) = 𝑥 for 𝑥 ∈ R ∖ {0} and 𝜑𝑖 (𝑝𝑖) = 0. Then, we obviously have 𝑀 = 𝑈1 ∪𝑈2, 𝜑𝑖 (𝑈𝑖 ∩𝑈 𝑗 ) = R ∖ {0},
hence open, and the transition maps are given by the identity, hence smooth and in particular, continuous.
Because we only have two charts, the topology is also second countable. However, it is not Hausdorff,
because 𝑝1 and 𝑝2 can not be separated by open neighborhoods: For any open neighborhood𝑉𝑖 of 𝑝𝑖 𝑖 = 1, 2,
𝜑1 (𝑉𝑖) contains an interval of the form (−Y, 0) ∪ (0, Y) which means that 𝑉1 ∩𝑉2 ≠ ∅.

(ii) Consider𝑀 = R2 with the sets𝑈𝑥 = {𝑥}×R, 𝑥 ∈ R and the bĳective maps 𝜑𝑥 : 𝑈𝑥 ! 𝑉𝑥 = R, 𝜑𝑥 ((𝑥, 𝑦)) = 𝑦.
Clearly 𝑀 =

⋃
𝑥∈R𝑈𝑥 and with the induced topology on 𝑀 , each 𝑈𝑥 is an open set homeomorphic to R.

The 𝑈𝑥 are pairwise disjoint, so there are no transition maps. Thus, (i)-(iii) in Remark 1.2.4 hold and it is
also not hard to check that 𝑀 is Hausdorff. However, it is not countable because 𝑀 contains uncountably
many pairwise disjoint open subsets.

Definition 1.2.8: Smooth Manifold

Let 𝑀 be a manifold and 𝒜 an atlas. Then the pair (𝑀, [𝒜]), where [𝒜] is the equivalence class of 𝒜, is
called a 𝐶∞-manifold (or smooth manifold). We call [𝒜] a 𝐶∞-structure (or smooth structure) on 𝑀 .

Remark 1.2.9. If 𝑀 is a topological manifold, a 𝐶∞-structure is uniquely determined by picking one 𝐶∞-atlas𝒜
on 𝑀 . (This is because𝒜 determines [𝒜].)

Lemma 1.2.10

Any 𝐶∞-structure [𝒜] on a topological manifold 𝑀 contains a countable atlas𝒜 ∈ [𝒜].

Proof. This follows from 𝑀 being second countable and𝒜 being an open cover. □
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1.3 Smooth functions
Definition 1.3.1: Smooth map

Let 𝑀, 𝑁 be 𝐶∞ manifolds. A continuous map 𝑓 : 𝑀 ! 𝑁 is called 𝐶∞ (or smooth) if for every 𝑝 ∈ 𝑀 ,
there exist charts (𝑈, 𝜑) of 𝑀 and (𝑉, 𝜓) of 𝑁 with 𝑝 ∈ 𝑈, 𝑓 (𝑝) ∈ 𝑉 such that

𝜓 ◦ 𝑓 ◦ 𝜑−1 : 𝜑(𝑈 ∩ 𝑓 −1 (𝑉)) ! 𝜓(𝑉)

is smooth (in the classical sense).

We adopt the notation

𝐶∞ (𝑀, 𝑁) :=
{
𝑀

𝑓
−! 𝑁 : 𝑓 is 𝐶∞

}
𝐶∞ (𝑀) := 𝐶∞ (𝑀,R).

That is, 𝐶∞ (𝑀, 𝑁) refers to the set of all smooth maps from 𝑀 to 𝑁 . The elements of 𝐶∞ (𝑀) are called
𝐶∞-functions (or smooth functions) on 𝑀 .

Definition 1.3.2: Diffeomorphism

Let 𝑀 ,𝑁 be smooth manifolds and 𝑓 ∈ 𝐶∞ (𝑀, 𝑁). Then 𝑓 is a diffeomorphism if 𝑓 is bĳective and
𝑓 −1 ∈ 𝐶∞ (𝑀, 𝑁). In this case, we say 𝑀 and 𝑁 are diffeomorphic.

Example 1.3.3. (i) Any map 𝑓 : R𝑛 ! R𝑚 which is smooth in the classical sense is also smooth in the manifold
sense. We can take the identity charts in this case to see that the composition

id ◦ 𝑓 ◦ id−1 = 𝑓

is smooth.

(ii) If 𝑀 is a smooth manifold and (𝑈, 𝜑) is a chart on 𝑀 , then 𝜑 : 𝑈 ! 𝜑(𝑈) is a diffeomorphism.

(iii) The manifolds S1 and R/Z are diffeomorphic (exercise).

Lemma 1.3.4

Let 𝑀, 𝑁 be smooth manifolds and 𝑓 : 𝑀 ! 𝑁 . The following are equivalent.

(i) 𝑓 is smooth.

(ii) For any chart (𝑈, 𝜑) of 𝑀 and (𝑉, 𝜓) of 𝑁 , the composition

𝜓 ◦ 𝑓 ◦ 𝜑−1 : 𝜑(𝑈 ∩ 𝑓 −1 (𝑉)) ! 𝜓(𝑉). (1.3.1)

is smooth.

Proof. (ii) ⇒ (i): Clear.

(i) ⇒ (ii): Let (𝑈, 𝜑), (𝑉, 𝜓) be as in (ii). Let 𝑝 ∈ 𝑈 ∩ 𝑓 −1 (𝑉). It will suffice to show that 𝜓 ◦ 𝑓 ◦ 𝜑−1 is 𝐶∞ in
a neighborhood of 𝜑(𝑝). Since 𝑓 is smooth, there exist charts (𝑈, 𝜑) of 𝑀 and (𝑉, 𝜑) in 𝑁 with 𝑝 ∈ 𝑈 and
𝑓 (𝑝) ∈ 𝑉 such that

𝜓 ◦ 𝑓 ◦ 𝜑−1 : 𝜑
(
𝑈 ∩ 𝑓 −1

(
𝑉

))
! 𝜓

(
𝑉

)
is smooth. Since 𝜑, 𝜓 are homeomorphisms and smoothness in R𝑛 is a local property, we may make 𝑈 and
𝑉 smaller so that 𝑈 ⊂ 𝑈 and 𝑉 ⊂ 𝑉 . (For example, replace 𝑈 with 𝑈 ∩ 𝑈 and 𝑉 with 𝑉 ∩ 𝑉 .) Since the
transition maps are smooth, we see that on 𝜑

(
𝑈 ∩ 𝑓 −1

(
𝑉

))
, we have

𝜓 ◦ 𝑓 ◦ 𝜑−1 =

(
𝜓 ◦ 𝜓−1

)
︸      ︷︷      ︸

𝐶∞

◦
(
𝜓 ◦ 𝑓 ◦ 𝜑−1

)
︸           ︷︷           ︸

𝐶∞

◦
(
𝜑 ◦ 𝜑−1

)
︸      ︷︷      ︸

𝐶∞

.
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This shows (1.3.1) is smooth. □

Lemma 1.3.5

The collection of smooth manifolds with smooth maps forms a category.

Proof. We must show the identity map is smooth and that the composition of two smooth maps is smooth. Given
𝑝 ∈ 𝑀 , pick a chart (𝑈, 𝜑) such that 𝑝 ∈ 𝑈. Then set (𝑉, 𝜓) = (𝑈, 𝜑) since 𝑝 = id(𝑝). Observe

𝜓 ◦ id ◦𝜑−1 = 𝜑 ◦ 𝜑−1 = id

so that id is a smooth map.

Next, consider smooth maps 𝑀 𝑓
−! 𝑁

𝑔
−! 𝑃. We must show 𝑔 ◦ 𝑓 is smooth. (𝑈, 𝜑) be a chart of 𝑀 and (𝑊, 𝜒) be

a chart of 𝑃. Pick 𝑝 ∈ 𝑈 ∩ (𝑔 ◦ 𝑓 )−1 (𝑊). By Lemma 1.3.4, it will suffice to show

𝜒 ◦ 𝑔 ◦ 𝑓 ◦ 𝜑−1 : 𝜑(𝑈 ∩ (𝑔 ◦ 𝑓 )−1 (𝑊)) ! 𝜒(𝑊)

is smooth near 𝜑(𝑝). Let (𝑉, 𝜓) be a chart of 𝑁 with 𝑓 (𝑝) ∈ 𝑉 . Then near 𝜑(𝑝), on 𝜑(𝑈 ∩ 𝑓 −1 (𝑉 ∩ 𝑔−1 (𝑊))),
we have

𝜒 ◦ 𝑔 ◦ 𝑓 ◦ 𝜑−1 = 𝜒 ◦ 𝑔 ◦ 𝜓−1︸        ︷︷        ︸
𝐶∞

◦𝜓 ◦ 𝑓 ◦ 𝜑−1︸        ︷︷        ︸
𝐶∞

. □

Remark 1.3.6. Let 𝑀 be a smooth manifold.

(i) Let Diff (𝑀) denote the set of all diffeomorphisms 𝑓 : 𝑀 ! 𝑀 . Under the natural composition of maps,
⟨Diff (𝑀), ◦⟩ is a group, the diffeomorphism group of 𝑀 .

(ii) With the natural addition and multiplication of functions, ⟨𝐶∞ (𝑀), +, ·⟩ is a commutative ring with a unit
(the constant function 1).

Remark 1.3.7. Let 𝑀 be a topological manifold and𝒜1 and𝒜2 two smooth atlases on 𝑀 . If [𝒜1] ≠ [𝒜2], it may
still happen that the two smooth manifolds (𝑀, [𝒜1]) and (𝑀, [𝒜2]) are diffeomorphic. In this case we call the
two smooth structures [𝒜1] and [𝒜2] equivalent.

One can show that on R𝑛, with 𝑛 ≠ 4, there exists up to equivalence only one smooth structure. However, R4 admits
uncountably many inequivalent smooth structures!

Exercise 1.3.8. Prove that two atlases 𝒜1 and 𝒜2 on a topological manifold 𝑀 are equivalent if and only if the
identity map

id : (𝑀, [𝒜1]) ! (𝑀, [𝒜2]), 𝑥 7! 𝑥 ,

is a diffeomorphism with respect to the smooth structures [𝒜1] and [𝒜2].

Exercise 1.3.9. Find a smooth atlas for the unit sphere in R3, i.e. for

S2 =
{
𝑥 ∈ R3 : ∥𝑥∥ = 1

}
.

Show that the charts of your atlas are 𝐶∞-compatible and cover all of S2.

Exercise 1.3.10. Consider the atlas𝒜1 = {(R, id)} on R and recall that [𝒜1] is the canonical smooth structure on
R.

(a) Find a homeomorphism 𝜑 on R which is not a diffeomorphism (with respect to [𝒜1]).

(b) Is there a smooth structure [𝒜2] on R such that 𝜑 : (R, [𝒜1]) ! (R, [𝒜2]) is a diffeomorphism?

Exercise 1.3.11. Show that the manifolds S1 and R/Z constructed in Example 1.2.5 are diffeomorphic, i.e. find a
bĳection between these two manifolds and show that it is a diffeomorphism.

Exercise 1.3.12. Let 𝑀 be a smooth manifold and 𝐺 a group which acts on 𝑀 via diffeomorphisms, that is we
have a group homomorphism 𝜑 : 𝐺 ! Diff (𝑀). Prove that if 𝐺 acts strictly discontinuously on 𝑀 , the quotient
space 𝑀/𝐺 carries a unique smooth structure such that the projection map 𝜋 : 𝑀 ! 𝑀/𝐺 is smooth.
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1.4 The Tangent Space
Definition 1.4.1: Smooth Curves

A smooth curve on a smooth manifold 𝑀 is an element 𝑐 ∈ 𝐶∞ (𝐼Y , 𝑀), where 𝐼Y = (−Y, Y) for some Y > 0.
For 𝑝 ∈ 𝑀 , let

𝐶𝑝 := {𝑐 ∈ 𝐶∞ (𝐼Y , 𝑀) : 𝑐(0) = 𝑝}

be the set of all curves through 𝑝.

We say that two curves 𝑐1, 𝑐2 ∈ 𝐶𝑝 are equivalent if there exists a chart (𝑈, 𝜑) with 𝑝 ∈ 𝑈 such that

𝑑

𝑑𝑡
(𝜑 ◦ 𝑐1)

���
𝑡=0

=
𝑑

𝑑𝑡
(𝜑 ◦ 𝑐2)

���
𝑡=0
. (1.4.1)

Lemma 1.4.2

(i) If (1.4.1) holds for one chart, it holds for any chart.

(ii) ∼ is an equivalence relation on 𝐶𝑝 .

Proof. (i) Let (𝑉, 𝜓) be another chart with 𝑝 ∈ 𝑉 . The chain rule shows that for 𝑖 = 1, 2,

𝑑

𝑑𝑡
(𝜓 ◦ 𝑐𝑖)

���
𝑡=0

=
𝑑

𝑑𝑡
(𝜓 ◦ 𝜑−1 ◦ 𝜑 ◦ 𝑐𝑖)

���
𝑡=0

= 𝐷 (𝜓 ◦ 𝜑−1)
��
𝜑 (𝑥 )

𝑑

𝑑𝑡
(𝜑 ◦ 𝑐𝑖)

���
𝑡=0
. (1.4.2)

Then (1.4.1) implies

𝑑

𝑑𝑡
(𝜓 ◦ 𝑐1)

���
𝑡=0

= 𝐷 (𝜓 ◦ 𝜑−1)
��
𝜑 (𝑥 )

𝑑

𝑑𝑡
(𝜑 ◦ 𝑐1)

���
𝑡=0

= 𝐷 (𝜓 ◦ 𝜑−1)
��
𝜑 (𝑥 )

𝑑

𝑑𝑡
(𝜑 ◦ 𝑐2)

���
𝑡=0

=
𝑑

𝑑𝑡
(𝜓 ◦ 𝑐2)

���
𝑡=0
.

(ii) Symmetry and reflexivity are clear. We show transitivity. Suppose 𝑐1 ∼ 𝑐2 ∼ 𝑐3 and let (𝑈, 𝜑) be any chart
of 𝑀 with 𝑝 ∈ 𝑈. Then by (i),

𝑑

𝑑𝑡
(𝜑 ◦ 𝑐1)

���
𝑡=0

=
𝑑

𝑑𝑡
(𝜑 ◦ 𝑐2)

���
𝑡=0

=
𝑑

𝑑𝑡
(𝜑 ◦ 𝑐3)

���
𝑡=0
. □

Definition 1.4.3: Tangent Vectors & Tangent Space

Let 𝑀 be a smooth manifold and 𝑝 ∈ 𝑀 . A tangent vector 𝑣 to 𝑀 at 𝑝 is an equivalence class of 𝐶∞ curves
𝑐 ∈ 𝐶𝑝 . That is, 𝑣 = [𝑐] 𝑝 for some 𝑐 ∈ 𝐶𝑝 . The tangent space to 𝑀 at 𝑝, denoted 𝑇𝑝𝑀 , is defined to be the
set of all tangent vectors to 𝑀 at 𝑝. That is,

𝑇𝑝𝑀 = 𝐶𝑝/∼ .
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Proposition 1.4.4

Let 𝑀𝑛 be a 𝐶∞ manifold, 𝑝 ∈ 𝑀 , and (𝑈, 𝜑) be a chart of 𝑀 with 𝑝 ∈ 𝑀 . Then the map

𝑇𝑝𝜑 : 𝑇𝑝𝑀 ! R𝑛

[𝑐] 𝑝 7!
𝑑

𝑑𝑡
(𝜑 ◦ 𝑐)

���
𝑡=0

is well-defined and bĳective. By defining

𝑣 +𝜑 𝑤 := (𝑇𝑝𝜑)−1 (𝑇𝑝𝜑(𝑣) + 𝑇𝑝𝜑(𝑤))
𝛼 ·𝜑 𝑤 := (𝑇𝑝𝜑)−1 (𝛼𝑇𝑝𝜑(𝑤)) ,

𝑇𝑝𝑀 becomes a real vector space. This structure is independent of the choice of chart. This implies 𝑇𝑝𝑀 can
be equipped with a canonical vector space structure and dim𝑇𝑝 (𝑀) = dim(𝑀) = 𝑛.

Proof. (1.4.1) and Lemma 1.4.2 show 𝑇𝑝𝜑 is well-defined and injective. We will show 𝑇𝑝𝜑 is surjective. Let
𝑤 ∈ R𝑛; define 𝑐 ∈ 𝐶𝑝 by

𝑐(𝑡) := 𝜑−1 (𝜑(𝑝) + 𝑡𝑤)
.

Note 𝑐(𝑡) ∈ 𝜑(𝑈) when 𝑡 is small. Observe that

𝑇𝑝𝜑[𝑐] 𝑝 =
𝑑

𝑑𝑡
(𝜑 ◦ 𝑐)

���
𝑡=0

=
𝑑

𝑑𝑡
(𝜑(𝑝) + 𝑡𝑤)

���
𝑡=0

= 𝑤.

The definitions of addition and scalar multiplication force 𝑇𝑝𝜑 to become a linear map. That is,

𝑇𝑝𝜑(𝑣 +𝜑 𝑤) = 𝑇𝑝𝜑
(
(𝑇𝑝𝜑)−1 (𝑇𝑝𝜑(𝑣) + 𝑇𝑝𝜑(𝑤)) ) = 𝑇𝑝𝜑(𝑣) + 𝑇𝑝𝜑(𝑤)

𝑇𝑝𝜑
(
𝛼 ·𝜑 𝑤

)
= 𝑇𝑝𝜑

(
(𝑇𝑝𝜑)−1 (𝛼𝑇𝑝𝜑(𝑤)) ) = 𝛼𝑇𝑝𝜑(𝑤).

Thus, the vector space structure of R𝑛 is imported into 𝑇𝑝𝑀 in a way such that R𝑛 � 𝑇𝑝𝑀 . Let (𝑉, 𝜓) be another
chart of 𝑀 with 𝑝 ∈ 𝑉 . Then by (1.4.2),

𝑇𝑝𝜓 [𝑐] 𝑝 =
𝑑

𝑑𝑡
(𝜓 ◦ 𝑐)

��
𝑡=0

= 𝐷 (𝜓 ◦ 𝜑−1)
��
𝜑 (𝑝)

𝑑

𝑑𝑡
(𝜑 ◦ 𝑐)

��
𝑡=0

= 𝐷 (𝜓 ◦ 𝜑−1)
��
𝜑 (𝑝) ◦ 𝑇𝑝𝜑[𝑐] 𝑝

so that
𝑇𝑝𝜓 [𝑐] 𝑝 = 𝐷 (𝜓 ◦ 𝜑−1)

��
𝜑 (𝑝) ◦ 𝑇𝑝𝜑[𝑐] 𝑝 . (1.4.3)

Note (1.4.3) is equivalent to
𝑇𝑝𝜓 ◦

(
𝑇𝑝𝜑

)−1
= 𝐷 (𝜓 ◦ 𝜑−1)

��
𝜑 (𝑝) ,

which implies

(𝑇𝑝𝜑)−1 = (𝑇𝑝𝜓)−1 ◦ 𝑇𝑝𝜓 ◦ (𝑇𝑝𝜑)−1

= (𝑇𝑝𝜓)−1 ◦ 𝐷 (𝜓 ◦ 𝜑−1)
��
𝜑 (𝑝) .

We have thus shown
(𝑇𝑝𝜑)−1 = (𝑇𝑝𝜓)−1 ◦ 𝐷 (𝜓 ◦ 𝜑−1)

��
𝜑 (𝑝) . (1.4.4)

Now, let 𝑣, 𝑤 ∈ 𝑇𝑝𝑀 . Then by linearity of 𝐷 (𝜓 ◦ 𝜑−1) |𝜑 (𝑝) ,

𝑣 +𝜓 𝑤 = (𝑇𝑝𝜓)−1 (𝑇𝑝𝜓(𝑣) + 𝑇𝑝𝜓(𝑤))
= (𝑇𝑝𝜓)−1 (𝐷 (𝜓 ◦ 𝜑−1)

��
𝜑 (𝑝) ◦ 𝑇𝑝𝜑(𝑣) + 𝐷 (𝜓 ◦ 𝜑−1)

��
𝜑 (𝑝) ◦ 𝑇𝑝𝜑(𝑤)

)
, by (1.4.3)

= (𝑇𝑝𝜓)−1 ◦ 𝐷 (𝜓 ◦ 𝜑−1)
��
𝜑 (𝑝)

(
𝑇𝑝𝜑(𝑣) + 𝑇𝑝𝜑(𝑤)

)
= (𝑇𝑝𝜑)−1 (𝑇𝑝𝜑(𝑣) + 𝑇𝑝𝜑(𝑤)) ) , by (1.4.4)

= 𝑣 +𝜑 𝑤.
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The argument for scalar multiplication is analogous. □

Remark. We could have started out by showing that the map

𝐹 : 𝐶𝑝 ! R𝑛

𝑐 7!
𝑑

𝑑𝑡
(𝜑 ◦ 𝑐)

���
𝑡=0

is surjective and that the equivalence relation defined on 𝐶𝑝 is precisely the equivalence relation induced by 𝐹.
(That is, the relation 𝑐1 ∼ 𝑐2 ⇐⇒ 𝐹 (𝑐1) = 𝐹 (𝑐2).) Then it is a standard result that 𝐹 descends to a bĳective map
(see Figure 1.1). We may then define 𝑇𝑝𝑀 = 𝐶𝑝/∼ and 𝑇𝑝𝜑 = 𝐹.

𝐶𝑝

𝐶𝑝/∼

R𝑛
𝐹

𝐹

Figure 1.1

Remark 1.4.5. If 𝑀 is a smooth manifold and𝑈 ⊂ 𝑀 is open, then 𝑇𝑝𝑈 = 𝑇𝑝𝑀 for every 𝑝 ∈ 𝑈. This is because
we could restrict ourselves to curves contained in𝑈 when constructing 𝐶𝑝 .

Definition 1.4.6: Coordinate Vectors

Let 𝑀𝑛 be a smooth manifold and (𝑈, 𝜑) be a chart of 𝑀 . For all 𝑝 ∈ 𝑈, the coordinate vectors at 𝑝 with
respect to (𝑈, 𝜑) are given by

𝜕

𝜕𝑥𝑖

���
𝑝

:=
(
𝑇𝑝𝜑

)−1 (𝑒𝑖) ∈ 𝑇𝑝𝑀 (1 ≤ 𝑖 ≤ 𝑛).

The collection 𝜕

𝜕𝑥1

��
𝑝
, . . . , 𝜕

𝜕𝑥𝑛

��
𝑝

is the coordinate basis of 𝑇𝑝𝑀 with respect to (𝑈, 𝜑).

Note the coordinate basis does indeed inform a basis since 𝑇𝑝𝜑 is a vector space isomorphism.

Definition 1.4.7: Tangent Map

Let 𝑓 ∈ 𝐶∞ (𝑀, 𝑁) and 𝑝 ∈ 𝑀 . The map

𝑇𝑝 𝑓 : 𝑇𝑝𝑀 ! 𝑇 𝑓 (𝑝)𝑁

[𝑐] 𝑝 7! [ 𝑓 ◦ 𝑐] 𝑓 (𝑝)

is called the tangent map of 𝑓 at 𝑝.

We will show that the tangent map is well-defined and linear.

Proof. First, note that 𝑓 ◦𝑐 ∈ 𝐶 𝑓 (𝑝) . Let (𝑈, 𝜑) be a chart of𝑀 and (𝑉, 𝜓) be a chart of𝑁 such that 𝑝 ∈ 𝑈, 𝑓 (𝑝) ∈ 𝑉 .
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Then by the chain rule and Prop. 1.4.4,

𝑇𝑝 𝑓 [𝑐] 𝑝 = [ 𝑓 ◦ 𝑐] 𝑓 (𝑝)

=
(
𝑇 𝑓 (𝑝)𝜓

)−1 𝑑

𝑑𝑡
(𝜓 ◦ 𝑓 ◦ 𝑐)

��
𝑡=0

=
(
𝑇 𝑓 (𝑝)𝜓

)−1 𝑑

𝑑𝑡

(
𝜓 ◦ 𝑓 ◦ 𝜑−1 ◦ 𝜑 ◦ 𝑐

) ��
𝑡=0

=
(
𝑇 𝑓 (𝑝)𝜓

)−1
𝐷

(
𝜓 ◦ 𝑓 ◦ 𝜑−1

) ��
𝜑 (𝑝)

𝑑

𝑑𝑡
(𝜑 ◦ 𝑐)

��
𝑡=0

=
(
𝑇 𝑓 (𝑝)𝜓

)−1
𝐷

(
𝜓 ◦ 𝑓 ◦ 𝜑−1

) ��
𝜑 (𝑝)𝑇𝑝𝜑[𝑐] 𝑝 .

This implies
𝑇𝑝 𝑓 =

(
𝑇 𝑓 (𝑝)𝜓

)−1︸        ︷︷        ︸
linear

◦𝐷
(
𝜓 ◦ 𝑓 ◦ 𝜑−1

)
|𝜑 (𝑝)︸                      ︷︷                      ︸

linear

◦ 𝑇𝑝𝜑︸︷︷︸
linear

. (1.4.5)
□

Remark 1.4.8. (i) For smooth manifolds 𝑀 ,𝑁 , the definition of 𝑇𝑝 𝑓 also makes sense for functions that are
only defined on a neighborhood𝑈 of 𝑝.

(ii) For open subsets𝑈 ⊂ R𝑛 and 𝑝 ∈ 𝑈, there is a canonical isomorphism

𝑇𝑝 id : 𝑇𝑝𝑈 � R𝑛

[𝑐] 𝑝 7!
𝑑

𝑑𝑡
𝑐

���
𝑡=0
,

where we identify a vector [𝑐] 𝑝 ∈ 𝑇𝑝𝑀 with the vector 𝑑
𝑑𝑡
(id ◦𝑐)

��
𝑡=0 ∈ R𝑛 that uniquely determines its

equivalence class.

(iii) Via this canonical isomorphism, the definition of 𝑇𝑝𝜑 for a chart in Prop. 1.4.4 coincides with the definition
of

𝑇𝑝𝜑 : 𝑇𝑝𝑀 = 𝑇𝑝𝑈 ! 𝑇𝑝𝜑(𝑈)
[𝑐] 𝑝 7! [𝜑 ◦ 𝑐]𝜑 (𝑝)

in Defn. 1.4.7 More concretely, the definitions coincide via

𝑇𝑝𝑈
𝑇𝑝𝜑
−−! 𝑇𝜑 (𝑝)𝜑(𝑈)

𝑇𝑝 idR𝑛
−−−−!R𝑛,

where elements get mapped by

[𝑐] 𝑝
𝑇𝑝𝜑
7−−! [𝜑 ◦ 𝑐]𝜑 (𝑝)

𝑇𝑝 id
7−−−!

𝑑

𝑑𝑡
(𝜑 ◦ 𝑐)

���
𝑡=0
.
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Proposition 1.4.9: Functoriality of 𝑇𝑝

𝑇𝑝 is a functor from the category of pointed smooth manifolds to the category of real vector spaces. More
explicitly, this means

(i) 𝑇𝑝 id𝑀 = id𝑇𝑝𝑀 ;

(ii) If 𝑀 𝑓
−! 𝑁

𝑔
−! 𝑃 are smooth, then

𝑇𝑝 (𝑔 ◦ 𝑓 ) = 𝑇 𝑓 (𝑝)𝑔 ◦ 𝑇𝑝 𝑓 (𝑝 ∈ 𝑀).

Proof. (i) follows immediately from Defn. 1.4.7. To show (ii), observe that

𝑇𝑝 (𝑔 ◦ 𝑓 ) [𝑐] 𝑝 = [𝑔 ◦ 𝑓 ◦ 𝑐]𝑔◦ 𝑓 (𝑝) = 𝑇 𝑓 (𝑝)𝑔[ 𝑓 ◦ 𝑐] 𝑓 (𝑝) = 𝑇 𝑓 (𝑝)𝑔 ◦ 𝑇𝑝 𝑓 [𝑐] 𝑝 . □

Proposition 1.4.10

Suppose

(i) 𝑀𝑛, 𝑁𝑚 are 𝐶∞ manifolds,

(ii) 𝑓 : 𝑀 ! 𝑁 is smooth,

(iii) (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛)) is a chart of 𝑀 around 𝑝,

(iv) (𝑉, 𝜓 = (𝑦1, . . . , 𝑦𝑛)) is a chart of 𝑁 around 𝑓 (𝑝),

Then the matrix representation of 𝑇𝑝 𝑓 with respect to coordinate bases
{
𝜕

𝜕𝑥1

��
𝑝
, . . . , 𝜕

𝜕𝑥𝑛

��
𝑝

}
and{

𝜕

𝜕𝑦1

��
𝑓 (𝑝) , . . . ,

𝜕
𝜕𝑦𝑚

��
𝑓 (𝑝)

}
is given by the Jacobian matrix of 𝜓 ◦ 𝑓 ◦ 𝜑−1 at 𝜑(𝑝). In other words,

𝑇𝑝 𝑓

(
𝜕

𝜕𝑥𝑖

���
𝑝

)
=

𝑚∑︁
𝑗=1

𝜕
(
𝑦 𝑗 ◦ 𝑓 ◦ 𝜑−1)

𝜕𝑥𝑖

(
𝜑(𝑝)

) 𝜕

𝜕𝑦 𝑗

���
𝑓 (𝑝)

. (1.4.6)

Proof. Recall that
{
𝜕

𝜕𝑥1

��
𝑝
, . . . , 𝜕

𝜕𝑥𝑛

��
𝑝

}
is a basis of 𝑇𝑝𝑀 and

{
𝜕

𝜕𝑦1

��
𝑓 (𝑝) , . . . ,

𝜕
𝜕𝑦𝑚

��
𝑓 (𝑝)

}
is a basis of 𝑇 𝑓 (𝑝)𝑁 . (See

Defn. 1.4.3.) The assertion follows from computing

𝑇𝑝 𝑓

(
𝜕

𝜕𝑥𝑖

���
𝑝

)
=

(
𝑇 𝑓 (𝑝)𝜓

)−1 ◦ 𝐷
(
𝜓 ◦ 𝑓 ◦ 𝜑−1

) ��
𝜑 (𝑝) ◦ 𝑇𝑝𝜑

(
𝜕

𝜕𝑥𝑖

���
𝑝

)
, by (1.4.5)

=
(
𝑇 𝑓 (𝑝)𝜓

)−1 ◦ 𝐷
(
𝜓 ◦ 𝑓 ◦ 𝜑−1

) ��
𝜑 (𝑝) (𝑒𝑖) , by Defn. 1.4.6

=
(
𝑇 𝑓 (𝑝)𝜓

)−1 ©«
𝑚∑︁
𝑗=1

𝜕𝑦 𝑗 ◦ 𝑓 ◦ 𝜑−1

𝜕𝑥𝑖
(𝜑(𝑝)) · 𝑒 𝑗

ª®¬
=

𝑚∑︁
𝑗=1

𝜕𝑦 𝑗 ◦ 𝑓 ◦ 𝜑−1

𝜕𝑥𝑖
(𝜑(𝑝))︸                      ︷︷                      ︸

∈R

(
𝑇 𝑓 (𝑝)𝜓

)−1 (
𝑒 𝑗

)
, by linearity

=

𝑚∑︁
𝑗=1

𝜕𝑦 𝑗 ◦ 𝑓 ◦ 𝜑−1

𝜕𝑥𝑖
(𝜑(𝑝)) 𝜕

𝜕𝑦 𝑗

��
𝑓 (𝑝) , by Defn. 1.4.6.

□

Remark 1.4.11. Prop. 1.4.10 has many interesting special cases.

(i) If 𝑀 ⊂ R𝑛 and 𝑁 ⊂ R𝑚 are open, then 𝑇𝑝 𝑓 coincides with the standard differential 𝐷 𝑓 |𝑝 via the canonical
isomorphism from Remark 1.4.8(iii). In that sense, the tangent map can be seen as a generalization of the
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Jacobian. More explicitly, set 𝜓 = 𝜑 = id and see that

𝑇𝑝 𝑓

(
𝜕

𝜕𝑥𝑖

���
𝑝

)
=

𝑚∑︁
𝑗=1

𝜕𝑦 𝑗 ◦ 𝑓 ◦ id
𝜕𝑥𝑖

(𝑝) · 𝜕

𝜕𝑥 𝑗

���
𝑝
=

𝑚∑︁
𝑗=1

𝜕 𝑓 𝑗

𝜕𝑥𝑖
(𝑝) · 𝜕

𝜕𝑥 𝑗

���
𝑝
�

𝑚∑︁
𝑗=1

𝜕 𝑓 𝑗

𝜕𝑥𝑖
(𝑝) · 𝑒 𝑗 .

(ii) If (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛)) and (𝑉, 𝜓 = (𝑦1, . . . , 𝑦𝑛)) are two different charts of 𝑀 with 𝑝 ∈ 𝑈 ∩𝑉 , then (1.4.6)
with 𝑓 = id yields

𝜕

𝜕𝑥𝑖

���
𝑝
=

𝑚∑︁
𝑗=1

𝜕
(
𝑦 𝑗 ◦ 𝜑−1)
𝜕𝑥𝑖

(
𝜑 (𝑝)

) 𝜕

𝜕𝑦 𝑗

���
𝑝
. (1.4.7)

Note that we have also used the functoriality of 𝑇𝑝 to obtain 𝑇𝑝 id
(
𝜕
𝜕𝑥𝑖

��
𝑝

)
= 𝜕

𝜕𝑥𝑖

��
𝑝
. Then (1.4.7) is the

transformation rule between coordinate bases. Compare with (1.4.3).

(iii) If 𝑀 = 𝐼 ⊂ R is an open interval, 𝑡 the standard coordinate on 𝐼, and 𝑐 ∈ 𝐶∞ (𝐼, 𝑁) a smooth curve, we
denote

𝜕𝑐

𝜕𝑡
:= 𝑇𝑡𝑐

(
𝜕

𝜕𝑡

���
𝑡

)
∈ 𝑇𝑐 (𝑡 )𝑀.

In this case, (1.4.6) yields
𝜕𝑐

𝜕𝑡
=

𝑛∑︁
𝑗=1

𝜕𝑦 𝑗 ◦ 𝑐
𝜕𝑡

(𝑡) 𝜕

𝜕𝑦 𝑗

���
𝑐 (𝑡 )

. (1.4.8)

(iv) If 𝑁 = R, then the theorem shows that (under the identification 𝑇 𝑓 (𝑝)R � R)

𝑇𝑝 𝑓

(
𝜕

𝜕𝑥𝑖

���
𝑝

)
=
𝜕

(
𝑓 ◦ 𝜑−1)
𝜕𝑥𝑖

(𝜑 (𝑝)) 𝜕
𝜕𝑦

���
𝑓 (𝑝)
�
𝜕

(
𝑓 ◦ 𝜑−1)
𝜕𝑥𝑖

(𝜑 (𝑝)) .

Thus, if 𝑣 =
∑𝑛
𝑖=1 𝑣

𝑖 · 𝜕
𝜕𝑥𝑖

��
𝑝
∈ 𝑇𝑝𝑀 , then

𝑇𝑝 𝑓 (𝑣) = 𝑇𝑝 𝑓
(
𝑛∑︁
𝑖=1

𝑣𝑖
𝜕

𝜕𝑥𝑖

���
𝑝

)
�

𝑛∑︁
𝑖=1

𝑣𝑖
𝜕

(
𝑓 ◦ 𝜑−1)
𝜕𝑥𝑖

(𝜑 (𝑝)) . (1.4.9)

We also write
𝜕𝑣 𝑓 := 𝑣( 𝑓 ) := 𝑇𝑝 𝑓 (𝑣).

This is the directional derivative of 𝑓 in the direction of 𝑣.

(v) Sometimes, we write 𝜕𝑥𝑖
��
𝑝

for 𝜕
𝜕𝑥𝑖

��
𝑝

or even 𝜕𝑖
��
𝑝

if the coordinates being chosen are understood. For
𝑓 ∈ 𝐶∞ (𝑀), we often write (by abuse of notation)

𝜕 𝑓

𝜕𝑥𝑖
(𝑝) :=

𝜕
(
𝑓 ◦ 𝜑−1)
𝜕𝑥𝑖

(𝜑(𝑝)) .

Sometimes we also write 𝜕𝑖 𝑓 (𝑝) := 𝜕 𝑓

𝜕𝑥𝑖
(𝑝). These abbreviations allow us to write the transformation rule

(1.4.7) as
𝜕

𝜕𝑥𝑖

���
𝑝
=

𝑛∑︁
𝑗=1

𝜕𝑦 𝑗

𝜕𝑥𝑖
(𝑝) 𝜕

𝜕𝑦 𝑗

���
𝑝
.

Exercise 1.4.12. Let 𝑀 , 𝑁 be smooth manifolds and consider the product manifold 𝑀 × 𝑁 . Use the tangent maps
of the inclusion maps

𝑖𝑞 : 𝑀 ∋ 𝑝 ! (𝑝, 𝑞), 𝑖𝑝 : 𝑁 ∋ 𝑖𝑝 : 𝑞 ! (𝑝, 𝑞)

and the projection maps

𝜋𝑀 : 𝑀 × 𝑁 ∋ (𝑝, 𝑞) ! 𝑝, 𝜋𝑁 : 𝑀 × 𝑁 ∋ (𝑝, 𝑞) ! 𝑞

to construct a (canonical) isomorphism

𝑇(𝑝,𝑞) (𝑀 × 𝑁) � 𝑇𝑝𝑀 ⊕ 𝑇𝑞𝑁.
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Exercise 1.4.13. We equip the manifold 𝑀 = R2 ∖ {𝑥 ∈ R2 : 𝑥2 = 0 and 𝑥1 ≤ 0} ⊂ R2 with the charts (𝑀, 𝜑) and
(𝑀, 𝜓) where 𝜑(𝑥) = (𝑥2, 𝑥1) and

𝜓−1 : (0,∞) × (−𝜋, 𝜋) ! 𝑀 , (𝑟, \) 7! (𝑟 cos \, 𝑟 sin \) .

Show that 𝜑 and 𝜓 are compatible and express the coordinate vectors 𝜕𝑥1 |𝑝 and 𝜕𝑥2 |𝑝 associated with 𝜑 as well as
the coordinate vectors 𝜕𝑟 |𝑝 and 𝜕\ |𝑝 associated with 𝜓 at a point 𝑝 ∈ 𝑀 in terms of the canonical basis vectors 𝑒1
and 𝑒2 in 𝑇𝑝𝑀 � R2.

1.5 Submanifolds
Definition 1.5.1: Immersions and Submersions

Let 𝑀𝑚, 𝑁𝑛 be 𝐶∞ manifolds and 𝑓 ∈ 𝐶∞ (𝑀, 𝑁). Then 𝑓 is called

(i) immersion if 𝑚 ≤ 𝑛 and 𝑇𝑝 𝑓 is injective for all 𝑝 ∈ 𝑀 ,

(ii) submersion if 𝑚 ≥ 𝑛 and 𝑇𝑝 𝑓 is surjective for all 𝑝 ∈ 𝑀 ,

(iii) embedding if 𝑓 is an injective immersion which is a homeomorphism onto its image.

Example 1.5.2. Let 𝑀 = R𝑚, 𝑁 = R𝑛.

(i) 𝑚 ≤ 𝑛 and 𝑓 : 𝑥 = (𝑥1, . . . , 𝑥𝑚) 7! (𝑥1, . . . , 𝑥𝑚, 0, . . . , 0) is an injective immersion since

𝑇𝑝 𝑓 � 𝐷 𝑓
��
𝑝
�



1 · · · 0

0
. . . 0

0 · · · 1
0 · · · 0

0
. . . 0

0 · · · 0


.

Note 𝑓 is also a homeomorphism onto its image 𝑔 : (𝑦1, . . . , 𝑦𝑚, 𝑦𝑚+1, . . . , 𝑦𝑛) 7! (𝑦1, . . . , 𝑦𝑚) restricts to
a continuous inverse of 𝑓 .

(ii) If 𝑚 ≥ 𝑛, 𝑓 : 𝑥 = (𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1, . . . , 𝑥𝑚) 7! (𝑥1, . . . , 𝑥𝑛) is a (surjective) submersion since

𝑇𝑝 𝑓 � 𝐷 𝑓
��
𝑝
�


1 · · · 0 0 · · · 0

0
. . . 0 0

. . . 0
0 · · · 1 0 · · · 0

 .
(iii) The map

𝑓 : (0, 2𝜋) ! R2

𝑡 7! (sin 2𝑡, sin 𝑡)

is not an injective immersion. Note 𝑓 ′ (𝑡) = (2 cos 𝑡2𝑡, cos 𝑡2) ≠ (0, 0) for all 𝑡 ∈ (0, 2𝜋), but 𝑓 is not a
homeomorphism onto its image.

Lemma 1.5.3: Inverse function theorem for manifolds

Let 𝑀, 𝑁 be smooth manifolds of the same dimension and 𝑓 ∈ 𝐶∞ (𝑀, 𝑁).

(i) If 𝑓 is a diffeomorphism, then 𝑇𝑝 𝑓 is a linear isomorphism and (𝑇𝑝 𝑓 )−1 = 𝑇 𝑓 (𝑝) 𝑓
−1.

(ii) If 𝑇𝑝 𝑓 is a linear isomorphism for some 𝑝 ∈ 𝑀 , there exist open neighborhoods 𝑈 ⊂ 𝑀 , 𝑉 ⊂ 𝑁 of 𝑝
and 𝑓 (𝑝), respectively, such that 𝑓 (𝑈) = 𝑉 and 𝑓 |𝑈 : 𝑈 ! 𝑉 is a diffeomorphism.
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Definition 1.5.4: Submanifolds

Let 𝑀𝑚 be a 𝐶∞ manifold. A subset 𝑁 ⊂ 𝑀 is an 𝑛-dimensional submanifold if for every 𝑝 ∈ 𝑁 , there is a
chart (𝑈, 𝜑) of 𝑀 around 𝑝 such that

𝜑 (𝑈 ∩ 𝑁) = 𝜑(𝑈) ∩ (R𝑛 × {0}𝑚−𝑛) .

Such a chart (𝑈, 𝜑) is called a submanifold chart of 𝑁 . The number 𝑚 − 𝑛 is the codimension of 𝑁 in 𝑀 .

Example 1.5.5. (i) 𝑁 ⊂ 𝑀 is a submanifold of codimension 0 ⇐⇒ 𝑁 is an open subset of 𝑀 .

(ii) 𝑁 ⊂ 𝑀 is a submanifold of dimension 0 ⇐⇒ 𝑁 is a discrete subset of 𝑀 .

(iii) Affine subspaces: Let 𝑀 = R𝑚 and 𝑁 = 𝑁 ′ + 𝑝, where 𝑁 ′ ⊂ R𝑚 is an 𝑛-dimensional subspace and 𝑝 ∈ R𝑚
is fixed. Pick 𝐴 ∈ GL(𝑚,R) such that 𝐴(𝑁 ′) = R𝑛 × {0}. Then 𝜑 : 𝑈 = R𝑚 ! R𝑚 given by

𝜑(𝑞) = 𝐴(𝑞 − 𝑝)

is a submanifold chart. Such an 𝐴 exists because 𝑁 ′ is an 𝑛-dimensional subspace.

(iv) Graphs: Let 𝑀1, 𝑀2 be 𝐶∞ manifolds and 𝑓 ∈ 𝐶∞ (𝑀1, 𝑀2). Let 𝑀 = 𝑀1 × 𝑀2 and

𝑁 = Γ 𝑓 := {(𝑝, 𝑞) ∈ 𝑀1 × 𝑀2 = 𝑀 : 𝑓 (𝑝) = 𝑞}

the graph of 𝑓 . For 𝑖 = 1, 2, choose charts (𝑈𝑖 , 𝜑𝑖) around 𝑝𝑖 ∈ 𝑀𝑖 such that 𝑓 (𝑈1) ⊂ 𝑈2. For 𝑥 ∈
𝜑1 (𝑈1), 𝑦 ∈ 𝜑2 (𝑈2), set

𝜓(𝑥, 𝑦) =
(
𝑥, 𝑦 −

(
𝜑2 ◦ 𝑓 ◦ 𝜑−1

1

)
(𝑥)

)
.

Then 𝜑 = 𝜓 ◦ (𝜑1 × 𝜑2) is a submanifold chart. Note that for all (𝑥, 𝑦) ∈ (𝑈1 ×𝑈2) ∩ Γ 𝑓 , we have

𝜑(𝑥, 𝑦) = 𝜓
(
𝜑1 (𝑥), 𝜑2 (𝑦)

)
=

(
𝜑1 (𝑥), 𝜑2 (𝑦) −

(
𝜑2 ◦ 𝑓 ◦ 𝜑−1

1 ) (𝜑1 (𝑥)
)

=
(
𝜑1 (𝑥), 𝜑2 (𝑦) − 𝜑2 ( 𝑓 (𝑥))

)
=

(
𝜑1 (𝑥), 𝜑2 (𝑦) − 𝜑2 (𝑦)

)
=

(
𝜑1 (𝑥), 0

)
.

This shows
𝜑

(
(𝑈1 ×𝑈2) ∩ Γ 𝑓

)
= 𝜑 (𝑈1 ×𝑈2) ∩ (R𝑛 × {0}) .

Lemma 1.5.6: Generalized inverse function theorem

Let𝑈 ⊂ R𝑚, let 𝑥 ∈ 𝑈, and let 𝑓 ∈ 𝐶∞ (𝑈,R𝑛).

(i) If 𝑚 ≤ 𝑛 and 𝐷 𝑓 |𝑥 is injective, there exist neighborhoods 𝑉 ⊂ 𝑈,𝑊 ⊂ R𝑛 of 𝑥 and 𝑓 (𝑥) respectively,
with 𝑓 (𝑉) ⊂ 𝑊 and a diffeomorphism 𝜑 : 𝑊 ! 𝜑(𝑊) ⊂ R𝑛 such that

𝜑 ◦ 𝑓 |𝑉 = 𝑖 : (𝑥1, . . . , 𝑥𝑚) 7!
(
𝑥1, . . . , 𝑥𝑚, 0, . . . , 0

)
.

(ii) If 𝑚 ≥ 𝑛 and 𝐷 𝑓 |𝑥 is surjective, there is a neighborhood 𝑉 ⊂ R𝑚 of 𝑥 and a diffeomorphism
𝜑 : R𝑚 ⊃ 𝑊 ! 𝑉 such that

𝑓 ◦ 𝜑 |𝑊 = pr :
(
𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1, . . . , 𝑥𝑚

)
7!

(
𝑥1, . . . , 𝑥𝑛

)
.

Proof. Exercise. □
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Theorem 1.5.7

Let 𝑀𝑚 be a 𝐶∞ manifold and 𝑁 ⊂ 𝑀 a subset. The following are equivalent

(i) 𝑁 is an 𝑛-dimensional submanifold.

(ii) For every 𝑝 ∈ 𝑁 , there is an open neighborhood 𝑉 ⊂ 𝑀 of 𝑝 and a submersion 𝑓 : 𝑉 ! R𝑚−𝑛 such
that 𝑁 ∩𝑉 = 𝑓 −1 (0). Such a function 𝑓 is a locally defining function for 𝑁 .

(iii) For all 𝑝 ∈ 𝑁 , there exists an open neighborhood 𝑉 ⊂ 𝑀 of 𝑝, an open subset 𝑈 ⊂ R𝑛, and an
embedding 𝜓 : 𝑈 ! 𝑉 such that 𝜓(𝑈) = 𝑁 ∩𝑉 . Such a map 𝜓 is called a local parametrization.

Proof. Throughout the proof, let

𝑖 : R𝑛 ↩! R𝑚

(𝑥1, . . . , 𝑥𝑛) 7! (𝑥1, . . . , 𝑥𝑛, 0, . . . , 0)
pr : R𝑚 ↠ R𝑚−𝑛

(𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1, . . . , 𝑥𝑚) 7! (𝑥𝑛+1, . . . , 𝑥𝑚)

(i) ⇒ (ii) Let 𝑝 ∈ 𝑁 and 𝜑 : 𝑈 ! R𝑚 be a submanifold chart with 𝑝 ∈ 𝑈. Then 𝑓 = pr ◦𝜑 is a submersion. This
is because

𝑇𝑝 𝑓 = 𝑇𝜑 (𝑝) pr ◦𝑇𝑝𝜑,
where 𝑇𝜑 (𝑝) pr � 𝐷 pr |𝜑 (𝑝) so that 𝑇𝜑 (𝑝) pr is surjective. Since 𝜑 is a chart, 𝑇𝑝𝜑 is surjective and hence so is
𝑇𝑝 𝑓 . It remains to show𝑈∩𝑁 = 𝑓 −1 (0). By choice of the chart𝑈, we have 𝜑(𝑈∩𝑁) = 𝜑(𝑈)∩(R𝑛×{0}𝑚−𝑛).
Since 𝜑 is bĳective and its domain is𝑈, this means

𝑈 ∩ 𝑁 = 𝜑−1 (𝜑 (𝑈 ∩ 𝑁)) = 𝜑−1 (𝜑 (𝑈) ∩ (R𝑛 × {0}𝑚−𝑛)) .

Then by definition of pr, we get pr−1 (0) = R𝑛 × {0}𝑚−𝑛. Thus,

𝑓 −1 (0) = 𝜑−1
(
pr−1 (0)

)
= 𝜑−1 (R𝑛 × {0}𝑚−𝑛)
= 𝜑−1 (𝜑(𝑈) ∩ (R𝑛 × {0}𝑚−𝑛))
= 𝑈 ∩ 𝑁.

(ii) ⇒ (i):
{𝑝}

𝑀 𝑈 𝜑(𝑈) 𝜓(𝜑(𝑈))

R𝑚

𝑉 R𝑚−𝑛

𝑇𝑝𝑀 𝑇𝑝𝑉 𝑇 𝑓 (𝑝)R
𝑚−𝑛

𝜑

∼
𝜓

∼

𝑓 ◦𝜑−1◦𝜓−1pr
𝑓

∼

=

𝑇𝑝 𝑓

Let (𝑈, 𝜑) be a chart of 𝑀 and suppose 𝑈 ⊂ 𝑉 with 𝑉 as in (ii). Since 𝑓 is a submersion, we have 𝑇𝑝 𝑓
is injective; since 𝑇𝑝𝜑 an isomorphism, we have that 𝑓 ◦ 𝜑−1 : 𝜑(𝑈) ! R𝑚−𝑛 is a submersion. Since
𝜑(𝑈) ⊂ R𝑚 is open and 𝑓 ◦ 𝜑−1 : 𝜑(𝑈) ! R𝑚−𝑛 is such that 𝑇𝜑 (𝑝) ( 𝑓 ◦ 𝜑−1) is surjective, we may apply the
inverse function theorem (Lemma 1.5.6) to obtain open subsets𝑈 ⊂ 𝑈,𝑊 ⊂ R𝑚 such that

𝜓 : 𝜑
(
𝑈

)
! 𝑊
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is a diffeomorphism satisfying

𝑓 ◦ 𝜑−1 ◦ 𝜓−1 (𝑥) = pr(𝑥) (𝑥 ∈ 𝑊).

By identifying 𝑈 = 𝑈 and 𝜑 = 𝜑 |
𝑈

, we may suppose 𝜓 : 𝜑(𝑈) ! 𝜓(𝜑(𝑈)) and 𝑓 ◦ 𝜑−1 ◦ 𝜓−1 = pr on
𝜓(𝜑(𝑈)) ⊂ 𝑊 . Since pr−1 (0) = R𝑛 × {0}𝑚−𝑛 and 𝑓 is a locally defining function, we have

𝑝 ∈ 𝑈 ∩ 𝑁 ⇐⇒ 𝑓 (𝑝) = 0

⇐⇒ 𝑓 ◦ 𝜑−1 ◦ 𝜓−1 ◦ 𝜓 ◦ 𝜑(𝑝) = 0

⇐⇒ 𝜓 ◦ 𝜑(𝑝) ∈
(
𝑓 ◦ 𝜑−1 ◦ 𝜓−1

)−1
(0)

⇐⇒ 𝜓 ◦ 𝜑(𝑝) ∈ pr−1 (0) = (R𝑛 × {0}𝑚−𝑛)
⇐⇒ 𝜓 ◦ 𝜑(𝑝) ∈ (𝜓 ◦ 𝜑) (𝑈) ∩ (R𝑛 × {0}𝑚−𝑛) .

Thus, (𝜓 ◦ 𝜑) (𝑈 ∩ 𝑁) = (𝜓 ◦ 𝜑) (𝑈) ∩ (R𝑛 × {0}𝑚−𝑛). This implies 𝜓 ◦ 𝜑 is the desired submanifold chart.

(i) ⇒ (iii):

𝑀 𝑈 𝜑(𝑈) R𝑚

𝑁 𝑈 ∩ 𝑁 𝜑(𝑈) ∩ (R𝑛 × {0}) R𝑛 × {0} R𝑛

𝜑

∼

𝜑

∼

𝑖

Let 𝑝 ∈ 𝑁 . If (𝑈, 𝜑) is a submanifold chart, let 𝜓 = 𝜑−1 ◦ 𝑖 : 𝜑(𝑈) ∩ (R𝑛 × {0}𝑚−𝑛) ! 𝑈 be the embedding.
Set 𝑉 = 𝜑(𝑈) ∩ (R𝑛 × {0}𝑚−𝑛). (𝜓 is indeed an embedding since 𝜑 is a homeomorphism and 𝑖 is an
embedding.) 𝜓 is an immersion because 𝜑 is a diffeomorphism and 𝑖 is an immersion.

It remains to show 𝜓(𝑉) = 𝑈 ∩ 𝑁 . This can be done in two ways. Since the diagram above commutes, we
see (by following the arrows on the bottom) that 𝜓(𝑉) = im(𝜑−1 ◦ 𝑖) = 𝑈 ∩ 𝑁 .

Alternatively, since 𝜑 is a submanifold chart, we have

𝜓(𝑉) = 𝜑−1 ◦ 𝑖 (𝜑 (𝑈) ∩ (R𝑛 × {0}𝑚−𝑛))
= 𝜑−1 (𝜑 (𝑈) ∩ (R𝑛 × {0}𝑚−𝑛))
= 𝜑−1 (𝜑 (𝑈 ∩ 𝑁))
= 𝑈 ∩ 𝑁.

(iii) ⇒ (i): This is the setup:

R𝑛 R𝑚

𝑀

𝑈 𝑉 𝜑(𝑉) 𝜒(𝜑(𝑉))

𝑇𝑥𝑈 𝑇𝑝𝑀 𝑇𝜑 (𝑝)R
𝑚 𝑇𝜒 (𝜑 (𝑝) )R

𝑚

𝑖

𝜓 𝜑

∼
𝜒

∼

𝑇𝑥𝜓 𝑇𝑝𝜑

∼
𝑇𝜑 (𝑝) 𝜒

∼

Plugging in for images of maps, we obtain:

R𝑛 R𝑛 × {0}

𝑀

𝑈 𝑉 ∩ 𝑁 𝜑(𝑉 ∩ 𝑁) 𝜒(𝜑(𝑉 ∩ 𝑁))

𝑖

𝜓

∼
𝜑 𝜒
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Let 𝑝 ∈ 𝑀 and 𝜓 : 𝑈 ! 𝑉 be as in (iii). By making 𝑈 and 𝑉 smaller if necessary, we may pick a chart
(𝑉, 𝜑) of 𝑝. The map 𝜑 ◦ 𝜓 : 𝑈 ! R𝑚 is an embedding since 𝜓 is an embedding and 𝜑 is a chart. By
Lemma 1.5.6, (making 𝑈 and 𝑉 smaller if necessary) there is a diffeomorphism 𝜒 : 𝜑(𝑉) ! 𝜒(𝜑(𝑉)) such
that 𝜒 ◦ 𝜑 ◦ 𝜓 = 𝑖 on𝑈.

We now verify 𝜒 ◦ 𝜑 : 𝑉 ! 𝜒 ◦ 𝜑(𝑉) is a submanifold chart. Let 𝑞 ∈ 𝑉 . We show 𝑞 ∈ 𝑉 ∩ 𝑁 ⇐⇒
𝜒 ◦ 𝜑(𝑞) ∈ R𝑛 × {0}. Since 𝜓 is a local parameterization, we have 𝜓(𝑈) = 𝑉 ∩ 𝑁 . Thus, 𝑞 ∈ 𝑉 ∩ 𝑁 ⇐⇒
there exists 𝑥 ∈ 𝑈 with 𝜓(𝑥) = 𝑞. For this 𝑥, we have (also by definition of 𝑖),

𝜒 ◦ 𝜑(𝑞) = 𝜒 ◦ 𝜑 ◦ 𝜓(𝑥) = 𝑖(𝑥) ∈ R𝑛 × {0}𝑚−𝑛 .

□

Remark 1.5.8. A submanifold 𝑁 ⊂ 𝑀 of a 𝐶∞-manifold is itself a 𝐶∞-manifold. If (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛, . . . , 𝑥𝑚))
is a submanifold chart, then

𝜓 = (𝑥1, . . . , 𝑥𝑛) : 𝑈 ∩ 𝑁 ! R𝑛

is a chart of 𝑁 . The set of such charts forms a 𝐶∞-atlas of 𝑁 . Note here that by the proof of Theorem 1.5.7(i) =⇒
(iii), the map 𝜓−1 : 𝜓(𝑈 ∩ 𝑁) ! 𝑈 ∩ 𝑁 is a local parametrization of 𝑁 since 𝜓−1 = 𝜑−1 ◦ 𝑖.

Theorem 1.5.9

Let 𝑀, 𝑃,𝑄 be smooth manifolds with 𝑁 ⊂ 𝑀 a submanifold of 𝑀 and ] : 𝑁 ! 𝑀 the inclusion map. Then

(i) ] ∈ 𝐶∞ (𝑁, 𝑀) and 𝑇𝑝 ] : 𝑇𝑝𝑁 ! 𝑇𝑝𝑀 is injective.

(ii) If 𝑓 ∈ 𝐶∞ (𝑀, 𝑃), then 𝑓 |𝑁 ∈ 𝐶∞ (𝑁, 𝑃).

(iii) If 𝑔 ∈ 𝐶∞ (𝑄, 𝑀) and 𝑔(𝑄) ⊂ 𝑁 , then 𝑔 ∈ 𝐶∞ (𝑄, 𝑁).

Proof. (i) Let 𝑝 ∈ 𝑁 and (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑚)) be a submanifold chart of 𝑀 with 𝑝 ∈ 𝑈. Let (𝑉 = 𝑈 ∩ 𝑁, 𝜓 =

(𝑥1, . . . , 𝑥𝑛)) be the corresponding chart for 𝑁 . Note that

𝑁 𝑀

R𝑛 R𝑚

]

𝜓 𝜑

𝑖

so that ] = 𝜑◦ 𝑖 ◦𝜓−1; this shows ] is smooth. The injectivity of𝑇𝑝 ] follows from the chain rule, the injectivity
of 𝐷𝑖 |𝜓 (𝑝) � 𝑇𝜓 (𝑝) 𝑖, and

𝑇𝑝𝑁 𝑇𝑝𝑀

𝑇𝜓 (𝑝)R
𝑛 𝑇𝑖◦𝜓 (𝑝)R

𝑚

𝑇𝑝 ]

𝑇𝑝𝜓∼ 𝑇𝑝𝜑∼

𝑇𝜓 (𝑝) 𝑖

(ii) Since ] and 𝑓 are smooth, so is 𝑓 |𝑁 = 𝑓 ◦ ].

(iii) Let 𝑝 = 𝑔(𝑞) and (𝑈, 𝜑), (𝑉, 𝜓) be as in the proof of (i). Since 𝑔(𝑄) ⊂ 𝑁 , we have 𝑔(𝑔−1 (𝑈)) ⊂ 𝑈∩𝑁 = 𝑉 .
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Since 𝜑 is a submanifold chart, the following diagram commutes:

𝑁 𝑀 𝑄

𝑉 = 𝑈 ∩ 𝑁 𝑈 𝑔−1 (𝑈)

R𝑚

R𝑛 R𝑛 × {0}

] 𝑔

]

𝜓
𝜑

𝜑

𝑔

∼

In particular, the compositions 𝑔𝑖 = 𝑥𝑖 ◦ 𝑔 are smooths on 𝑔−1 (𝑈) for 1 ≤ 𝑖 ≤ 𝑛. The assumption
𝑔(𝑄) ⊂ 𝑁 implies (𝑔1, . . . , 𝑔𝑚) = (𝑔1, . . . , 𝑔𝑛, 0, . . . , 0) since 𝜑 is a submanifold chart. Consequently,
𝜓 ◦ 𝑔 = (𝑔1, . . . , 𝑔𝑛) is a smooth map and 𝑔 ∈ 𝐶∞ (𝑄, 𝑁). □

Remark 1.5.10. (i) One identifies 𝑇𝑝𝑁 with 𝑇𝑝 ](𝑇𝑝𝑁) ⊂ 𝑇𝑝𝑀 and thinks of it as a vector subspace of 𝑇𝑝𝑀 .
In particular, if 𝑁 ⊂ R𝑚 is a submanifold, then 𝑇𝑝𝑁 ⊂ R𝑚.

(ii) If 𝜓 is a local parameterization of 𝑁 ⊂ 𝑀 and 𝑓 is a locally defining function for 𝑁 , then

𝑇𝑝𝑁 = im𝑇𝑥𝜓 = ker𝑇𝑝 𝑓 ,

where 𝜓(𝑥) = 𝑝.

Example 1.5.11. (i) Let S𝑛 =
{
𝑥 ∈ R𝑛+1 : ∥𝑥∥2 = 1

}
. Define

𝑓 : R𝑛+1 ! R

𝑥 7! ∥𝑥∥2 − 1.

Note S𝑛 = 𝑓 −1 (0). Observe that the tangent map

𝑇𝑝 𝑓 � 𝐷 𝑓 |𝑝 : R𝑛+1 ! R

(𝑣1, . . . , 𝑣𝑛+1) 7! 2
𝑛+1∑︁
𝑖=1

𝑣𝑖 𝑝𝑖

is surjective for 𝑝 ≠ 0. In particular, this shows 𝑓 is a submersion on the neighborhood R𝑛+1 ∖ {0} of S𝑛.
By Theorem 1.5.7, this shows S𝑛 is a submanifold of R𝑛+1, of dimension 𝑛. The tangent map

𝑇𝑝 𝑓 � 𝐷 𝑓 |𝑝 .

By the remark, we have that

𝑇𝑝S
𝑛 = ker𝑇𝑝 𝑓 =

{
𝑣 ∈ R𝑛+1 :

𝑛+1∑︁
𝑖=1

𝑣𝑖 𝑝𝑖 = 0

}
= 𝑝⊥.

(ii) If 𝑀1, 𝑀2 are smooth manifolds and 𝑁1 ⊂ 𝑀1, 𝑁2 ⊂ 𝑀2 are submanifolds, then 𝑁1 × 𝑁2 ⊂ 𝑀1 × 𝑀2 is a
submanifold as well.

(iii) If 𝑀 is a smooth manifold with 𝑁 ⊂ 𝑀 a submanifold and 𝑃 ⊂ 𝑁 a submanifold, then 𝑃 ⊂ 𝑀 is a
submanifold.
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Theorem 1.5.12

If 𝑀1, 𝑀2 are manifolds and 𝑓 ∈ 𝐶∞ (𝑀1, 𝑀2) is an embedding, then the image 𝑓 (𝑀1) ⊂ 𝑀2 is a submanifold
of 𝑀2. In this case, we call 𝑀1 an embedded submanifold of 𝑀2.

Proof. For every chart (𝑈, 𝜑) of 𝑀1, the map 𝜓 = 𝑓 ◦ 𝜑−1 : 𝜑(𝑈) ⊂ R𝑚1 ! 𝑀2 is an embedding Note that 𝜓 is a
local parametrization because

𝜓(𝑈) = 𝑓 ◦ 𝜑−1 ◦ 𝜑(𝑈) = 𝑓 (𝑈).

More explicitly, let 𝑓 (𝑝) ∈ 𝑀2 and let (𝑉, 𝜒) be a chart around 𝑓 (𝑝). Since 𝑓 is continuous, we may pick a chart
(𝑈, 𝜑) around 𝑝 so that𝑈 = 𝑓 −1 (𝑉). Pick a chart𝑈 around 𝑝 such that𝑈 ⊂ 𝑓 −1 (𝑉). Then 𝜓 = 𝑓 ◦ 𝜑−1 : 𝜑(𝑈) !
𝑀2 is an embedding and

𝜓(𝑈) = 𝑓 ◦ 𝜑−1 ◦ 𝜑(𝑈) = 𝑓 (𝑈) = 𝑓 ( 𝑓 −1 (𝑉)) = 𝑉 ∩ 𝑓 (𝑀1).

This shows 𝜓 is a local parametrization. □

Theorem 1.5.13: Whitney embedding

If 𝑀𝑛 is a smooth manifold, then there exists an embedding 𝜓 : 𝑀 ! R2𝑛.

The above theorem means we can view every 𝑛-dimensional manifold as a submanifold of R2𝑛.

Exercise 1.5.14. Prove Lemma 1.5.3

Exercise 1.5.15. Prove Lemma 1.5.6.

Exercise 1.5.16. Prove Remark 1.5.10 (ii).

Exercise 1.5.17. Prove that the Examples 1.5.11 (ii) and (iii) are indeed submanifolds.

Exercise 1.5.18. Show that the orthogonal matrices 𝑂 (𝑛) := {𝑄 ∈ GL(𝑛) |𝑄𝑇𝑄 = Id} form a 𝑛(𝑛−1)
2 -dimensional

submanifold of the manifold of 𝑛 × 𝑛-matrices mat(𝑛) � R𝑛2 . Show also that

𝑇𝑄𝑂 (𝑛) = {𝐵 ∈ mat(𝑛) | (𝑄−1𝐵)𝑇 = −𝑄−1𝐵} ,

and hence, in particular,
𝑇Id𝑂 (𝑛) = {𝐵 | 𝐵𝑇 = −𝐵} =: skew(𝑛).



Chapter 2

Fields on Manifolds

Throughout the whole chapter, let 𝑀 be a smooth manifold with dimension 𝑛, unless stated otherwise.

2.1 Vector fields
Definition 2.1.1: Vector Field

A vector field 𝑋 on 𝑀 is a map defined on 𝑀 such that 𝑋 (𝑝) ∈ 𝑇𝑝𝑀 for all 𝑝 ∈ 𝑀 .

A vector field 𝑋 is called smooth if for all 𝑝 ∈ 𝑀 , there exists a chart (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑚)) around 𝑝 such
that the coefficient charts 𝑋 𝑖 : 𝑈 ! R defined by

𝑋 (𝑞) =
𝑛∑︁
𝑖=1

𝑋 𝑖 (𝑞) 𝜕
𝜕𝑥𝑖

��
𝑞

(𝑞 ∈ 𝑈) (2.1.1)

are 𝐶∞.

We denote by 𝔛(𝑀) the set of all 𝐶∞ vector fields on 𝑀 .

Lemma 2.1.2

Let 𝑋 be a vector field on 𝑀 . Then the following are equivalent

(i) 𝑋 ∈ 𝔛(𝑀),

(ii) For any chart (𝑉, 𝜓 = (𝑦1, .., 𝑦𝑛)), the functions 𝑋 𝑖 : 𝑉 ! R defined by

𝑋 (𝑞) =
𝑛∑︁
𝑖=1

𝑋 𝑖 (𝑞) 𝜕
𝜕𝑦𝑖

��
𝑞

(𝑞 ∈ 𝑉)

are smooth.

Proof. (i) ⇒ (ii): By Defn. 2.1.1, there is a chart (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛)) around 𝑝 such that (2.1.1) is smooth. We
will show the 𝑋 𝑖 are smooth on𝑈 ∩𝑉 .

By Remark 1.4.11, we have for all 𝑞 ∈ 𝑈 ∩𝑉 ,

𝜕

𝜕𝑥𝑖

��
𝑞
=

𝑛∑︁
𝑗=1

𝜕 (𝑦 𝑗 ◦ 𝜑−1)
𝜕𝑥𝑖

(𝜑(𝑞)) 𝜕

𝜕𝑦 𝑗

��
𝑞
.

23
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Thus,
𝑛∑︁
𝑗=1

𝑋 𝑗 (𝑞) 𝜕

𝜕𝑦 𝑗

��
𝑞
= 𝑋 (𝑞)

=

𝑛∑︁
𝑖=1

𝑋 𝑖 (𝑞) 𝜕
𝜕𝑥𝑖

��
𝑞

=

𝑛∑︁
𝑖=1

𝑋 𝑖 (𝑞)
𝑛∑︁
𝑗=1

𝜕 (𝑦 𝑗 ◦ 𝜑−1)
𝜕𝑥𝑖

(𝜑(𝑞)) 𝜕

𝜕𝑦 𝑗

��
𝑞
.

By fixing 𝑗 , expanding out the above sum, and collecting coefficients, we have

𝑋 𝑗 (𝑞) =
𝑛∑︁
𝑖=1

𝑋 𝑖 (𝑞) 𝜕 (𝑦
𝑗 ◦ 𝜑−1)
𝜕𝑥𝑖

(𝜑(𝑞)) (1 ≤ 𝑗 ≤ 𝑛).

In particular, this means that for each 𝑗 ,

𝑋 𝑗 =

𝑛∑︁
𝑖=1

𝑋 𝑖︸︷︷︸
𝐶∞

𝜕𝑦 𝑗

𝜕𝑥𝑖︸︷︷︸
𝐶∞

so that 𝑋 𝑗 ∈ 𝐶∞ (𝑀).

(ii) ⇒ (i): Clear. □

Remark 2.1.3. (i) We have 𝑋 ∈ 𝔛(𝑀) ⇐⇒ 𝑋 |𝑈 ∈ 𝔛(𝑈) for all open𝑈 ⊂ 𝑀 .

(ii) If (𝑈, 𝜑) is a chart on 𝑀 , the coordinate vector fields 𝜕
𝜕𝑥𝑖

, defined on𝑈 by

𝜕

𝜕𝑥𝑖
(𝑝) = 𝜕

𝜕𝑥𝑖

��
𝑝
∈ 𝑇𝑝𝑀

are smooth vector fields on𝑈.

(iii) Let 𝑋,𝑌 ∈ 𝔛(𝑀) and 𝑓 ∈ 𝐶∞ (𝑀). For all 𝑝 ∈ 𝑀 , we have 𝑓 (𝑝) ∈ R and 𝑋 (𝑝), 𝑌 (𝑝) ∈ 𝑇𝑝𝑀 . Since 𝑇𝑝𝑀
is a real vector space, we may define 𝑋 + 𝑌 and 𝑓 · 𝑋 by

(𝑋 + 𝑌 ) (𝑝) = 𝑋 (𝑝) + 𝑌 (𝑝) and ( 𝑓 · 𝑋) (𝑝) = 𝑓 (𝑝) · 𝑋 (𝑝).

These definitions of addition and multiplication turn 𝔛(𝑀) into a 𝐶∞ (𝑀)-module.

Definition 2.1.4: 𝑋 ( 𝑓 )

For 𝑋 ∈ 𝔛(𝑀) and 𝑓 ∈ 𝐶∞ (𝑀), we define 𝑋 ( 𝑓 ) : 𝑀 ! 𝑇𝑝 (also denoted by 𝜕𝑋 𝑓 ) to be the map

𝑋 ( 𝑓 ) : 𝑀 !
⊔
𝑝∈𝑀

𝑇 𝑓 (𝑝)R

𝑝 7! 𝑇𝑝 𝑓 (𝑋 (𝑝)) ∈ 𝑇 𝑓 (𝑝)R � R

We also use the notation 𝜕𝑋 (𝑝) 𝑓 = 𝑇𝑝 𝑓 (𝑋 (𝑝)).

Note. 𝑋 ( 𝑓 ) is smooth: if (𝑈, 𝜑) is a chart of 𝑀 and 𝑋 =
∑𝑛
𝑖=1 𝑋

𝑖 𝜕
𝜕𝑥𝑖

, we have

𝑋 ( 𝑓 ) |𝑈 =

𝑛∑︁
𝑖=1

𝑋 𝑖
𝜕 𝑓

𝜕𝑥𝑖
∈ 𝐶∞ (𝑀), (2.1.2)

where we have used the shorthand notation

𝜕 𝑓

𝜕𝑥𝑖
(𝑝) = 𝜕 ( 𝑓 ◦ 𝜑−1)

𝜕𝑥𝑖
(𝜑(𝑝)),
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so that the above becomes

𝑋 ( 𝑓 ) |𝑈 (𝑝) =
𝑛∑︁
𝑖=1

𝑋 𝑖 (𝑝) 𝜕 ( 𝑓 ◦ 𝜑
−1)

𝜕𝑥𝑖
(𝜑(𝑝)).

This is because each 𝑋 𝑖 : 𝑀 ! R is smooth and because 𝑓 : 𝑀 ! R is smooth. Alternatively, we can see the map
𝑋 ( 𝑓 ) as “sort of” being the composition

𝑀 R

𝑇𝑝𝑀

𝑋 ( 𝑓 )

𝑋
𝑇𝑝 𝑓

Example 2.1.5. If 𝑀 ⊂ R𝑚 is a submanifold, then any 𝑋 ∈ 𝔛(𝑀) can be viewed as a smooth map 𝑋 : 𝑀 ! R𝑚.
In particular, we may deduce a very explicit expression for coordinate vector fields. Let 𝑈 ⊂ R𝑛, 𝑉 ⊂ R𝑚, and
𝜓 : 𝑈 ! 𝑉 be a local parametrization. The proof of Theorem 1.5.7 shows 𝜑 = 𝜓−1 |𝑀∩𝑉 : 𝑀 ∩ 𝑉 ! 𝑈 is a chart
of 𝑀 . Then its coordinate vectors 𝑝 ∈ 𝑀 ∩𝑉 are given by

𝜕

𝜕𝑥𝑖

���
𝑝
= (𝑇𝑝𝜑)−1 (𝑒𝑖) = 𝑇𝜑 (𝑝)𝜑−1 (𝑒𝑖) = 𝑇𝜑 (𝑝)𝜓(𝑒𝑖).

Viewing 𝜓 as a map𝑈 ! 𝑉 , the tangent map agrees with the Jacobian, giving us (by Prop 1.4.10),

𝜕

𝜕𝑥𝑖

���
𝑝
= 𝑇𝜑 (𝑝)𝜓(𝑒𝑖) =

𝑚∑︁
𝑗=1

𝜕 (id 𝑗 ◦𝜓 ◦ id−1)
𝜕𝑥𝑖

(
id(𝜑(𝑝))

) 𝜕

𝜕 id 𝑗
��� (
𝜓 (𝜑 (𝑝) )

)
=

𝑚∑︁
𝑗=1

𝜕𝜓 𝑗

𝜕𝑥𝑖

(
𝜑(𝑝)

)
𝑒 𝑗 ∈ R𝑚.

Since 𝜑 ◦ 𝜓(𝑝) = 𝑝, the above may be rewritten as

𝜕

𝜕𝑥𝑖

���
𝜓 (𝑝)

=

𝑚∑︁
𝑗=1

𝜕𝜓 𝑗

𝜕𝑥𝑖

(
𝑝
)
𝑒 𝑗 ∈ R𝑚.

For example, if 𝑀 = S2 ⊂ R3, a local parametrization is given by

𝜓 : (0, 2𝜋) ×
(−𝜋

2
,
𝜋

2

)
! 𝑀

(𝜙, \) 7! ©«
cos(𝜙) cos(\)
sin(𝜙) cos(\)

sin(\)
ª®¬ .

Its inverse is a chart with coordinate functions 𝜙, \, and we have

𝜕

𝜕𝜙

���
𝜓 (𝜙,\ )

=
©«
− sin(𝜙) cos(\)
cos(𝜙) cos(\)

0

ª®¬ and
𝜕

𝜕\

���
𝜓 (𝜙,\ )

=
©«
− cos(𝜙) sin(\)
− sin(𝜙) sin(\)

cos(\)
ª®¬ .
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Definition 2.1.6: Lie-bracket

Given 𝑋,𝑌 ∈ 𝔛(𝑀), we define a vector field [𝑋,𝑌 ] ∈ 𝔛(𝑀) locally as follows: If (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛)) is a
chart of 𝑀 with respect to which we have

𝑋 |𝑈 =

𝑛∑︁
𝑖=1

𝑋 𝑖
𝜕

𝜕𝑥𝑖
and 𝑌 |𝑈 =

𝑛∑︁
𝑗=1

𝜕

𝜕𝑥 𝑗

for smooth functions 𝑋 𝑖 , 𝑌 𝑗 : 𝑈 ! R, we set

[𝑋,𝑌 ] |𝑈 =

𝑛∑︁
𝑗=1

[
𝑛∑︁
𝑖=1

(
𝑋 𝑖
𝜕𝑌 𝑗

𝜕𝑥𝑖
− 𝑌 𝑖 𝜕𝑋

𝑗

𝜕𝑥𝑖

)]
𝜕

𝜕𝑥 𝑗
.

The vector field [𝑋,𝑌 ] is called the Lie-bracket or commutator of 𝑋 and 𝑌 .

Lemma 2.1.7

For 𝑋,𝑌 ∈ 𝔛(𝑀), the map [𝑋,𝑌 ] is well-defined, i.e., its definition does not depend on the chosen chart.

Proof. Exercise. □

Theorem 2.1.8

Let 𝑋,𝑌 ∈ 𝔛(𝑀) and 𝑓 ∈ 𝐶∞ (𝑀). Then

[𝑋,𝑌 ] ( 𝑓 ) = 𝑋 (𝑌 ( 𝑓 )) − 𝑌 (𝑋 ( 𝑓 )). (2.1.3)

In other words, if we view 𝑋,𝑌 as R-linear maps on 𝐶∞ (𝑀), we have [𝑋,𝑌 ] = 𝑋 ◦ 𝑌 − 𝑌 ◦ 𝑋 .

Proof. Observe that the function

𝔛(𝑀) × 𝐶∞ (𝑀) ! 𝐶∞ (𝑀)
(𝑋, 𝑓 ) 7! 𝑋 ( 𝑓 )

is local in the sense that 𝑋 ( 𝑓 ) |𝑈 = (𝑋 |𝑈 ( 𝑓 |𝑈)) for any open set 𝑈 containing 𝑝. (This is a consequence of
𝑇𝑝𝑀 = 𝑇𝑝𝑈.) Thus, it will suffice to prove (2.1.3) for coordinate neighborhoods; so let (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛)) be a
chart of 𝑀 and write

𝑋 |𝑈 =

𝑛∑︁
𝑖=1

𝑋 𝑖
𝜕

𝜕𝑥𝑖
and 𝑌 |𝑈 =

𝑛∑︁
𝑗=1
𝑌 𝑗

𝜕

𝜕𝑥 𝑗
,
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where 𝑋 𝑖 , 𝑌 𝑗 : 𝑈 ! R are smooth since 𝑋,𝑌 ∈ 𝔛(𝑀). Observe that

𝑋 (𝑌 ( 𝑓 )) |𝑈 = 𝑋 |𝑈 (𝑌 |𝑈 ( 𝑓 |𝑈))

= 𝑋 |𝑈 ©«
𝑛∑︁
𝑗=1
𝑌 𝑗

𝜕 𝑓

𝜕𝑥 𝑗
ª®¬ , by (2.1.2)

=

𝑛∑︁
𝑖=1

𝑋 𝑖
𝜕

𝜕𝑥𝑖
©«
𝑛∑︁
𝑗=1
𝑌 𝑗

𝜕 𝑓

𝜕𝑥 𝑗
ª®¬ , by (2.1.2)

=

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑋 𝑖
𝜕

𝜕𝑥𝑖

(
𝑌 𝑗

𝜕 𝑓

𝜕𝑥 𝑗

)
=

𝑛∑︁
𝑖, 𝑗=1

𝑋 𝑖
(
𝜕𝑌 𝑗

𝜕𝑥𝑖
𝜕 𝑓

𝜕𝑥 𝑗
+ 𝑌 𝑗 𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗

)
, by the product rule

=

𝑛∑︁
𝑖, 𝑗=1

𝑋 𝑖
𝜕𝑌 𝑗

𝜕𝑥𝑖
𝜕 𝑓

𝜕𝑥 𝑗
+

𝑛∑︁
𝑖, 𝑗=1

𝑋 𝑖𝑌 𝑗
𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
.

Similarly, we get

−𝑌 (𝑋 ( 𝑓 )) |𝑈 = −
𝑛∑︁

𝑖, 𝑗=1
𝑌 𝑖
𝜕𝑋 𝑗

𝜕𝑥𝑖
𝜕 𝑓

𝜕𝑥 𝑗
−

𝑛∑︁
𝑖, 𝑗=1

𝑌 𝑖𝑋 𝑗
𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
.

Observe that
𝑛∑︁

𝑖, 𝑗=1
𝑋 𝑖𝑌 𝑗

𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
=

𝑛∑︁
𝑖, 𝑗=1

𝑋 𝑗𝑌 𝑖
𝜕2 𝑓

𝜕𝑥 𝑗𝜕𝑥𝑖
, by swapping indices

=

𝑛∑︁
𝑖, 𝑗=1

𝑋 𝑗𝑌 𝑖
𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
, by Schwartz theorem.

Thus,
𝑛∑︁

𝑖, 𝑗=1
𝑋 𝑖𝑌 𝑗

𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
−

𝑛∑︁
𝑖, 𝑗=1

𝑌 𝑖𝑋 𝑗
𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
= 0.

In particular, this shows

𝑋 (𝑌 ( 𝑓 )) |𝑈 − 𝑌 (𝑋 ( 𝑓 )) |𝑈 =

𝑛∑︁
𝑖, 𝑗=1

𝑋 𝑖
𝜕𝑌 𝑗

𝜕𝑥𝑖
𝜕 𝑓

𝜕𝑥 𝑗
+

𝑛∑︁
𝑖, 𝑗=1

𝑋 𝑖𝑌 𝑗
𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
−

𝑛∑︁
𝑖, 𝑗=1

𝑌 𝑖
𝜕𝑋 𝑗

𝜕𝑥𝑖
𝜕 𝑓

𝜕𝑥 𝑗
−

𝑛∑︁
𝑖, 𝑗=1

𝑌 𝑖𝑋 𝑗
𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗

=

𝑛∑︁
𝑖, 𝑗=1

𝑋 𝑖
𝜕𝑌 𝑗

𝜕𝑥𝑖
𝜕 𝑓

𝜕𝑥 𝑗
−

𝑛∑︁
𝑖, 𝑗=1

𝑌 𝑖
𝜕𝑋 𝑗

𝜕𝑥𝑖
𝜕 𝑓

𝜕𝑥 𝑗
+ 0

=

𝑛∑︁
𝑖, 𝑗=1

(
𝑋 𝑖
𝜕𝑌 𝑗

𝜕𝑥𝑖
− 𝑌 𝑖 𝜕𝑋

𝑗

𝜕𝑥𝑖

)
𝜕 𝑓

𝜕𝑥 𝑗

= [𝑋,𝑌 ] ( 𝑓 ) |𝑈 . □
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Lemma 2.1.9

The Lie bracket admits the following properties:

(i) It is an (R-) bilinear and antisymmetric map [., .] : 𝔛(𝑀) × 𝔛(𝑀) ! 𝔛(𝑀).

(ii) For all 𝑋,𝑌, 𝑍 ∈ 𝔛(𝑀), we have the Jacobi identity

[𝑋, [𝑌, 𝑍]] + [𝑌, [𝑍, 𝑋]] + [𝑍, [𝑋,𝑌 ]] = 0. (2.1.4)

(iii) For all vector fields 𝑋,𝑌, 𝑍 ∈ 𝔛(𝑀) and functions 𝑓 , 𝑔 ∈ 𝐶∞ (𝑀), we have the identity

[ 𝑓 · 𝑋, 𝑔 · 𝑌 ] = 𝑓 𝑔[𝑋,𝑌 ] − 𝑔𝑌 ( 𝑓 )𝑋 + 𝑓 𝑋 (𝑔)𝑌 . (2.1.5)

(iv) For coordiante fields of a chart, we have the identity
[
𝜕
𝜕𝑥𝑖
, 𝜕
𝜕𝑥 𝑗

]
= 0 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Proof. Exercise. □

We now give a different definition of vector fields.

Definition 2.1.10: Tangent Bundle

The disjoint union
𝑇𝑀 :=

⊔
𝑝∈𝑀

𝑇𝑝𝑀

is the tangent bundle of 𝑀 . We have a natural map

𝜋 : 𝑇𝑀 ! 𝑀

b 7! 𝑝 if b ∈ 𝑇𝑝𝑀

called the footprint map.

Note. The footprint map works as follows: given b ∈ 𝑇𝑀 , we have b ∈ 𝑇𝑝𝑀 for exactly one 𝑝 ∈ 𝑀 . Then 𝜋(b) = 𝑝
so that 𝜋 recovers the index of the disjoint union to which b belongs.

We can give 𝑇𝑀 a smooth structure as follows:

(i) Given a chart (𝑈, 𝜑), we define a chart (𝑇𝑈,𝑇𝜑) as follows:

𝑇𝑈 := 𝜋−1 (𝑈) =
⊔
𝑝∈𝑈

𝑇𝑝𝑀

and

𝑇𝜑 : 𝑇𝑈 ! 𝜑(𝑈) × R𝑛 ⊂ R2𝑛

b 7!
(
𝜑 ◦ 𝜋(b), 𝑇𝜋 ( b )𝜑(b)

)
Basically, 𝑇𝜑 takes in a point b ∈ 𝑇𝑀 and decomposes it into the pair (𝑝, 𝑣), where 𝑝 = 𝜋(b) and
𝑣 = b ∈ 𝑇𝑝𝑀 . We then map 𝑝 into R𝑛 via 𝜑 and 𝑣 into R𝑛 via 𝑇𝑝𝜑. As both 𝜑 and 𝑇𝑝𝜑 are bĳective, and the
map b 7! (𝑝, 𝑣) is bĳective, we see that 𝑇𝜑 is bĳective.

More explicitly, we may compute

(𝑇𝜑)−1 : 𝜑(𝑈) × R𝑛 ! 𝑇𝑈

(𝑥, 𝑣) 7!
(
𝑇𝜑−1 (𝑥 )𝜑

)−1
(𝑣)
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Note (𝑇𝜑)−1 takes in a pair (𝑥, 𝑣) ∈ R𝑛 × R𝑛; then, we map

𝑥 7! 𝜑−1 (𝑥) = 𝑝 ∈ 𝑈

𝑣 7!
(
𝑇𝑝𝜑

)−1 (𝑣) = 𝑇𝑥𝜑−1 (𝑣) ∈ 𝑇𝑝𝑈 ⊂ 𝑇𝑈.

Basically, 𝑥 acts as the index for which tangent space the vector 𝑣 should be mapped to.

(ii) We now check that transition maps are smooth. Let (𝑉, 𝜓) be another chart and set 𝑊 = 𝑈 ∩ 𝑉 . Note that

our discussion on (𝑇𝜑)−1 shows that 𝜋 ◦
(
𝑇𝜑−1 (𝑥 )𝜑

)−1
(𝑣) = 𝜑−1 (𝑥). Thus,

𝑇𝜓 ◦ (𝑇𝜑)−1 : 𝜑(𝑊) × R𝑛 ! 𝜓(𝑈 ∩𝑉) × R𝑛

(𝑥, 𝑣) 7!
(
𝜓 ◦ 𝜋 ◦

(
𝑇𝜑−1 (𝑥 )𝜑

)−1
(𝑣) , 𝑇

𝜋◦
(
𝑇
𝜑−1 (𝑥) 𝜑

)−1
(𝑣)
𝜓 ◦

(
𝑇𝜑−1 (𝑥 )𝜑

)−1
(𝑣)

)
=

(
𝜓 ◦ 𝜑−1 (𝑥), 𝑇𝜑−1 (𝑥 )𝜓 ◦

(
𝑇𝜑−1 (𝑥 )𝜑

)−1
(𝑣)

)
=

(
𝜓 ◦ 𝜑−1 (𝑥), 𝑇𝜑−1 (𝑥 )𝜓 ◦ 𝑇𝑥

(
𝜑−1

)
(𝑣)

)
=

(
𝜓 ◦ 𝜑−1 (𝑥), 𝑇𝑥

(
𝜓 ◦ 𝜑−1

)
(𝑣)

)
Since 𝜓 ◦ 𝜑−1 is smooth, and since 𝑇𝑥 (𝜓 ◦ 𝜑−1) � 𝐷 (𝜓 ◦ 𝜑−1)

��
𝑥

is smooth, we see that 𝑇𝜓 ◦ (𝑇𝜑)−1 is
smooth.

Thus, the transition maps are smooth. We can thus equip 𝑇𝑀 with a topology as in Remark 1.2.4; it turns
out 𝑇𝑀 is Hausdorff and second countable because 𝑀 is. Thus, 𝑇𝑀 is a smooth manifold. Given a smooth
atlas𝒜 = {(𝑈𝑖 , 𝜑𝑖)} of 𝑀 , we have that 𝑇𝒜 = {(𝑇𝑈𝑖 , 𝑇𝜑𝑖)} is a smooth atlas of 𝑇𝑀 .

Lemma 2.1.11

(i) 𝜋 ∈ 𝐶∞ (𝑇𝑀, 𝑀).

(ii) A map 𝑋 : 𝑀 ! 𝑇𝑀 is a smooth vector field ⇐⇒ 𝑋 ∈ 𝐶∞ (𝑀,𝑇𝑀) and 𝜋 ◦ 𝑋 = id𝑀 .

Proof. Let (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛)) be a chart on 𝑀 .

(i) Observe that

𝜑 ◦ 𝜋 ◦ (𝑇𝜑)−1 : 𝜑(𝑈) × R𝑛 ! 𝜑(𝑈)

(𝑥, 𝑣) 7! 𝜑 ◦ 𝜋 ◦
(
𝑇𝜑−1 (𝑥 )𝜑

)−1
(𝑣)

= 𝜑 ◦ 𝜑−1 (𝑥) = 𝑥

Thus, 𝜋 is smooth by definition.

(ii) The condition 𝜋 ◦ 𝑋 = id𝑀 says 𝑋 (𝑝) ∈ 𝑇𝑝𝑀 for all 𝑝 ∈ 𝑀 . Next, let 𝑋 |𝑈 =
∑𝑛
𝑖=1 𝑋

𝑖 𝜕
𝜕𝑥𝑖

. Note that for all
𝑝 ∈ 𝑀 , (since 𝜋 ◦ 𝑋 = id𝑀 ) the definition of the coordinate vectors 𝜕

𝜕𝑥𝑖
|𝑝 and linearity shows

𝑇𝑝𝜑 ◦ 𝑋 (𝑝) = 𝑇𝑝𝜑
(
𝑛∑︁
𝑖=1

𝑋 𝑖 (𝑝) 𝜕
𝜕𝑥𝑖

��
𝑝

)
=

𝑛∑︁
𝑖=1

𝑋 𝑖 (𝑝)𝑇𝑝𝜑
(
𝜕

𝜕𝑥𝑖

��
𝑝

)
=

𝑛∑︁
𝑖=1

𝑋 𝑖 (𝑝)𝑒𝑖 .

Since 𝜋 ◦ 𝑋 (𝑝) = 𝑝, we have

𝑇𝜑 ◦ 𝑋 ◦ 𝜑−1 (𝑥) =
(
𝜑(𝜋(𝑋 (𝜑−1 (𝑥)))), 𝑇𝜋 (𝑋 (𝜑−1 (𝑥 ) ) )𝜑(𝑋 (𝜑−1 (𝑥)))

)
=

(
𝜑(𝜑−1 (𝑥)), 𝑇(𝜑−1 (𝑥 )𝜑(𝑋 (𝜑−1 (𝑥)))

)
=

(
𝑥, 𝑇(𝜑−1 (𝑥 )𝜑 ◦ 𝑋 ◦ 𝜑−1 (𝑥)

)
=

(
𝑥, 𝑋1 ◦ 𝜑−1 (𝑥), . . . , 𝑋𝑛 ◦ 𝜑−1 (𝑥)

)
.
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Note that 𝑋 ∈ 𝐶∞ (𝑀,𝑇𝑀) if and only if 𝑇𝜑 ◦ 𝑋 ◦ 𝜑−1 is smooth for an arbitrary chart (𝑈, 𝜑). The above
shows this holds if and only if every 𝑋 𝑖 is smooth. Thus, the result follows by Defn. 2.1.1. □

2.2 1-forms
We will now define objects that are dual to vector fields. For this purpose, we recall some facts from linear algebra.

Definition 2.2.1: Dual Space

Let 𝑉 be an 𝑛-dimensional real vector space. Then the space 𝑉∗ := L(𝑉,R) with natural addition and scalar
multiplication of maps is also an 𝑛-dimensional real vector space, called the dual space of 𝑉 . Given a basis
{𝑒1, . . . , 𝑒𝑛} is a basis of 𝑉 , then we define the collection of maps 𝑒𝑖 ∈ 𝑉∗ by

𝑒𝑖 (𝑒 𝑗 ) := 𝛿𝑖𝑗 =

{
1 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗 ,

and linearly extend these maps to 𝑉 . The collection
{
𝑒1, . . . , 𝑒𝑛

}
is a basis of 𝑉∗, called the dual basis.

The dual basis is in fact a basis. To see this, let 𝑣∗ ∈ 𝑉∗ and define 𝑣𝑖 = 𝑣∗ (𝑒𝑖). Let 𝑣 =
∑𝑛
𝑖=1 _

𝑖𝑒𝑖 ∈ 𝑉 . Then

𝑣∗ (𝑣) = 𝑣∗
(
𝑛∑︁
𝑖=1

_𝑖𝑒𝑖

)
=

𝑛∑︁
𝑖=1

_𝑖𝑣∗ (𝑒𝑖) =
𝑛∑︁

𝑖, 𝑗=1
_𝑖𝑣 𝑗𝑒

𝑗 (𝑒𝑖) =
𝑛∑︁
𝑗=1
𝑣 𝑗𝑒

𝑗

(
𝑛∑︁
𝑖=1

_𝑖𝑒𝑖

)
This shows 𝑣∗ =

∑𝑛
𝑖=1 𝑣𝑖𝑒

𝑖 .

Remark 2.2.2. (i) We have isomorphic vector spaces𝑉 � 𝑉∗ � R𝑛 as they are all 𝑛-dimensional vector spaces.
However, the spaces are not canonically isomorphic. This is why we have to treat them separately.

(ii) The map

𝑖 : 𝑉 ! (𝑉∗)∗

𝑣 7!
(
𝑣∗ 7! 𝑣∗ (𝑣)

)
is a canonical map which is linear and injective. As dim(𝑉) = 𝑛 < ∞, we have dim((𝑉∗)∗) = 𝑛 and thus 𝑖 is
an isomorphism. This shows 𝑉 � (𝑉∗)∗.

Definition 2.2.3: Cotangent Space

Let 𝑝 ∈ 𝑀 . The space 𝑇∗
𝑝𝑀 := (𝑇𝑝𝑀)∗ is the cotangent space of 𝑀 at 𝑝. An element b ∈ 𝑇∗

𝑝𝑀 is a
cotangent vector at 𝑝.

Example 2.2.4. If 𝑓 ∈ 𝐶∞ (𝑀), then 𝑇𝑝 𝑓 : 𝑇𝑝𝑀 ! 𝑇 𝑓 (𝑝)R � R is a linear map, and hence an element in 𝑇∗
𝑝𝑀 .

If we regard 𝑇𝑝 𝑓 as a covector, we use from now on the notation 𝑑𝑓 |𝑝 ∈ 𝑇∗
𝑝𝑀 . The notation 𝑇𝑝 𝑓 will still be used

for maps between manifolds.

𝑇𝑝𝑀 R

𝑇 𝑓 (𝑝)R

𝑑 𝑓 |𝑝

𝑇𝑝 𝑓 ∼

This example gives rise to an important definition.
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Definition 2.2.5: Coordinate Covectors

Let (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛)) be a chart of 𝑀 . Consider the smooth functions 𝑥1, . . . , 𝑥𝑛 ∈ 𝐶∞ (𝑈). For 𝑝 ∈ 𝑈,
we call 𝑑𝑥1 |𝑝 , . . . , 𝑑𝑥𝑛 |𝑝 ∈ 𝑇∗

𝑝𝑀 the coordinate covectors of (𝑈, 𝜑) at 𝑝.

Lemma 2.2.6

Let (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛)) be a chart of 𝑀 and 𝑝 ∈ 𝑀 . The set
{
𝑑𝑥1 |𝑝 , . . . , 𝑑𝑥𝑛 |𝑝

}
is the dual basis of

𝑇𝑝𝑀 = ⟨ 𝜕

𝜕𝑥1

��
𝑝
, . . . , 𝜕

𝜕𝑥𝑛

��
𝑝
⟩. In particular, it is a basis of 𝑇∗

𝑝𝑀 .

Proof. Let 𝑐 𝑗 (𝑡) = 𝜑−1 (𝜑(𝑝) + 𝑡𝑒 𝑗 ) so that [𝑐 𝑗 ] 𝑝 = 𝜕
𝜕𝑥 𝑗

��
𝑝
. Let 𝜑 : 𝑇 𝑓 (𝑝)R � R be the canonical isomorphism.

Then

𝑑𝑥𝑖
��
𝑝

(
𝜕

𝜕𝑥 𝑗

��
𝑝

)
= 𝜑 ◦ 𝑇𝑝𝑥𝑖 [𝑐 𝑗 ]

= 𝜑[𝑥𝑖 ◦ 𝑐 𝑗 ] 𝑝

=
𝑑

𝑑𝑡

(
𝑥𝑖 ◦ 𝑐 𝑗

) ��
𝑡=0

=
𝑑

𝑑𝑡

(
𝜋𝑖 ◦ 𝜑 ◦ 𝜑−1 (

𝜑 (𝑝) + 𝑡𝑒 𝑗
) ) ��

𝑡=0

=
𝑑

𝑑𝑡

(
𝑥𝑖 (𝑝) + 𝑡𝛿𝑖𝑗

) ��
𝑡=0

= 𝛿𝑖𝑗 ,

This shows 𝑑𝑥𝑖 |𝑝 is a dual basis for 𝜕
𝜕𝑥𝑖

��
𝑝
. □

Definition 2.2.7: 1-form

A 1-form 𝜔 on 𝑀 is a map

𝜔 : 𝑀 !
⊔
𝑝∈𝑀

𝑇∗
𝑝𝑀

𝑝 7! 𝜔(𝑝) ∈ 𝑇∗
𝑝𝑀

that satisfies 𝜋 ◦ 𝜔 = id𝑀 . It is called a 𝐶∞ 1-form (or smooth 1-form) if for all 𝑝 ∈ 𝑀 , there is
a chart (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛)) with 𝑝 ∈ 𝑈 such that the coefficient functions 𝜔𝑖 : 𝑈 ! R, defined by
𝜔𝑖 (𝑞) = 𝜔(𝑞)

(
𝜕
𝜕𝑥𝑖

��
𝑝

)
are smooth.

The set of all smooth 1-forms on 𝑀 is denoted by Ω1 (𝑀).

Note. For 𝑞 ∈ 𝑀 , we have 𝜔(𝑞) ∈ 𝑇∗
𝑞𝑀 so that 𝜔(𝑞) : 𝑇𝑞𝑀 ! R. Thus, for any basis vector 𝜕

𝜕𝑥𝑖
|𝑞 , we have a

real number 𝑥 = 𝜔(𝑞)
(
𝜕
𝜕𝑥𝑖

|𝑞
)
. The coordinate function 𝜔𝑖 : 𝑈 ! R is defined precisely so that

𝜔𝑖 (𝑞) = 𝑥 = 𝜔(𝑞)
(
𝜕

𝜕𝑥𝑖

��
𝑞

)
.

That is, the functions 𝜔𝑖 indicate which real number the basis vector 𝜕
𝜕𝑥𝑖

��
𝑞

gets mapped to by 𝜔(𝑞). This real
number also coincides with the representation of 𝜔(𝑞) with respect to the dual basis

{
𝑑𝑥𝑖 |𝑞

}
of 𝑇∗

𝑞𝑀 .

We also have the identity

𝜔(𝑞) =
𝑛∑︁
𝑖=1

𝜔𝑖 (𝑞)𝑑𝑥𝑖
��
𝑞

(𝑞 ∈ 𝑈). (2.2.1)
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Lemma 2.2.8

Let 𝜔 be a 1-form. The following are equivalent.

(i) 𝜔 ∈ Ω1 (𝑀).

(ii) For any chart (𝑉, 𝜓 = (𝑦1, . . . , 𝑦𝑛)), the corresponding coefficient functions 𝑞 7! 𝜔(𝑞)
(
𝜕
𝜕𝑦𝑖

��𝑞) are
smooth.

Proof. Kind of like Lemma 1.3.4 and Lemma 2.1.2. □

Many things we talked about for vector fields are completely analogous for 1-forms.

Remark 2.2.9. (i) We have 𝜔 ∈ Ω1 (𝑀) ⇐⇒ 𝜔 |𝑈 ∈ Ω1 (𝑈) for all open𝑈 ⊂ 𝑀 .

(ii) For any chart (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛)), the coordinate 1-forms

𝑑𝑥𝑖 : 𝑈 ! 𝑇∗𝑀

𝑝 7! 𝑑𝑥𝑖 |𝑝 ∈ 𝑇∗
𝑝𝑀

are smooth 1-forms on𝑈.

(iii) Ω1 (𝑀) may be given a 𝐶∞ (𝑀)-module structure by the natural operations

𝜔 + [ : 𝑝 7! 𝜔(𝑝) + [(𝑝)
𝑓 · 𝜔 : 𝑝 7! 𝑓 (𝑝) · 𝜔(𝑝),

for 𝜔, [ ∈ Ω1 (𝑀), 𝑓 ∈ 𝐶∞ (𝑀). These operations are well-defined because 𝑇∗
𝑝𝑀 is a vector space and thus

an abelian group, and because 𝑓 (𝑝) ∈ R for all 𝑝.

(iv) The disjoint union
𝑇∗𝑀 :=

⊔
𝑝∈𝑀

𝑇∗
𝑝𝑀

is the cotangent bundle. We can equip 𝑇∗𝑀 with a 𝐶∞-structure such that the canonical projection
𝜋 : 𝑇∗𝑀 ! 𝑀 is smooth and

𝜔 ∈ Ω1 (𝑀) ⇐⇒ 𝜔 ∈ 𝐶∞ (𝑀,𝑇∗𝑀) and 𝜋 ◦ 𝜔 = id𝑀 .

Example 2.2.10. For 𝑓 ∈ 𝐶∞ (𝑀), the map

𝑑𝑓 : 𝑀 ! 𝑇∗𝑀

𝑝 7! 𝑑𝑓 |𝑝 ∈ 𝑇∗
𝑝𝑀

is a smooth 1-form because for any chart (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛)), the coefficient functions

𝑝 7! 𝑑𝑓 |𝑝
(
𝜕

𝜕𝑥𝑖

��
𝑝

)
=
𝜕 𝑓

𝜕𝑥𝑖
(𝑝) = 𝜕 ( 𝑓 ◦ 𝜑−1)

𝜕𝑥𝑖
(𝜑(𝑝))

are smooth. The first equality follows from (1.4.9).

We call 𝑑𝑓 ∈ Ω1 (𝑀) the differential of 𝑓 .

Remark 2.2.11. Let 𝜔 ∈ Ω1 (𝑀) and 𝑋 ∈ 𝔛(𝑀). Then for any 𝑝 ∈ 𝑀 , we have 𝑋 (𝑝) ∈ 𝑇𝑝𝑀 and 𝜔(𝑝) ∈ 𝑇∗
𝑝𝑀;

thus, 𝜔(𝑝)
(
𝑋 (𝑝)

)
∈ R. This means we may define a map

𝜔(𝑋) : 𝑀 ! R

𝑝 7! 𝜔(𝑝) (𝑋 (𝑝))

If 𝜔 = 𝑑𝑓 for some 𝑓 ∈ 𝐶∞ (𝑀), then for all 𝑝 ∈ 𝑀 ,

𝑑𝑓 (𝑋) (𝑝) = 𝑑𝑓 |𝑝
(
𝑋 (𝑝)

)
= 𝑇𝑝 𝑓

(
𝑋 (𝑝)

)
= 𝑋 ( 𝑓 ) (𝑝).

This shows 𝑑𝑓 (𝑋) = 𝑋 ( 𝑓 ).
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Exercise 2.2.12. Let 𝑀 be a smooth manifold and (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛)) and (𝑉, 𝜓 = (𝑦1, . . . , 𝑦𝑛)) two charts
with𝑈 ∩𝑉 ≠ ∅. Find a formula which relates between the coordinate 1-forms

{
𝑑𝑥𝑖

}
1≤𝑖≤𝑛 and

{
𝑑𝑦 𝑗

}
1≤ 𝑗≤𝑛.

Lemma

Let 𝑀 be a smooth manifold and (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛)) and (𝑉, 𝜓 = (𝑦1, . . . , 𝑦𝑛)) two charts with𝑈 ∩𝑉 ≠ ∅.
Then

𝑑𝑥𝑖 =

𝑛∑︁
𝑗=1

𝜕𝑥𝑖

𝜕𝑦 𝑗
𝑑𝑦 𝑗 . (2.2.2)

Proof. Let 𝑝 ∈ 𝑈 ∩𝑉 and let 𝜑 : 𝑇𝑝R � R be the natural isomorphism. Then for all [𝑐] 𝑝 ∈ 𝑇𝑝𝑀 and all 1 ≤ 𝑖 ≤ 𝑛,
we have

𝑑𝑥𝑖 |𝑝 =
𝑑

𝑑𝑡
(𝑥𝑖 ◦ 𝑐)

��
𝑡=0

=
𝑑

𝑑𝑡
(𝑥𝑖 ◦ 𝜓−1 ◦ 𝜓 ◦ 𝑐)

��
𝑡=0

= 𝐷 (𝑥𝑖 ◦ 𝜓−1) |𝜓 (𝑝)
𝑑

𝑑𝑡
(𝜓 ◦ 𝑐)

��
𝑡=0

=

𝑛∑︁
𝑗=1

(𝜕𝑥𝑖 ◦ 𝜓−1)
𝜕𝑦 𝑗

(
𝜓(𝑝)

) 𝑑
𝑑𝑡

(𝑦 𝑗 ◦ 𝑐)
��
𝑡=0

=

𝑛∑︁
𝑗=1

𝜕𝑥𝑖

𝜕𝑦 𝑗
(𝑝)𝑑𝑦 𝑗 |𝑝 .

In particular, this shows that for all 𝑝 ∈ 𝑀 ,

𝑑𝑥𝑖 =

𝑛∑︁
𝑗=1

𝜕𝑥𝑖

𝜕𝑦 𝑗
𝑑𝑦 𝑗 . □

Exercise 2.2.13. Let 𝑀 = R2 and 𝑈 = R2 ∖ {𝑥 ∈ R2 | 𝑥2 = 0 and 𝑥1 ≤ 0} ⊂ R2. Consider standard coordinates
(𝑀, 𝜑 = (𝑥1, 𝑥2)) = (𝑀, id) and the polar coordinates (𝑈, 𝜓 = (𝑟, \)) from Problem 13.

(i) Express 𝑑𝑟 and 𝑑\ in terms of 𝑑𝑥1, 𝑑𝑥2 and functions in 𝑥1 and 𝑥2. Conversely, express 𝑑𝑥1 and 𝑑𝑥2 in terms
of 𝑑𝑟, 𝑑\ and functions in 𝑟 and \

(ii) Let 𝑓 ∈ 𝐶∞ (R2) be given by 𝑓 (𝑥1, 𝑥2) = (𝑥1)2 − (𝑥2)2. Express 𝑑𝑓 in terms of the coordinate 1-forms of
both charts.

Exercise 2.2.14. Let 𝑀 be a smooth manifold and 𝜔 ∈ Ω1 (𝑀). Let [𝑎, 𝑏] ⊂ R be a closed interval and
𝛾 : [𝑎, 𝑏] ! 𝑀 be a smooth curve. We define the path integral of 𝜔 along 𝛾 by∫

𝛾

𝜔 =

∫ 𝑏

𝑎

𝜔(𝛾(𝑡)) (𝛾′ (𝑡)) 𝑑𝑡

(i) Show that if 𝜑 : [𝑐, 𝑑] ! [𝑎, 𝑏] is a diffeomorphism of intervals with 𝜑′ > 0, then∫
𝛾◦𝜑

𝜔 =

∫
𝛾

𝜔.

(ii) Show that for 𝑓 ∈ 𝐶∞ (𝑀), we have ∫
𝛾

𝑑𝑓 = 𝑓 (𝛾(𝑏)) − 𝑓 (𝛾(𝑎)).

2.3 Tensor fields
Recall that a map is multilinear if it is linear in each of its arguments.
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Definition 2.3.1: (𝑟, 𝑠)-tensors

Let 𝑉 be an 𝑛-dimensional real vector space and 𝑉∗ its dual space. A multilinear map

𝑡 : 𝑉∗ × · · · ×𝑉∗︸          ︷︷          ︸
𝑟-times

×𝑉 × · · · ×𝑉︸        ︷︷        ︸
𝑠-times

! R

is an (𝑟, 𝑠)-tensor on 𝑉 . We denote the set of all (𝑟, 𝑠) tensors on 𝑉 by 𝑉𝑟𝑠 .

Under the natural addition and scalar multiplication of maps, 𝑉𝑟𝑠 becomes a real vector space.

Example 2.3.2. (i) An inner product ⟨−,−⟩ : 𝑉 ×𝑉 ! R (see Section 3.1) is a (0, 2)-tensor.

(ii) The map

det : R𝑛 × R𝑛 ! R
(𝑣1, . . . , 𝑣𝑛) 7! det(𝑣1, . . . , 𝑣𝑛)

is a (0, 𝑛)-tensor on R𝑛.

These examples motivate why we need to define tensors also on manifolds. We need them to study lengths, angles
and volumes. It will turn out later that also curvature is described by tensors.

Definition 2.3.3: Tensor Product

Let 𝑉 be an 𝑛-dimensional real vector space, 𝑡1 ∈ 𝑉𝑟𝑠 and 𝑡2 ∈ 𝑉𝑟 ′
𝑠′ . The tensor product of 𝑡1 and 𝑡2, denoted

𝑡1 ⊗ 𝑡2 ∈ 𝑉𝑟+𝑟 ′
𝑠+𝑠′ , is defined by

(𝑡1 ⊗ 𝑡2) (𝑣∗1, . . . , 𝑣
∗
𝑟 , 𝑤

∗
1, . . . , 𝑤

∗
𝑟 ′ , 𝑣1, . . . , 𝑣𝑠 , 𝑤1, . . . , 𝑤𝑠′ )

:= 𝑡1 (𝑣∗1, . . . , 𝑣
∗
𝑟 , 𝑣1, . . . , 𝑣𝑠) · 𝑡2 (𝑤∗

1, . . . , 𝑤
∗
𝑟 ′ , 𝑤1, . . . , 𝑤𝑠′ ).

Remark 2.3.4. (i) The tensor product is associative but not commutative. That is, for 𝑡𝑖 ∈ 𝑉 𝑡𝑖𝑠𝑖 , 𝑖 = 1, 2, 3, we
have

(𝑡1 ⊗ 𝑡2) ⊗ 𝑡3 = 𝑡1 ⊗ (𝑡2 ⊗ 𝑡3),
but in general we do not have 𝑡1 ⊗ 𝑡2 ≠ 𝑡2 ⊗ 𝑡1.

(ii) Given vector spaces𝑉,𝑉1, . . . , 𝑉𝑘 , denote byM(𝑉1×· · ·×𝑉𝑘 , 𝑉) the set of multilinear maps𝑉1×· · ·×𝑉𝑘 ! 𝑉 .
There is a natural identification

M(𝑉 𝑠 , 𝑉) �M(𝑉∗ ×𝑉 𝑠 ,R) = 𝑉1
𝑠 .

Given 𝐴 ∈ M(𝑉 𝑠 , 𝑉) and 𝑣1, . . . , 𝑣𝑠 ∈ 𝑉 , we have 𝐴(𝑣1, . . . , 𝑣𝑠) ∈ 𝑉 ; we may thus define

𝑡 : 𝑉∗ ×𝑉 𝑠 ! R
(𝑣∗, 𝑣1, . . . , 𝑣𝑠) 7! 𝑣∗ ◦ 𝐴(𝑣1, . . . , 𝑣𝑠)

As 𝑣∗ : 𝑉 ! R is linear and 𝐴 is multilinear, we have 𝑡 ∈ 𝑉1
𝑠 . Conversely, given 𝑡 ∈ M(𝑉∗ × 𝑉 𝑠 ,R), we see

that for all fixed 𝑣1, . . . , 𝑣𝑠 ∈ 𝑉 , the function 𝑡 (−, 𝑣1, . . . , 𝑣𝑠) : 𝑉∗ ! R is linear. That is,

𝑡 (−, 𝑣1, . . . , 𝑣𝑠) ∈ L(𝑉∗,R) = 𝑉∗∗ � 𝑉.

In particular, we may view the map 𝑡 (−, 𝑣1, . . . , 𝑣𝑠) as an element of 𝑉 by the natural isomorphism 𝑉∗∗ � 𝑉 .
Since 𝑡 is multilinear, the map

𝐴 : 𝑉 𝑠 ! 𝑉

(𝑣1, . . . , 𝑣𝑠) 7! 𝑡 (−, 𝑣1, . . . , 𝑣𝑠)

is multilinear; thus 𝐴 ∈ M(𝑉 𝑠 , 𝑉).

It is clear from the definition that these maps are mutual inverses.
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(iii) Since M(𝑉,𝑊) = L(𝑉,𝑊) for any vector spaces 𝑉,𝑊 , we have

𝑉1
0 = L(𝑉∗,R) = 𝑉∗∗ � 𝑉

𝑉0
1 = L(𝑉,R) = 𝑉∗.

We define 𝑉0
0 := R. (Note this means dim𝑉0

0 = 0.)

Proposition 2.3.5

Let 𝑉 be an 𝑛-dimensional real vector sapce, {𝑒1, . . . , 𝑒𝑛} a basis for 𝑉 and
{
𝑒1, . . . , 𝑒𝑛

}
its dual basis. Then{

𝑒 𝑗1 , ⊗ · · · ⊗ 𝑒 𝑗𝑟 ⊗ 𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑠 : 1 ≤ 𝑖1, . . . , 𝑖𝑠 , 𝑗1, . . . , 𝑗𝑟 ≤ 𝑛
}

is a basis for 𝑉𝑟𝑠 and dim(𝑉𝑟𝑠 ) = 𝑛𝑟+𝑠 . In particular, this means every 𝑡 ∈ 𝑉𝑟𝑠 can be uniquely expressed as

𝑡 =

𝑛∑︁
𝑗1 ,..., 𝑗𝑟=1
𝑖1 ,...,𝑖𝑠=1

𝑡
𝑗1 ,..., 𝑗𝑟
𝑖1 ,...,𝑖𝑠

· 𝑒 𝑗1 ⊗ · · · 𝑒 𝑗𝑟 ⊗ 𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑠 . (2.3.1)

Furthermore, the coefficients in (2.3.1) are (uniquely) determined by the identity

𝑡
𝑗1 ,..., 𝑗𝑟
𝑖1 ,...,𝑖𝑠

= 𝑡
(
𝑒 𝑗1 , . . . , 𝑒 𝑗𝑟 , 𝑒𝑖1 , . . . , 𝑒𝑖𝑠

)
.

Proof. This follows from the multilinearity of the elements of 𝑉𝑟𝑠 , and the independence of the sets {𝑒1, . . . , 𝑒𝑛}
and

{
𝑒1, . . . , 𝑒𝑛

}
. The details are left as an exercise. □

Remark 2.3.6. We will now use the Einstein Summation Convention. This means we automatically sum over
indices that appear in both upper and lower positions. With this convention, (2.3.1) becomes

𝑡 = 𝑡
𝑗1 ,..., 𝑗𝑟
𝑖1 ,...,𝑖𝑠

· 𝑒 𝑗1 ⊗ · · · 𝑒 𝑗𝑟 ⊗ 𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑠 .

Now we are ready to define the corresponding objects on manifolds.

Definition 2.3.7: Coordinate Tensors & Tensor Fields

(i) For 𝑝 ∈ 𝑀 , the space (𝑇𝑝𝑀)𝑟𝑠 is the space of (𝑟, 𝑠)-tensors at 𝑝. If (𝑈, 𝜑) is a chart of 𝑀 with 𝑝 ∈ 𝑈,
the tensors

𝜕 𝑗1 |𝑝 ⊗ · · · ⊗ 𝜕 𝑗𝑟 |𝑝 ⊗ 𝑑𝑥𝑖1 |𝑝 ⊗ · · · ⊗ 𝑑𝑥𝑖𝑠 |𝑝 , (1 ≤ 𝑖1, . . . , 𝑖𝑠 , 𝑗1, . . . , 𝑗𝑟 ≤ 𝑛)

are called coordinate (𝑟, 𝑠)-tensors with respect to (𝑈, 𝜑) at 𝑝.

(ii) A map 𝑡 on 𝑀 with 𝑡 (𝑝) ∈ (𝑇𝑝𝑀)𝑟𝑠 for all 𝑝 ∈ 𝑀 is called tensor field on 𝑀 . It is called a 𝐶∞ (or
smooth) tensor field if for all 𝑝 ∈ 𝑀 , there exists a chart (𝑈, 𝜑) with 𝑝 ∈ 𝑈 such that the coefficient
functions

𝑡
𝑗1 ,..., 𝑗𝑟
𝑖1 ,...,𝑖𝑠

: 𝑈 ! R

𝑞 7! 𝑡 (𝑞) (𝑑𝑥 𝑗1 |𝑝 , . . . , 𝑑𝑥 𝑗𝑟 |𝑝 , 𝜕𝑖1 |𝑝 , . . . , 𝜕𝑖𝑠 |𝑝)

are smooth. We denote the set of smooth tensor fields on 𝑀 by T 𝑟
𝑠 (𝑀).

(iii) The maps

𝜕 𝑗1 ⊗ · · · ⊗ 𝜕 𝑗𝑟 ⊗ 𝑑𝑥𝑖1 ⊗ · · · ⊗ 𝑑𝑥𝑖𝑠 : 𝑈 !
⊔
𝑞∈𝑈

(𝑇𝑞𝑀)𝑟𝑠

𝑝 7! 𝜕 𝑗1 |𝑝 ⊗ · · · ⊗ 𝜕 𝑗𝑟 |𝑝 ⊗ 𝑑𝑥𝑖1 |𝑝 ⊗ · · · ⊗ 𝑑𝑥𝑖𝑠 |𝑝

are smooth tensor fields on𝑈, called the coordinate tensor fields.
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Note. (i) By Proposition 2.3.5, the coordinate (𝑟, 𝑠)-tensors form a basis of (𝑇𝑝𝑀)𝑟𝑠 .

(ii) As with vector fields and 1-forms, a tensor field is smooth if and only if its coefficient functions with respect
to any chart are smooth.

(iii) Given a tensor field 𝑡, Prop. 2.3.5 shows the coordinate functions 𝑡𝐽
𝐼

defined in Defn. 2.3.7(ii) satisfy

𝑡 (𝑞) = 𝑡𝐽𝐼 · 𝜕 𝑗1 |𝑞 ⊗ · · · ⊗ 𝜕 𝑗𝑟 |𝑞 ⊗ 𝑑𝑥𝑖1 |𝑞 ⊗ · · · ⊗ 𝑑𝑥𝑖𝑠 |𝑞 .

(iv) Finally, for 𝑡, 𝑡1, 𝑡2 ∈ T 𝑟
𝑠 (𝑀), and 𝑠 ∈ T 𝑟 ′

𝑠′ (𝑀), we have natural operations

𝑡1 + 𝑡2 : 𝑝 7! 𝑡1 (𝑝) + 𝑡2 (𝑝), 𝑓 · 𝑡 7! 𝑓 (𝑝) · 𝑡 (𝑝), 𝑡 ⊗ 𝑠 : 𝑝 7! 𝑡 (𝑝) · 𝑠(𝑝),

which yields smooth tensor fields 𝑡1 + 𝑡2 ∈ T 𝑟
𝑠 (𝑀), 𝑓 · 𝑡 ∈ T 𝑟

𝑠 (𝑀) and 𝑡 ⊗ 𝑠 ∈ T 𝑟+𝑟 ′
𝑠+𝑠′ (𝑀). Analogous to the

cases of vector fields and 1-forms, (T 𝑟
𝑠 (𝑀), +, ·) is a 𝐶∞ (𝑀)-module.

Remark 2.3.8. (i) We have 𝑡 ∈ T 𝑟
𝑠 (𝑀) if and only if 𝑡 |𝑈 ∈ T 𝑟

𝑠 (𝑈) for each open subset𝑈 ⊂ 𝑀 .

(ii) The disjoint union 𝑇𝑟𝑠 𝑀 :=
⊔
𝑝∈𝑀 (𝑇𝑝𝑀)𝑟𝑠 can be equipped with a 𝐶∞-structure such that the canonical

projection 𝜋 : 𝑇𝑟𝑠 𝑀 ! 𝑀 is smooth and 𝑡 ∈ T 𝑟
𝑠 (𝑀) if and only if 𝜋 ∈ 𝐶∞ (𝑀,𝑇𝑟𝑠 𝑀) and 𝜋 ◦ 𝑡 = id𝑀 . We

call 𝑇𝑟𝑠 𝑀 the (𝑟, 𝑠)-tensor bundle on 𝑀 .

(iii) As special cases, we have T 1
0 (𝑀) = 𝔛(𝑀) and T 0

1 (𝑀) = Ω1 (𝑀). Furthermore, because (𝑇𝑝𝑀)0
0 for all

𝑝 ∈ 𝑀 , we get T 0
0 (𝑀) = 𝐶∞ (𝑀). (See Remark 2.3.4(iii).)

For our purposes, it will later be useful to have another (algebraic) characterization of the space of tensor fields.

Definition 2.3.9: 𝐿𝑟 ,𝑠
𝐶∞ (𝑀 ) (𝑀)

We denote by 𝐿𝑟 ,𝑠
𝐶∞ (𝑀 ) (𝑀) the set of all maps

𝐴 : Ω1 (𝑀) × · · · ×Ω1 (𝑀)︸                       ︷︷                       ︸
𝑟−times

×𝔛(𝑀) × · · · × 𝔛(𝑀)︸                    ︷︷                    ︸
𝑠−times

! 𝐶∞ (𝑀),

which are 𝐶∞ (𝑀)-multilinear in each slot.

Defn. 2.3.9 means that for all 𝜔1, . . . , 𝜔𝑟 , [ ∈ Ω1 (𝑀), all 𝑋1, . . . , 𝑋𝑠 , 𝑌 ∈ 𝔛(𝑀), all 𝑓 ∈ 𝐶∞ (𝑀), and all
𝑘, ℓ ∈ {1, . . . , 𝑛}, we have

𝐴(𝜔1, . . . , 𝜔𝑘 + 𝑓 · [, . . . , 𝜔𝑟 , 𝑋1, . . . , 𝑋𝑠) = 𝐴(𝜔1, . . . , 𝜔𝑘 , . . . , 𝜔𝑟 , 𝑋1, . . . , 𝑋𝑠)
+ 𝑓 · 𝐴(𝜔1, . . . , [, . . . , 𝜔𝑟 , 𝑋1, . . . , 𝑋𝑠),

𝐴(𝜔1, . . . , 𝜔𝑟 , 𝑋1, . . . , 𝑋ℓ + 𝑓 · 𝑌, . . . , 𝑋𝑠) = 𝐴(𝜔1, . . . , 𝜔𝑟 , 𝑋1, . . . , 𝑋ℓ , . . . , 𝑋𝑠)
+ 𝑓 · 𝐴(𝜔1, . . . , 𝜔𝑟 , 𝑋1, . . . , 𝑌 , . . . , 𝑋𝑠).

We claim that for each 𝑡 ∈ 𝒯𝑟
𝑠 (𝑀), we get an element 𝐴𝑡 ∈ 𝐿𝑟 ,𝑠𝐶∞ (𝑀 ) (𝑀) defined by

𝐴𝑡 : Ω1 (𝑀) × · · · ×Ω1 (𝑀) × 𝔛(𝑀) × · · ·𝔛(𝑀) ! 𝐶∞ (𝑀)
(𝜔1, . . . , 𝜔𝑟 , 𝑋1, . . . , 𝑋𝑠) 7! 𝐴𝑡 (𝜔1, . . . , 𝜔𝑟 , 𝑋1, . . . , 𝑋𝑠) ,

where

𝐴𝑡 (𝜔1, . . . , 𝜔𝑟 , 𝑋1, . . . , 𝑋𝑠) : 𝑀 ! R

𝑝 7! 𝑡 (𝑝)
(
𝜔1 (𝑝), . . . , 𝜔𝑟 (𝑝), 𝑋1 (𝑝), . . . , 𝑋𝑠 (𝑝)

)
(2.3.2)

Given 𝜔1, . . . , 𝜔𝑟 ∈ Ω1 (𝑀) and 𝑋1, . . . , 𝑋𝑠 ∈ 𝔛(𝑀), note that for all 𝑝 ∈ 𝑀 , we have

𝑡 (𝑝) ∈ (𝑇𝑝𝑀)𝑟𝑠 = M
((
𝑇∗
𝑝𝑀

)𝑟
×

(
𝑇𝑝𝑀

)𝑠
,R

)
𝜔1 (𝑝), . . . , 𝜔𝑟 (𝑝) ∈ 𝑇∗

𝑝𝑀

𝑋1 (𝑝), . . . , 𝑋𝑠 (𝑝) ∈ 𝑇𝑝𝑀.
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Keeping 𝜔1, . . . , 𝜔𝑟 , 𝑋1, . . . , 𝑋𝑠 fixed, we may thus define the map (2.3.2). It remains to check that the map
𝑓 = 𝐴𝑡 (𝜔1, . . . , 𝜔𝑟 , 𝑋1, . . . , 𝑋𝑠) is smooth. We will do so in local coordinates. Let (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛)) be a
chart of 𝑝. For 1 ≤ 𝑖1, . . . , 𝑖𝑠 , 𝑗1, . . . , 𝑗𝑟 ≤ 𝑛, we then get smooth functions

𝑋 𝑖1 , . . . , 𝑋 𝑖𝑠 , 𝜔 𝑗1 , . . . , 𝜔 𝑗𝑟 , 𝑡
𝑗1 ,..., 𝑗𝑟
𝑖1 ,...,𝑖𝑠

: 𝑈 ! R

such that for 1 ≤ 𝑘 ≤ 𝑠 and 1 ≤ ℓ ≤ 𝑟 ,

𝑋𝑘 (𝑞) = 𝑋 𝑖𝑘 (𝑞)𝜕𝑖𝑘
��
𝑞
,

𝜔ℓ (𝑞) = 𝜔 𝑗ℓ (𝑞)𝑑𝑥 𝑗ℓ
��
𝑞
,

𝑡
𝑗1 ,..., 𝑗𝑟
𝑖1 ,...,𝑖𝑠

(𝑞) = 𝑡 (𝑞)
(
𝑑𝑥 𝑗1

��
𝑞
, . . . , 𝑑𝑥 𝑗𝑟

��
𝑞
, 𝜕𝑖1

��
𝑞
, . . . , 𝜕𝑖𝑟

��
𝑞

)
.

(Note the use of the einstein summation convention in the first two terms.) Using the multilinearity of 𝑡, we then
get that on𝑈,

𝑓 (𝑞) = 𝑡 (𝑞)
(
𝜔1 (𝑞), . . . , 𝜔𝑟 (𝑞), 𝑋1 (𝑞), . . . , 𝑋𝑠 (𝑞)

)
= 𝑡 (𝑞)

(
𝜔 𝑗1 (𝑞)𝑑𝑥 𝑗1

��
𝑞
, . . . , 𝜔 𝑗𝑟 (𝑞)𝑑𝑥 𝑗𝑟

��
𝑞
, 𝑋 𝑖1 (𝑞)𝜕𝑖1

��
𝑞
, . . . , 𝑋 𝑖𝑠 (𝑞)𝜕𝑖𝑠

��
𝑞

)
= 𝜔 𝑗1 (𝑞) · · ·𝜔 𝑗𝑟 (𝑞) · 𝑋 𝑖1 (𝑞) · · · 𝑋 𝑖𝑠 (𝑞) · 𝑡 (𝑞)

(
𝑑𝑥 𝑗1

��
𝑞
, . . . , 𝑑𝑥 𝑗𝑟

��
𝑞
, 𝜕𝑖1

��
𝑞
, . . . , 𝜕𝑖𝑠

��
𝑞

)
= 𝜔 𝑗1 (𝑞) · · ·𝜔 𝑗𝑟 (𝑞) · 𝑋 𝑖1 (𝑞) · · · 𝑋 𝑖𝑠 (𝑞) · 𝑡

𝑗1 ,..., 𝑗𝑟
𝑖1 ,...,𝑖𝑠

(𝑞).

This shows 𝑓 = 𝐴𝑡 (𝜔1, . . . , 𝜔𝑟 , 𝑋1, . . . , 𝑋𝑠) ∈ 𝐶∞ (𝑀). Varying 𝜔1, . . . , 𝜔𝑟 , 𝑋1, . . . , 𝑋𝑠 , we may thus define the
map

𝐴𝑡 :
(
Ω1 (𝑀)

)𝑟
× (𝔛 (𝑀))𝑠 ! 𝐶∞ (𝑀)

(𝜔1, . . . , 𝜔𝑟 , 𝑋1, . . . , 𝑋𝑠) 7! 𝐴𝑡 (𝜔1, . . . , 𝜔𝑟 , 𝑋1, . . . , 𝑋𝑠)

The 𝐶∞ (𝑀)-multilinearity of 𝐴𝑡 is a direct consequence of the R-multilinearity of 𝑡.

We can thus regard any tensor field 𝑡 ∈ T 𝑟
𝑠 (𝑀) in a natural way as an element of 𝐿𝑟 ,𝑠

𝐶∞ (𝑀 ) (𝑀). The following
theorem shows that the converse is also true.

Theorem 2.3.10: Tensor field reconstruction theorem

For each 𝐴 ∈ 𝐿𝑟 ,𝑠
𝐶∞ (𝑀 ) (𝑀), there is a tensor field 𝑡 ∈ T 𝑟

𝑠 (𝑀) such that 𝐴 = 𝐴𝑡 .

Proof. In order to simplify the proof and avoid too many indices, we restrict to the case 𝑟 = 𝑠 = 1. The general
proof is completely analogous. Now let 𝐴 ∈ 𝐿1,1

𝐶∞ (𝑀 ) (𝑀), 𝜔 ∈ Ω1 (𝑀) and 𝑋 ∈ 𝔛(𝑀). We divide the proof into
four steps.

Step 1. For an open subset𝑈 ⊂ 𝑀 , the restriction 𝐴(𝜔, 𝑋) |𝑈 ∈ 𝐶∞ (𝑈) only depends on 𝜔 |𝑈 and 𝑋 |𝑈 .

Let 𝜔 ∈ Ω1 (𝑀) and 𝑋 ∈ 𝔛(𝑀) be so that 𝜔 |𝑈 = 𝜔 |𝑈 and 𝑋 |𝑈 = 𝑋 |𝑈 . We will show 𝐴(𝜔, 𝑋) |𝑈 = 𝐴(𝜔, 𝑋) |𝑈 .
For 𝑝 ∈ 𝑈, let 𝑉 be an open neighborhood of 𝑝 such that 𝑝 ∈ 𝑉 ⊂ 𝑉 ⊂ 𝑈 and choose a cutoff function 𝜒 ∈ 𝐶∞ (𝑀)
such that

𝜒 |𝑉 ≡ 1 and supp(𝜒) ⊂ 𝑈.

(Recall supp 𝜒 = {𝑝 ∈ 𝑀 : 𝜒(𝑝) ≠ 0}.) Since 𝑋 |𝑈 = 𝑋 |𝑈 and 𝜔 |𝑈 = 𝜔 |𝑈 , and since 𝜒 |𝑀∖𝑈 ≡ 0, we have
𝜒 · 𝜔 = 𝜒 · 𝜔 and 𝜒 · 𝑋 = 𝜒 · 𝑋 . Using the 𝐶∞ (𝑀)-multilinearity of 𝐴, we compute

𝐴(𝜔, 𝑋) (𝑝) = (𝜒(𝑝))2𝐴(𝜔, 𝑋) (𝑝) = 𝐴(𝜒 · 𝜔, 𝜒 · 𝑋) (𝑝)
= 𝐴(𝜒 · 𝜔, 𝜒 · 𝑋) = (𝜒(𝑝))2𝐴(𝜔, 𝑋) (𝑝)
= 𝐴(𝜔, 𝑋) (𝑝)

and thus, 𝐴(𝜔, 𝑋) |𝑈 = 𝐴(𝜔, 𝑋) |𝑈 .



2.3. TENSOR FIELDS 38

Step 2. The map 𝐴 restricts to an element 𝐴|𝑈 ∈ 𝐿1,1
𝐶∞ (𝑈) (𝑈) such that 𝐴(𝜔, 𝑋) |𝑈 = 𝐴|𝑈 (𝜔 |𝑈 , 𝑋 |𝑈).

For 𝜔 ∈ Ω1 (𝑈) and 𝑋 ∈ 𝔛(𝑈), we define 𝐴|𝑈 (𝜔, 𝑋) ∈ 𝐶∞ (𝑈) as follows. For 𝑝 ∈ 𝑈, pick a neighborhood 𝑉 of 𝑝
such that 𝑉 ⊂ 𝑈, then choose 𝜔 ∈ Ω1 (𝑀) and 𝑋 ∈ 𝔛(𝑀) such that 𝜔 |𝑉 = 𝜔 |𝑉 and 𝑋 |𝑉 = 𝑋 |𝑉 . (Such fields 𝜔, 𝑋
can be found by multiplying 𝜔, 𝑋 with the cutoff function 𝜒 from the proof of Step 1 and then extending by zero
to all of the manifold.) Now set

𝐴|𝑈 (𝜔, 𝑋) (𝑝) = 𝐴(𝜔, 𝑋) (𝑝).

By Step 1, the map (𝐴|𝑈 (𝜔, 𝑋)) |𝑉 ∈ 𝐶∞ (𝑉) is well-defined since it does not depend on the chosen extension of
𝜔 and 𝑋 . As the above argument works for all 𝑝 ∈ 𝑈, we get 𝐴|𝑈 (𝜔, 𝑋) ∈ 𝐶∞ (𝑈).

We now prove 𝐶∞ (𝑈)-multilinearity. Let 𝜔1, 𝜔2 ∈ Ω1 (𝑈), 𝑋 ∈ 𝔛(𝑈) and 𝑓 ∈ 𝐶∞ (𝑀). Given 𝑝 ∈ 𝑈, choose
extensions 𝑤1, 𝑤2 ∈ Ω1 (𝑀), 𝑋 ∈ 𝔛(𝑀) and �̃� ∈ 𝐶∞ (𝑀) which coincide with the respective objects of 𝑈 on a
neighorhood 𝑉 of 𝑝 with 𝑉 ⊂ 𝑈. By the 𝐶∞ (𝑀)-multilinearity of 𝐴, we get

𝐴|𝑈 (𝜔1 + 𝑓 𝜔2, 𝑋) (𝑝) = 𝐴(𝜔1 + �̃� 𝜔2, 𝑋) (𝑝)
= 𝐴(𝜔1, 𝑋) (𝑝) + �̃� (𝑝)𝐴(𝜔2, 𝑋) (𝑝)
= 𝐴|𝑈 (𝜔1, 𝑋) (𝑝) + 𝑓 (𝑝) · 𝐴|𝑈 (𝜔2, 𝑋) (𝑝).

As the above equalities hold for all 𝑝 ∈ 𝑈, we have

𝐴|𝑈 (𝜔1 + 𝑓 𝜔2, 𝑋) = 𝐴|𝑈 (𝜔1, 𝑋) + 𝑓 · 𝐴|𝑈 (𝜔2, 𝑋).

The 𝐶∞ (𝑈)-linearity in the second argument is completely analogous. The identity 𝐴(𝜔, 𝑋) |𝑈 = 𝐴|𝑈 (𝜔 |𝑈 , 𝑋 |𝑈)
follows from the definition of 𝐴|𝑈 since 𝜔 and 𝑋 are extensions of 𝜔 |𝑈 and 𝑋 |𝑈 .

Step 3. For 𝑝 ∈ 𝑀 , the real number 𝐴(𝜔, 𝑋) (𝑝) only depends on 𝜔 and 𝑋 evaluated at 𝑝.

Choose a chart (𝑈, 𝜑) of 𝑀 with 𝑝 ∈ 𝑈. Write 𝜔 |𝑈 = 𝜔𝑖𝑑𝑥
𝑖 and 𝑋 |𝑈 = 𝑋 𝑗𝜕 𝑗 . By 𝐶∞ (𝑈)-multilinearity,

𝐴(𝜔, 𝑋) |𝑈 = 𝐴|𝑈 (𝜔 |𝑈 , 𝑋 |𝑈) = 𝐴|𝑈 (𝜔𝑖𝑑𝑥𝑖 , 𝑋 𝑗𝜕 𝑗 ) = 𝜔𝑖 · 𝑋 𝑗 · 𝐴|𝑈 (𝑑𝑥𝑖 , 𝜕 𝑗 )

In particular,

𝐴(𝜔, 𝑋) (𝑝) = 𝜔𝑖 (𝑝) · 𝑋 𝑗 (𝑝) · 𝐴|𝑈 (𝑑𝑥𝑖 , 𝜕 𝑗 ) (𝑝), (2.3.3)

i.e. 𝐴(𝜔, 𝑋) (𝑝) depends only on 𝜔(𝑝) and 𝑋 (𝑝).

Step 4. 𝐴 defines a tensor field 𝑡 ∈ T 𝑟
𝑠 (𝑀) such that 𝐴 = 𝐴𝑡 .

Let 𝑝 ∈ 𝑀 , b ∈ 𝑇∗
𝑝𝑀 and 𝑣 ∈ 𝑇𝑝𝑀 . Pick 𝜔 ∈ Ω1 (𝑀) and 𝑋 ∈ 𝔛(𝑀) so that

𝜔(𝑝) = b and 𝑋 (𝑝) = 𝑣.

Then define
𝑡 (𝑝) (b, 𝑣) = 𝐴(𝜔, 𝑋) (𝑝).

By Step 3, 𝑡 (𝑝) ∈ (𝑇𝑝𝑀)1
1 is well-defined since 𝐴(𝜔, 𝑋) (𝑝) depends only on 𝜔(𝑝) = b and 𝑋 (𝑝) = 𝑣. The

multilinearity of 𝑡 (𝑝) follows from the multilinearity of 𝐴. For proving smoothness, we note that with respect to
any chart (𝑈, 𝜑),

𝑡
𝑗

𝑖
(𝑝) = 𝑡 (𝑝) (𝑑𝑥𝑖 |𝑝 , 𝜕 𝑗 |𝑝) = 𝐴|𝑈 (𝑑𝑥𝑖 , 𝜕 𝑗 ) (𝑝) (𝑝 ∈ 𝑈).

As 𝐴|𝑈 (𝑑𝑥𝑖 , 𝜕 𝑗 ) is smooth, so is 𝑡. Lastly, note that the construction of 𝑡 shows

𝐴𝑡 (𝜔, 𝑋) (𝑝) = 𝑡 (𝑝) (𝜔 (𝑝) , 𝑋 (𝑝)) = 𝐴 (𝜔, 𝑋) (𝑝) . □

Remark 2.3.11. (i) Note that not every tensor field (in particular function, one-form or vector field), defined on
an open subset 𝑈 ⊂ 𝑀 can be extended to all of 𝑀 as its coefficients with respect to a chart a priori diverge
as we approach the boundary of 𝑈. This is the reason why we use a smaller neighborhood 𝑉 and a cutoff
function 𝜒 in the above proof.
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(ii) The principle of Theorem 2.3.10 can be summarized as follows: A𝐶∞ (𝑀)-multilinear structure on 𝑀 always
induces a pointwise structure at each 𝑝 ∈ 𝑀 .

(iii) Let 𝐴 ∈ 𝐿𝑟 ,𝑠
𝐶∞ (𝑀 ) (𝑀). Then the proof of Theorem 2.3.10 shows that the local coefficients of the corresponding

tensor field 𝑡 with respect to a chart (𝑈, 𝜑) are given by

𝑡
𝑗1 ,..., 𝑗𝑟
𝑖1 ,...,𝑖𝑠

= 𝐴|𝑈 (𝑑𝑥 𝑗1 , . . . , 𝑑𝑥 𝑗𝑟 , 𝜕𝑖1 , . . . , 𝜕𝑖𝑠 ),

where 𝐴|𝑈 is the natural restriction from 𝐴 to𝑈 according to Step 2 of the proof of Theorem 2.3.10.

(iv) In view of Remark 2.3.4 (ii), we can adapt the proof of Theorem 2.3.10 to get a natural identification

T 1
𝑠 (𝑀) � 𝐿𝑠

𝐶∞ (𝑀 ) (𝑀,𝔛(𝑀))
:= {𝐴 : 𝔛(𝑀) × · · · × 𝔛(𝑀)︸                    ︷︷                    ︸

𝑠−times

! 𝔛(𝑀) | 𝐴 is 𝐶∞ (𝑀)-multilinear}

For 𝐴 ∈ 𝐿𝑠
𝐶∞ (𝑀 ) (𝑀,𝔛(𝑀)), the coefficient functions of the corresponding tensor field 𝑡 ∈ T 1

𝑠 (𝑀) with
respect to a chart (𝑈, 𝜑) are given by

𝑡𝑖𝑗1 ,..., 𝑗𝑠 = 𝑑𝑥
𝑖 (𝐴|𝑈 (𝜕 𝑗1 , . . . , 𝜕 𝑗𝑠 )).

From now on, we will always use the identifications

T 𝑟
𝑠 (𝑀) � 𝐿𝑟 ,𝑠

𝐶∞ (𝑀 ) (𝑀), T 1
𝑠 (𝑀) � 𝐿𝑠

𝐶∞ (𝑀 ) (𝑀,𝔛(𝑀))

and regard tensor fields simultaneously as objects in both spaces.

Notation 2.3.12

For 𝑡 ∈ T 𝑟
𝑠 (𝑀), we will from now on also simplify the notation as follows. For𝑈 ⊂ 𝑀 open and𝜔𝑖 ∈ Ω1 (𝑈),

𝑋 𝑗 ∈ 𝔛(𝑈), we write

𝑡 (𝜔1, . . . , 𝜔𝑟 , 𝑋1, . . . , 𝑋𝑠) := 𝑡 |𝑈 (𝜔1, . . . , 𝜔𝑟 , 𝑋1, . . . , 𝑋𝑠) ∈ 𝐶∞ (𝑈).

Similarly, for 𝑝 ∈ 𝑀 , b𝑖 ∈ 𝑇∗
𝑝𝑀 and 𝑣 𝑗 ∈ 𝑇𝑝𝑀 , we write

𝑡 (b1, . . . , b𝑟 , 𝑣1, . . . , 𝑣𝑠) := 𝑡 (𝑝) (b1, . . . , b𝑟 , 𝑣1, . . . , 𝑣𝑠) ∈ R.

Depending on the context, it will be clear whether we consider the tensor field on all of the manifold, on an
open subset or on a point. Thus we don’t have to indicate formally that we restrict it to the respective set.

Exercise 2.3.13. Prove Proposition 2.3.5.

Exercise 2.3.14. Let 𝑀 be a smooth manifold and (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛)) and (𝑉, 𝜓 = (𝑦1, . . . , 𝑦𝑛)) be two charts
such that𝑈 ∩𝑉 ≠ ∅. Find a formula which relates the coordinate tensor fields of the two charts.

Exercise 2.3.15. Let 𝑥1 and 𝑥2 be the standard coordintes on R2 and 𝑡 = 𝑑𝑥1 ⊗ 𝑑𝑥1 + 𝑑𝑥2 ⊗ 𝑑𝑥2 the standard inner
product. Express 𝑡 in terms of polar coordinates.



Chapter 3

Semi-Riemannian manifolds

We will now introduce a central concept which will allow us to define and measure lengths, angles, and curvature
on manifolds later on.

3.1 Scalar products
Definition 3.1.1: Bilinear Forms

A bilinear form is a (0,2)-tensor 𝑔 ∈ 𝑉0
2 . We say 𝑔 is

(i) symmetric if 𝑔(𝑣, 𝑤) = 𝑔(𝑤, 𝑣) for all 𝑣, 𝑤 ∈ 𝑉 ;

(ii) non-degenerate if 𝑔(𝑣,−) = 0 ⇐⇒ 𝑣 = 0; that is, for all 𝑣 ≠ 0, there exists 𝑤 ∈ 𝑉 with 𝑔(𝑣, 𝑤) ≠ 0.

(iii) a scalar product if it is symmetric and non-degenerate.

Remark 3.1.2. (i) Let {𝑒𝑖} be a basis of 𝑉 and
{
𝑒𝑖

}
its dual basis. Given 𝑔 ∈ 𝑉0

2 , we have

𝑔 = 𝑔𝑖 𝑗𝑒
𝑖 ⊗ 𝑒 𝑗 ,

where 𝑔𝑖 𝑗 = 𝑔(𝑒𝑖 , 𝑒 𝑗 ) ∈ R. Then 𝑔 is symmetric ⇐⇒ the matrix
{
𝑔𝑖 𝑗

}
is symmetric; 𝑔 is non-degenerate

⇐⇒ the matrix
{
𝑔𝑖 𝑗

}
is invertible. If 𝑔 is non-degenerate, we denote the inverse matrix by{

𝑔𝑖 𝑗
}

:=
{
𝑔𝑖 𝑗

}−1
.

We then have
𝑔𝑖 𝑗𝑔

𝑗𝑘 = (id)𝑘𝑖 = 𝛿𝑖𝑘 = 𝑔
𝑘 𝑗𝑔 𝑗𝑖 .

(Here we used the einstein summation convention.)

(ii) A scalar product 𝑔 induces a map
𝑣♭ := 𝑔(𝑣,−) ∈ 𝑉∗.

It then also induces the map

♭ : 𝑉 ! 𝑉∗

𝑣 7! 𝑣♭.

Since 𝑔 is non-degenerate, ♭ is injective and thus an isomorphism of 𝑉 and 𝑉∗. In this manner, we obtain
a (𝑔-dependent) identification 𝑉 � 𝑉∗. Let 𝑣 = 𝑣𝑖𝑒𝑖 ∈ 𝑉 and 𝑤 = 𝑣♭ ∈ 𝑉∗. Write 𝑤 = 𝑤 𝑗𝑒

𝑗 . We obtain a
relation between the components of 𝑣 and 𝑤 as follows:

𝑤𝑖 = 𝑤(𝑒𝑖) = 𝑣♭ (𝑒𝑖) = 𝑔(𝑣, 𝑒𝑖) = 𝑔 𝑗𝑖𝑣 𝑗 = 𝑔𝑖 𝑗𝑣 𝑗 , (3.1.1)

40
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where the last equality follows from the symmetry of 𝑔. In this manner, we can say that
{
𝑔𝑖 𝑗

}
“lowers the

indices” of 𝑣, which explains the notation ♭. The inverse of ♭ is denoted by

♯ := (♭)−1

and is a map 𝑉∗ ! 𝑉 . With 𝑣 and 𝑤 as above, we have 𝑣 = 𝑤♯. Applying the inverse matrix
{
𝑔𝑖 𝑗

}
to both

sides of (3.1.1) yields
𝑔𝑘𝑖𝑤𝑖 = 𝑔

𝑘𝑖𝑔𝑖 𝑗𝑣
𝑗 = 𝛿𝑘𝑗 𝑣

𝑗 = 𝑣𝑘 .

In this manner, we say that
{
𝑔𝑖 𝑗

}
raises the indices (explaining the notation ♯).

(iii) If 𝑔 ∈ 𝑉0
2 is symmetric, there is an associated quadratic form 𝑞 : 𝑉 ! R given by 𝑞(𝑣) = 𝑔(𝑣, 𝑣). It contains

the same information as 𝑔 due to the polarization identity

𝑔(𝑣, 𝑤) = 1
2
[𝑞 (𝑣 + 𝑤) − 𝑞 (𝑣) − 𝑞 (𝑤)] .

Definition 3.1.3: Positive/Negative (Semi-)definite

A scalar product 𝑔 on 𝑉 is called

(i) positive definite if 𝑔(𝑣, 𝑣) > 0 for all 𝑣 ≠ 0. In this case, we say 𝑔 is an inner product.

(ii) positive semidefinite if 𝑔(𝑣, 𝑣) ≥ 0.

(iii) negative (semi-)definite if −𝑔 is positive (semi-)definite.

We further define the index of 𝑔, denoted ind(𝑔), by

ind(𝑔) := max {dim𝑊 : 𝑊 ⊂ 𝑉 is a subspace and 𝑔 |𝑊×𝑊 is negative definite} .

Note 0 ≤ ind 𝑔 ≤ 𝑛.

Example 3.1.4. Let 𝑉 = R2 and {𝑒1, 𝑒2} its standard basis. Let 𝑣 = 𝑣𝑖𝑒𝑖 , 𝑤 = 𝑤𝑖𝑒𝑖 ∈ R2. Then

(i) 𝑔𝑒 (𝑣, 𝑤) := 𝑣1𝑤1 + 𝑣2𝑤2 is positive definite and hence ind(𝑔eucl) = 0.

(ii) 𝑔min (𝑣, 𝑤) := −𝑣1𝑤1 + 𝑣2𝑤2 has ind 𝑔min = 1.

Theorem 3.1.5: Sylvesters law of inertia

If 𝑔 is a scalar product on index a on 𝑉 , there exists a basis {𝑒𝑖} of 𝑉 such that

𝑔𝑖 𝑗 = 𝑔(𝑒𝑖 , 𝑒 𝑗 ) = Y𝑖𝛿𝑖 𝑗 and Y𝑖 =

{
−1 if 1 ≤ 𝑖 ≤ a,

1 if a + 1 ≤ 𝑖 ≤ 𝑛.

Proof. Linear algebra. □

Remark 3.1.6. Such a basis is called a pseudo-orthonormal basis . With respect to a pseudo-orthonormal basis,
any 𝑣 ∈ 𝑉 can be uniquely written as

𝑣 =

𝑛∑︁
𝑖=1

Y𝑖𝑔(𝑣, 𝑒𝑖)𝑒𝑖 .

Note. ind 𝑔 = 0 ⇐⇒ 𝑔 is an inner product.

It is clear ind 𝑔 = 0 if 𝑔 is an inner product, so we will show the converse. Suppose ind 𝑔 = 0; we will show
𝑔(𝑣, 𝑣) > 0 for all 𝑣 ≠ 0. By Theorem 3.1.5, we can pick a pseudo-orthonormal basis {𝑒𝑖}. Since 𝑔 ≥ 0, it will
suffice to show 𝑔(𝑒𝑖 , 𝑒𝑖) > 0 for all 𝑖. By our choice of {𝑒𝑖}, we then get 𝑔(𝑒𝑖 , 𝑒𝑖) = 1, as desired.

From now on, let 𝑉 be equipped with a scalar product.
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Definition 3.1.7: Orthogonal

Two vectors 𝑣, 𝑤 ∈ 𝑉 are orthogonal if 𝑔(𝑣, 𝑤) = 0. In this case we write 𝑣 ⊥ 𝑤. For 𝑣 ∈ 𝑉 , we call

𝑣⊥ := {𝑤 ∈ 𝑉 : 𝑤 ⊥ 𝑣}

the orthogonal complement of 𝑣. For a subspace𝑊 ⊂ 𝑉 , we call

𝑊⊥ := {𝑣 ∈ 𝑉 : 𝑣 ⊥ 𝑤 ∀𝑤 ∈ 𝑊}

the orthogonal complement of𝑊 .

Lemma 3.1.8

Let𝑊 ⊂ 𝑉 be a subspace. Then

(i) dim𝑊 + dim𝑊⊥ = dim𝑉 .

(ii) (𝑊⊥)⊥ = 𝑊 .

Proof. (i) Let 𝑘 = dim𝑊 and {𝑒1, . . . , 𝑒𝑘} a basis of𝑊 . Extend this to a basis {𝑒1, . . . , 𝑒𝑛} of 𝑉 . With respect
to this basis, we have

𝑣 ∈ 𝑊⊥ ⇐⇒ 𝑔 𝑗𝑖𝑣
𝑗 = 𝑔 (𝑣, 𝑒𝑖) = 0 (1 ≤ 𝑖 ≤ 𝑘).

As
{
𝑔𝑖 𝑗

}
is invertible, the solution space to this equation has dimension 𝑛 − 𝑘 . Therefore, dim𝑊⊥ = 𝑛 − 𝑘 =

dim𝑉 − dim𝑊 .

(ii) By definition, we have 𝑊 ⊂ (𝑊⊥)⊥. On the other hand, (i) implies dim𝑊 = dim (𝑊⊥)⊥. Thus, 𝑊 =

(𝑊⊥)⊥. □

Example 3.1.9. (i) If 𝑉 = R2 is equipped with 𝑔eucl and 𝑣 = (𝑣1, 𝑣2) ∈ R2, then 𝑣⊥ = R · (𝑣2,−𝑣1).

(ii) If 𝑉 = R2 is equipped with 𝑔min and 𝑣 = (𝑣1, 𝑣2) ∈ R2, then 𝑣⊥ = R · (𝑣2, 𝑣1). In that case, it can happen that
𝑉 = 𝑉⊥.

Definition 3.1.10: Non-degenerate subspaces

A subspace𝑊 ⊂ 𝑉 is non-degenerate if 𝑔 |𝑊×𝑊 is non-degenerate.

Lemma 3.1.11

The following are equivalent.

(i) 𝑊 ⊂ 𝑉 is non-degenerate.

(ii) 𝑉 = 𝑊 ⊕𝑊⊥.

(iii) 𝑊⊥ is non-degenerate.

Furthermore, if any of the above hold, we have

ind 𝑔 = ind (𝑔 |𝑊×𝑊 ) + ind (𝑔 |𝑊⊥×𝑊⊥ ) .

Proof. (i) ⇔ (ii): We have

dim
(
𝑊 +𝑊⊥)

+ dim
(
𝑊 ∩𝑊⊥)

= dim𝑊 + dim𝑊⊥ = dim𝑉.

This means
𝑉 = 𝑊 ⊕𝑊⊥ ⇐⇒ 𝑊 ∩𝑊⊥ = {0} .

Since𝑊 ∩𝑊⊥ = {𝑣 ∈ 𝑊 : 𝑔(𝑣, 𝑤) = 0 ∀𝑤 ∈ 𝑊}, the result follows.
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(i) ⇔ (iii): By (i) and Lemma 3.1.8, we have

𝑊 is non-degenerate ⇐⇒ 𝑉 = 𝑊 ⊕𝑊⊥ =
(
𝑊⊥)⊥ ⊕𝑊⊥ ⇐⇒ 𝑊⊥ is non-degenerate.

Lastly, take pseudo-normal bases {𝑒𝑖} and
{
𝑓 𝑗
}

of𝑊 and𝑊⊥, respectively, ordered so that

𝑔(𝑒𝑖 , 𝑒𝑖) = 𝑔( 𝑓 𝑗 , 𝑓 𝑗 ) = −1 ⇐⇒ 1 ≤ 𝑖 ≤ ind (𝑔 |𝑊×𝑊 ) , 1 ≤ 𝑗 ≤ ind (𝑔 |𝑊⊥×𝑊⊥ ) .

The union of these bases is a pseudo-normal basis of𝑊 ⊕𝑊⊥ = 𝑉 , with the right number of scalar products being
equal to −1. □

3.2 Semi-Riemannian metrics
Definition 3.2.1: (semi-)Riemannian & Lorentzian metrics & manifolds

Let 𝑀 be a smooth manifold and 𝑔 ∈ 𝒯0
2 (𝑀). If for all 𝑝 ∈ 𝑀 , the bilinear map 𝑔(𝑝) : 𝑇𝑝𝑀 × 𝑇𝑝𝑀 ! R is

a scalar product (of index a), we call 𝑔 a semi-Riemannian metric (of index a) on 𝑀 and write ind 𝑔 = a.

(i) If ind 𝑔 = 0, we call 𝑔 a Riemannian metric.

(ii) If ind 𝑔 = 1, we call 𝑔 a Lorentzian metric.

The pair (𝑀, 𝑔) is called a semi-Riemannian manifold, Riemannian manifold, or Lorentzian manifold in
the respective cases.

Example 3.2.2. (i) Equip 𝑀 = R𝑛 with the standard coordinates, pick a ∈ {1, . . . , 𝑛} and let

Y𝑖 =

{
−1 if 1 ≤ 𝑖 ≤ a,

1 if a < 𝑖 ≤ 𝑛.

Then

𝑔a :=
𝑛∑︁

𝑖, 𝑗=1
Y𝑖𝛿

𝑗

𝑖
𝑑𝑥𝑖 ⊗ 𝑑𝑥 𝑗

is a semi-Riemannian metric of index a on R𝑛. We often abbreviate the pair (R𝑛, 𝑔a) as Ra,𝑛−a .

• The metric 𝑔eucl = 𝑔0 is called the Euclidean metric, R0,𝑛 is called Euclidean space.

• The metric 𝑔min = 𝑔1 is called the Minkowski metric, R1,𝑛−1 is called Minowski space.

(ii) Let (𝑀, 𝑔) be a semi-Riemannian manifold and 𝑁 ⊂ 𝑀 a submanifold. Define 𝑔 |𝑁 ∈ 𝒯0
2 (𝑁) by

𝑔𝑁 (𝑝) := 𝑔(𝑝)
��
𝑇𝑝𝑁×𝑇𝑝𝑁 : 𝑇𝑝𝑁 × 𝑇𝑝𝑁 ! R (𝑝 ∈ 𝑁).

Then the pair (𝑁, 𝑔 |𝑁 ) is a semi-Riemannian manifold if and only if 𝑇𝑝𝑁 ⊂ 𝑇𝑝𝑀 is a non-degenerate
subspace for all 𝑝 ∈ 𝑁 . In that case, we call (𝑁, 𝑔 |𝑁 ) a semi-Riemannian submanifold of (𝑀, 𝑔).

Note that if (𝑀, 𝑔) is a Riemannian manifold, every subspace of 𝑇𝑝𝑀 is non-degenerate since 𝑔(𝑝) is an
inner product; thus, (𝑁, 𝑔 |𝑁 ) is always a Riemannian manifold in this case.

(iii) If (𝑀, 𝑔𝑀 ) and (𝑁, 𝑔𝑁 ) are two semi-Riemannian manifolds, we can on the manifold 𝑀 × 𝑁 define the
product metric 𝑔𝑀×𝑁 ∈ 𝒯0

2 (𝑀 × 𝑁) as

𝑔𝑀×𝑁 (𝑝, 𝑞) := (𝑔𝑀 + 𝑔𝑁 ) (𝑝, 𝑞) :=
(
𝑔𝑀 (𝑝) 0

0 𝑔𝑁 (𝑞)

)
with respect to the decomposition 𝑇(𝑝,𝑞) (𝑀 × 𝑁) = 𝑇𝑝𝑀 ⊕ 𝑇𝑞𝑁 . More explicitly, this means that if
𝑣𝑀 , 𝑤𝑀 ∈ 𝑇𝑝𝑀 and 𝑣𝑁 , 𝑤𝑁 ∈ 𝑇𝑞𝑁 so that 𝑣 = 𝑣𝑀 + 𝑣𝑁 , 𝑤 = 𝑤𝑀 + 𝑤𝑁 ∈ 𝑇𝑝𝑀 ⊕ 𝑇𝑞𝑁 , then

𝑔𝑀×𝑁 (𝑝, 𝑞)
(
𝑣, 𝑤

)
= 𝑔𝑀×𝑁

(
𝑣𝑀 + 𝑣𝑁 , 𝑤𝑀 + 𝑤𝑁

)
= 𝑔𝑀×𝑁

(
𝑣𝑀 , 𝑤𝑀

)
+ 𝑔𝑀×𝑁

(
𝑣𝑀 , 𝑤𝑁

)
+ 𝑔𝑀×𝑁

(
𝑣𝑁 , 𝑤𝑀

)
+ 𝑔𝑀×𝑁

(
𝑣𝑁 , 𝑤𝑁

)
= 𝑔𝑀 (𝑝) (𝑣𝑀 , 𝑤𝑀 ) + 𝑔𝑁 (𝑞) (𝑣𝑁 , 𝑤𝑁 ) .
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If we additionally have a positive function 𝑓 ∈ 𝐶∞ (𝑀), we can define a warped product metric

(𝑔𝑀 + 𝑓 𝑔𝑁 ) (𝑝, 𝑞) :=
(
𝑔𝑀 (𝑝) 0

0 𝑓 (𝑝) · 𝑔𝑁 (𝑞)

)
.

In this case, we have

𝑔𝑀×𝑁 (𝑝, 𝑞)
(
𝑣, 𝑤

)
= 𝑔𝑀 (𝑝) (𝑣𝑀 , 𝑤𝑀 ) + 𝑓 (𝑝) · 𝑔𝑁 (𝑞) (𝑣𝑁 , 𝑤𝑁 ) .

Note. In the above remark, the matrix representations of (𝑔𝑀 +𝑔𝑁 ) (𝑝, 𝑞) and (𝑔𝑀 + 𝑓 (𝑝)𝑔𝑁 ) (𝑝, 𝑞) do not denote
linear maps into R2, instead they refer to the matrix representations of scalar products as defined in Section 3.1.

Definition 3.2.3: Isometry & Isometry Group

Let (𝑀, 𝑔) and (𝑁, ℎ) be semi-Riemannian manifolds and 𝜑 ∈ 𝐶∞ (𝑀, 𝑁) be a diffeomorphism. Then 𝜑 is
called an isometry if

𝑔(𝑣, 𝑤) = ℎ
(
𝑇𝑝𝜑 (𝑣) , 𝑇𝑝𝜑 (𝑤)

)
(𝑣, 𝑤 ∈ 𝑇𝑝𝑀, 𝑝 ∈ 𝑀).

The set
Iso (𝑀, 𝑔) := {𝜑 ∈ Diff (𝑀) : 𝜑 is an isometry}

is a subgroup of Diff (𝑀) (see Remark 1.3.6), called the isometry group.

Remark 3.2.4. Let (𝑀, 𝑔) be a semi-Riemannian manifold and (𝑈, 𝜑) a chart. Then we write

𝑔 |𝑈 = 𝑔𝑖 𝑗𝑑𝑥
𝑖 ⊗ 𝑑𝑥 𝑗 , where 𝑔𝑖 𝑗 := 𝑔

(
𝜕𝑖 , 𝜕 𝑗

)
.

The functions 𝑔𝑖 𝑗 ∈ 𝐶∞ (𝑈) are called the coefficient functions of the metric 𝑔 with respect to the chart (𝑈, 𝜑).
More explicitly, we have

𝑔𝑖 𝑗 : 𝑈 ! R

𝑝 7! 𝑔

(
𝜕

𝜕𝑥𝑖

���
𝑝
,
𝜕

𝜕𝑥 𝑗

���
𝑝

)
.

Quite often, especially in the physics literature, 𝑔 is given given in such a local form. One often abbreviates(
𝑑𝑥𝑖

)2
= 𝑑𝑥𝑖 ⊗ 𝑑𝑥𝑖 and 2𝑑𝑥𝑖𝑑𝑥 𝑗 = 𝑑𝑥𝑖 ⊗ 𝑑𝑥 𝑗 + 𝑑𝑥 𝑗 + ⊗𝑑𝑥𝑖

so that
𝑔 |𝑈 =

∑︁
𝑖

𝑔𝑖𝑖
(
𝑑𝑥𝑖

)2 + 2
∑︁
𝑖< 𝑗

𝑑𝑥𝑖𝑑𝑥 𝑗 .

Example 3.2.5. Let 𝑀 = S2 ⊂ R3, 𝑔S2 := 𝑔eucl |S2 and the local parametrization

𝜓 : (0, 2𝜋) × (−𝜋/2, 𝜋/2) ! 𝑀

(𝜙, \) 7! ©«
cos 𝜙 cos \
sin 𝜙 cos \

sin \

ª®¬
from Example 2.1.5. Recall that

𝜕

𝜕𝜙
=

©«
− sin 𝜙 cos \
cos 𝜙 cos \

0

ª®¬ and
𝜕

𝜕\
=

©«
− cos 𝜙 sin \
sin 𝜙 sin \

cos \

ª®¬
are the coordinate vector fields form the chart (𝑈, 𝜑) := (im𝜓, 𝜓−1). Now we compute

𝑔𝜙𝜙 = 𝑔S2

(
𝜕

𝜕𝜙
,
𝜕

𝜕𝜙

)
= 𝑔R3

(
𝜕

𝜕𝜙
,
𝜕

𝜕𝜙

)
= cos2 (\)

[
sin2 𝜙 + cos2 𝜙

]
= cos2 \

𝑔\ \ = 𝑔S2

(
𝜕

𝜕\
,
𝜕

𝜕\

)
= 𝑔R3

(
𝜕

𝜕\
,
𝜕

𝜕\

)
= sin2 (\)

[
sin2 𝜙 + cos2 𝜙

]
+ cos2 \ = 1

𝑔𝜙\ = 𝑔\ 𝜙 = 𝑔S2

(
𝜕

𝜕𝜙
,
𝜕

𝜕\

)
= 𝑔R3

(
𝜕

𝜕𝜙
,
𝜕

𝜕\

)
= 0,



3.3. GRADIENT VECTOR FIELDS 45

which means we can write the metric in these coordinates as

𝑔 |𝑈 = 𝑑\2 + cos2 (\)𝑑𝜙2

= 𝑑\ ⊗ 𝑑\ + cos2 \ · 𝑑𝜙 ⊗ 𝑑𝜙.

3.3 Gradient vector fields
Throughout this section, let (𝑀, 𝑔) be a semi-Riemannian manifold.

Notation 3.3.1

Whenever the semi-Riemannian metric 𝑔 is clear from context, we write 𝑀 instead of (𝑀, 𝑔). We also write

⟨𝑣, 𝑤⟩ := 𝑔(𝑣, 𝑤) and |𝑣 | :=
√︁
|⟨𝑣, 𝑣⟩|.

(Here we are using the convention 𝑔(𝑣, 𝑤) = 𝑔(𝑝) (𝑣, 𝑤) for 𝑣, 𝑤 ∈ 𝑇𝑝𝑀; see Notn. 2.3.12.)

Definition 3.3.2: Gradient

The gradient of a function 𝑓 ∈ 𝐶∞ (𝑀) is the vector field grad 𝑓 ∈ 𝔛(𝑀) given implicitly by the equation

⟨grad 𝑓 , 𝑋⟩ = 𝑑𝑓 (𝑋) = 𝑋 ( 𝑓 ) (𝑋 ∈ 𝔛(𝑀)).

More explicitly, this means that for all 𝑋 ∈ 𝔛(𝑀) and all 𝑝 ∈ 𝑀 , we have

⟨(grad 𝑓 ) (𝑝) , 𝑋 (𝑝)⟩ = 𝑔 (𝑝)
(
(grad 𝑓 ) (𝑝) , 𝑋 (𝑝)

)
= 𝑑𝑓 (𝑋) (𝑝)

= 𝑑𝑓 |𝑝 (𝑋 (𝑝))
= 𝑇𝑝 𝑓 (𝑋 (𝑝)) .

From now on we write grad 𝑓 (𝑝) instead of (grad 𝑓 ) (𝑝).

Recall. If ⟨−,−⟩ is a scalar product on a vector space 𝑉 , then we have a 𝑔-dependent isomorphism

♭ : 𝑉 ∼
−! 𝑉∗

𝑣 7! ⟨𝑣,−⟩ =: 𝑣♭

with inverse

♯ : 𝑉∗ ∼
−! 𝑉

𝑓 7! 𝑓 ♯,

where 𝑓 ♯ ∈ 𝑉 is such that 𝑓 (−) = ⟨ 𝑓 ♯,−⟩; ie, such that

𝑓 (𝑣) = ⟨ 𝑓 ♯, 𝑣⟩ (𝑣 ∈ 𝑉).

(See Remark 3.1.2(ii).)

Going back to Defn. 3.3.2, we see that grad 𝑓 is such that grad 𝑓 (𝑝) =
(
𝑑𝑓 |𝑝

)♯ for all 𝑝 ∈ 𝑀 . If (𝑈, 𝜑) is a chart
of 𝑀 , we have

grad 𝑓 |𝑈 = 𝑔𝑖 𝑗𝜕𝑖 𝑓 𝜕 𝑗 ,

where
{
𝑔𝑖 𝑗

}
is the inverse matrix of

{
𝑔𝑖 𝑗

}
. To see this, write

𝑔𝑖 𝑗 = 𝑔
(
𝜕𝑖 , 𝜕 𝑗

)
grad 𝑓 |𝑈 = 𝑋 𝑖𝜕𝑖

𝑑𝑓 = 𝜔 𝑗𝑑𝑥
𝑗 .
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Observe that
𝜔 𝑗 (𝑝) = 𝑑𝑓 |𝑝

(
𝜕 𝑗

)
=
𝜕 𝑓

𝜕𝑥 𝑗
(𝑝) = 𝜕 𝑗 𝑓 (𝑝)

so that 𝜔 𝑗 = 𝜕 𝑗 𝑓 . By Remark 3.1.2(ii), 𝑔𝑖 𝑗𝜔 𝑗 = 𝑋 𝑖; hence,

grad 𝑓 |𝑈 = 𝑋 𝑖𝜕𝑖 = 𝑔
𝑖 𝑗𝜔 𝑗𝜕𝑖 = 𝑔

𝑖 𝑗𝜕 𝑗 𝑓 𝜕𝑖 .

Lemma 3.3.3

Let 𝑓 ∈ 𝐶∞ (𝑀) and assume grad 𝑓 (𝑝) ≠ 0 for all 𝑝 ∈ 𝑀 .

(i) For all 𝑐 ∈ R, the level set 𝑁𝑐 := 𝑓 −1 (𝑐) is a submanifold of codimension 1 and 𝑇𝑝𝑁𝑐 = (grad 𝑓 (𝑝))⊥
for all 𝑝 ∈ 𝑁𝑐.

(ii) The pair
(
𝑁𝑐, 𝑔 |𝑁𝑐

)
is a semi-Riemannian submanifold if and only if |grad 𝑓 (𝑝) | ≠ 0 for all 𝑝 ∈ 𝑁𝑐.

(iii) If
(
𝑁𝑐, 𝑔 |𝑁𝑐

)
is a semi-Riemannian submanifold, then

ind 𝑔 |𝑁𝑐
=

{
ind 𝑔 if ⟨grad 𝑓 (𝑝), grad 𝑓 (𝑝)⟩ > 0 on 𝑁𝑐,
ind 𝑔 − 1 if ⟨grad 𝑓 (𝑝), grad 𝑓 (𝑝)⟩ < 0 on 𝑁𝑐 .

Proof.

(i) If grad 𝑓 (𝑝) ≠ 0 for all 𝑝 ∈ 𝑀 , the function 𝑓 − 𝑐 is a submersion. Therefore, by Theorem 1.5.7, 𝑁𝑐 is a
submanifold of codimension 1 for every 𝑐 ∈ R. By Remark 1.5.10, the tangent space is given by

𝑇𝑝𝑁𝑐 = ker
(
𝑑𝑓 |𝑝

)
= ker (⟨grad 𝑓 (𝑝),−⟩) = (grad 𝑓 (𝑝))⊥ .

(ii) By Lemma 3.1.11(ii), 𝑇𝑝𝑁𝑐 ⊂ 𝑇𝑝𝑀 is non-degenerate if and only if (𝑇𝑝𝑁𝑐)⊥ = R · grad 𝑓 (𝑝) ⊂ 𝑇𝑝𝑀 is
non-degenerate. The latter holds precisely when |grad 𝑓 (𝑝) | ≠ 0.

(iii) By Lemma 3.1.11(iii), we have in this situation

ind 𝑔 (𝑝) = ind 𝑔(𝑝)
��
𝑇𝑝𝑁𝑐×𝑇𝑝𝑁𝑐

+ ind 𝑔(𝑝)
��(𝑇𝑝𝑁𝑐)⊥×(𝑇𝑝𝑁𝑐)⊥ .

Because
(
𝑇𝑝𝑁𝑐

)⊥
= R · grad 𝑓 (𝑝), we have

ind 𝑔(𝑝)
��
𝑇𝑝𝑁𝑐×𝑇𝑝𝑁𝑐

=

{
ind 𝑔 if ⟨grad 𝑓 (𝑝), grad 𝑓 (𝑝)⟩ > 0 on 𝑁𝑐,
ind 𝑔 − 1 if ⟨grad 𝑓 (𝑝), grad 𝑓 (𝑝)⟩ < 0 on 𝑁𝑐 .

. □

Example 3.3.4. Consider Ra,𝑛−a and the function 𝑓a ∈ 𝐶∞ (R𝑛) , given by

𝑓a (𝑥) := 𝑔a (𝑥, 𝑥) =
𝑛∑︁
𝑖=1

Y𝑖 (𝑥𝑖)2 = −(𝑥1)2 − · · · −
(
𝑥a−1

)2
+ (𝑥a)2 + · · · + (𝑥𝑛)2

.

In this definition, we implicitly used the identification 𝑇𝑥R𝑛 � R𝑛 and standard coordinates. Now again in standard
coordinates, we have

𝑑𝑓a =

𝑛∑︁
𝑖=1

2Y𝑖𝑥𝑖𝑑𝑥𝑖

and the gradient is

grad 𝑓a =
𝑛∑︁

𝑖, 𝑗=1
2 (𝑔a)𝑖 𝑗 Y𝑖𝑥𝑖𝜕 𝑗 = 2

𝑛∑︁
𝑖, 𝑗=1

Y𝑖𝛿
𝑖 𝑗Y𝑖𝑥

𝑖𝜕 𝑗 = 2
𝑛∑︁
𝑗=1
𝑥 𝑗𝜕 𝑗

and the right side is not vanishing on R𝑛 ∖ {0}. Now we get

⟨grad 𝑓a (𝑥), grad 𝑓a (𝑥)⟩ = 4
𝑛∑︁
𝑗=1
Y 𝑗

(
𝑥 𝑗

)2
= 4 𝑓a (𝑥).

Now we can apply Lemma 3.3.3 to the function 𝑓a |R𝑛∖{0} and its level sets 𝑁𝑐 = 𝑓 −1 (𝑐) which are subsets of
R𝑛 ∖ {0} for 𝑐 ≠ 0. Let 𝑟 > 0. We obtain the following:
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(i) S𝑛−1
a (𝑟) :=

(
𝑁𝑟2 , 𝑔a |𝑁

𝑟2

)
is a semi-Riemannian manifold of index a, called pseudo-sphere of radius 𝑟 and

index a.

(ii) H𝑛−1
a−1 (𝑟) : (𝑁−𝑟2 , 𝑔a |−𝑟2 ) is a semi-Riemannian manifold of index a − 1, called pseudo-hyperbolic space of

radius 𝑟 and index a − 1.

As some interesting special cases of these, we have the following:

(i) The Riemannian manifold S2
0 (1) ⊂ R

0,3 is the standard two-dimensional sphere.

(ii) The Riemannian manifold H2
0 (1) ⊂ R

0,3 is the hyperbolic plane.

(iii) The Lorentzian manifold S4
1 (1) ⊂ R

1,4 is the de-Sitter space. It is a model in cosmology.

(iv) The Lorentzian manifold H4
1 (1) ⊂ R2,3 is the anti de-Sitter space. It is used in the so-called AdS-CFT

correspondence.

3.4 Riemannian and Lorentzian Manifolds
Definition 3.4.1: Length of Curve

Let 𝑀 be a Riemannian manifold and 𝑐 : [𝑎, 𝑏] ! 𝑀 be a 𝐶∞ map. Then the length of 𝑐 is

𝐿 (𝑐) :=
∫ 𝑏

𝑎

|𝑐′ (𝑡) | 𝑑𝑡.

If M is connected, we define a function

𝑑 : 𝑀 × 𝑀 ! R

(𝑝, 𝑞) 7! inf {𝐿 (𝑐) : 𝑐 ∈ 𝐶∞ ( [0, 1], 𝑀) , 𝑐(0) = 𝑝, 𝑐(1) = 𝑞}

(i) 𝐿 (𝑐) is a reparametrization invariant quantity. That is, if 𝜑 : [𝑐, 𝑑] ! [𝑎, 𝑏] is a diffeomorphism, then
𝐿 (𝑐 ◦ 𝜑) = 𝐿 (𝑐) (integral substitution).

(ii) One can show (𝑀, 𝑑) is a metric space. It is complete if and only if the infimum in the definition of the
𝑑 is always attained. For example, with the function 𝑑 induced by 𝑔eucl, R2 is a complete metric space but
𝑀 = R2 ∖ {0} is not.

Theorem 3.4.2

Every 𝐶∞ manifold admits a Riemannian metric.

Definition 3.4.3: Partition of Unity

Let 𝑀 be a 𝐶∞ manifold and 𝒜 = {(𝑈𝑖 , 𝜑𝑖) : 𝑖 ∈ 𝐼} an atlas. A family of nonnegative smooth functions
{𝜒𝑖}𝑖∈𝐼 , where each 𝜒𝑖 ∈ 𝐶∞ (𝑀), is called a partition of unity subordinate to𝒜 if

(i) supp (𝜒𝑖) ⊂ 𝑈𝑖 for all 𝑖,

(ii) For all 𝑝 ∈ 𝑀 , there exists a neighborhood 𝑉 such that 𝑉 ∩ supp 𝜒𝑖 ≠ ∅ for only finitely many 𝑖.

(iii)
∑
𝑖∈𝐼 𝜒𝑖 (𝑝) = 1.

Such a partition always exists because 𝑀 is Hausdorff.

Proof of Theorem 3.4.2. Take an atlas 𝒜 = {(𝑈𝑖 , 𝜑𝑖) : 𝑖 ∈ 𝐼} and a partition of unity {𝜒𝑖}𝑖∈𝐼 subordinate to 𝒜.
For all 𝑖 ∈ 𝐼, define

𝑔𝑖 =

𝑛∑︁
𝑗=1

𝑑𝑥 𝑗 ⊗ 𝑑𝑥 𝑗 ∈ 𝒯0
2 (𝑈𝑖).
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(Note that the definition of 𝑔𝑖 above depends on the chart𝑈𝑖 .) Then 𝑔𝑖 is a Riemannian metric on𝑈𝑖 . If we extend
by 0 on 𝑀 ∖𝑈𝑖 , we see that 𝜒𝑖𝑔𝑖 ∈ 𝒯0

2 (𝑀) is positive semidefinite on 𝑀 . Set

𝑔 =
∑︁
𝑖∈𝐼

𝜒𝑖𝑔𝑖 .

We claim 𝑔 is a Riemanninan metric. As {𝜒𝑖} is a partition of unity and 𝜒𝑖𝑔𝑖 ∈ 𝒯0
2 (𝑀) for all 𝑖, we have

𝑔 ∈ 𝒯0
2 (𝑀). Since each 𝑔𝑖 is a positive semi-definite scalar product on𝑈𝑖 and {𝜒𝑖} is a partition of unity, we have

that 𝑔(𝑝) is a positive semi-definite scalar product for all 𝑝 ∈ 𝑀; it remains to show 𝑔(𝑝) is positive definite. To
that end, let 𝑝 ∈ 𝑀 . Note 𝜒𝑖 (𝑝) ≥ 0 for all 𝑖 with 𝜒𝑖0 (𝑝) > 0 for some 𝑖0 ∈ 𝐼 where 𝑝 ∈ 𝑈𝑖 . This implies that for
all 𝑣 ∈ 𝑇𝑝𝑀 ∖ {0},

𝑔(𝑝) (𝑣, 𝑣) =
∑︁
𝑖∈𝐼

𝜒𝑖 (𝑝)𝑔𝑖 (𝑝) (𝑣, 𝑣) ≥ 𝜒𝑖0 (𝑝)𝑔𝑖0 (𝑝) (𝑣, 𝑣) > 0,

where the last inequality follows from 𝑔𝑖0 (𝑝) being positive definite on 𝑈𝑖 . Hence, 𝑔(𝑝) is positive definite. As 𝑝
is arbitrary, we see that 𝑔 is a Riemannian metric. □

Definition 3.4.4: Lorentzian metric definitions

Let 𝑀 be a Lorentzian manifold and 𝑣 ∈ 𝑇𝑀 . Then 𝑣 is called

(i) timelike if ⟨𝑣, 𝑣⟩ < 0.

(ii) lightlike if ⟨𝑣, 𝑣⟩ = 0 but 𝑣 ≠ 0.

(iii) spacelike if ⟨𝑣, 𝑣⟩ > 0 or 𝑣 = 0.

(iv) causal if it is timelike or lightlike.

𝑐 ∈ 𝐶∞ (𝐼, 𝑀) is timelike/spacelike/lightlike/causal if 𝑐′ (𝑡) is timelike/spacelike/lightlike/causal for all 𝑡 ∈ 𝐼.

Recall. For 𝑐 ∈ 𝐶∞ (𝐼, 𝑀), we define 𝑐′ (𝑡) = 𝑇𝑡𝑐
(
𝜕
𝜕𝑡

��
𝑡

)
=

∑𝑛
𝑖=1

(
𝑐𝑖

) ′
𝜕𝑖 .

Remark 3.4.5 (Physical interpretation). Lorentzian manifolds model spacetimes. Massive particles move along
lightlike curves. Light moves around lightlike curves. Physical observers move along causal curves. We say

𝑃(𝑐) =
∫
𝐼

|𝑐′ (𝑡) | 𝑑𝑡

is the proper time of the observer along the causal curve.

Example 3.4.6 (Physically relevant Lorentzian manifolds). (i) 𝑀 = R×(2𝑚,∞)×S2 equipped with the Schwarzschild
metric given by

−
(
1 − 2𝑚

𝑟

)
𝑑𝑡2 +

(
1 − 2𝑚

𝑟

)−1
𝑑𝑟2 + 𝑟2𝑔S2 ,

where 𝑡 ∈ R, 𝑟 ∈ (2𝑚,∞), models the exterior of a static black hole with mass 𝑚 without charge or angular
momentum.

(ii) Let (𝑀, 𝑔) be a Riemannian manifold, 𝐼 ⊂ R open interval, 𝑓 ∈∞ (𝐼) positive. Then (𝐼 × 𝑀, 𝑑𝑡2 + 𝑓 (𝑡)𝑔)
is a Lorentzian manifold. These manifolds are called Friedman-Lemaitre-Robertson-Walker spacetimes in
cosmology.

Theorem 3.4.7: Existence of Lorenzian metrics

Let 𝑀 be a 𝐶∞ manifold. The following are equivalent.

(i) 𝑀 admits a Lorenzian metric.

(ii) There exists 𝑋 ∈ 𝔛(𝑀) such that 𝑋 (𝑝) ≠ 0 for all 𝑝 ∈ 𝑀 .

(iii) 𝑀 is non-compact or 𝑀 is compact and has Euler-characteristic 𝜒(𝑀) = 0.
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Proof. See the O’Neill text. □

Remark 3.4.8. S2 does not admit a Lorentzian metric since (ii) does not hold due to the Hairy ball theorem.



Chapter 4

The Covariant Derivative

Goal: We want to take the derivative of vector fields in the direction of other vector fields.

Naive approach: Write 𝑋,𝑌 ∈ 𝔛(𝑀) in local coordinates as 𝑋 = 𝑋 𝑖𝜕𝑖 , 𝑌 = 𝑌 𝑗𝜕 𝑗 and write 𝜕𝑋𝑌 = 𝑋 𝑖𝜕𝑖𝑌
𝑗𝜕 𝑗 .

However, this is not independent of the choice of coordinates and hence not well-defined!

4.1 Definition of the covariant derivative
Throughout this section, let 𝑀 be a fixed semi-Riemannian manifold.

Definition 4.1.1: Connections

A connection of 𝑀 is a map

∇ : 𝔛(𝑀) × 𝔛(𝑀) ! 𝔛(𝑀)
(𝑋,𝑌 ) 7! ∇𝑋𝑌

such that for all 𝑋, 𝑋𝑖 , 𝑌 ,𝑌𝑖 ∈ 𝔛(𝑀), 𝛼 ∈ R, 𝑓 ∈ 𝐶∞ (𝑀),

(i) ∇(𝑋1+ 𝑓 𝑋2 )𝑌 = ∇𝑋1𝑌 + 𝑓∇𝑋2𝑌 ,

(ii) ∇𝑋 (𝑌1 + 𝛼𝑌2) = ∇𝑋𝑌1 + 𝛼∇𝑋𝑌2,

(iii) ∇𝑋 ( 𝑓𝑌 ) = 𝑋 ( 𝑓 )𝑌 + 𝑓∇𝑋𝑌 .

If, in addition

(iv) ∇𝑋𝑌 − ∇𝑌 𝑋 = [𝑋,𝑌 ] (𝑋,𝑌 ∈ 𝔛(𝑀)), (4.1.1)
∇ is called torsion-free.

(v) 𝑋 (⟨𝑌, 𝑍⟩) = ⟨∇𝑋𝑌, 𝑍⟩ + ⟨𝑌,∇𝑋𝑍⟩ (𝑋,𝑌, 𝑍 ∈ 𝔛(𝑀)), (4.1.2)
∇ is called metric.

Conditions (i)-(iii) say ∇ is 𝐶∞ (𝑀)-linear in the first slot, R-linear in the second slot, and satisfies a sort of product
rule.

Recall. 𝑋 ( 𝑓 ) is the smooth function defined by 𝑋 ( 𝑓 ) (𝑝) = 𝑇𝑝 𝑓 (𝑋 (𝑝)).

Theorem 4.1.2: Existence and Uniqueness of Torson-free metric connections

There is exactly one torsion-free and metric connection on 𝑀 . It is implicitly given by the Koszul formula

2⟨∇𝑋𝑌, 𝑍⟩ = 𝑋 (⟨𝑌, 𝑍⟩) + 𝑌 (⟨𝑋, 𝑍⟩) − 𝑍 (⟨𝑋,𝑌⟩) + ⟨𝑍, [𝑋,𝑌 ]⟩ + ⟨𝑌, [𝑍, 𝑋]⟩ − ⟨𝑋, [𝑌, 𝑍]⟩. (4.1.3)

50
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Proof. Uniqueness: By (4.1.2), we have

𝑋 (⟨𝑌, 𝑍⟩) = ⟨∇𝑋𝑌, 𝑍⟩ + ⟨𝑌,∇𝑋𝑍⟩. (4.1.4)

By (4.1.1) and (4.1.2), we have

𝑌 (⟨𝑍, 𝑋⟩) = ⟨∇𝑌 𝑍, 𝑋⟩ + ⟨𝑍,∇𝑋𝑌⟩ − ⟨𝑍, [𝑋,𝑌 ]⟩ (4.1.5)
𝑍 (⟨𝑋,𝑌⟩) = ⟨∇𝑋𝑍,𝑌⟩ + ⟨[𝑍, 𝑋], 𝑌⟩ + ⟨𝑋,∇𝑌 𝑍⟩ − ⟨𝑋, [𝑌, 𝑍]⟩. (4.1.6)

The equation (4.1.4) + (4.1.5) − (4.1.6) implies (4.1.3). More explicitly, we have

𝑋 (⟨𝑌, 𝑍⟩) + 𝑌 (⟨𝑍, 𝑋⟩) − 𝑍 (⟨𝑋,𝑌⟩) =
(
⟨∇𝑋𝑌, 𝑍⟩ +�����⟨𝑌,∇𝑋𝑍⟩

)
+

(
XXXXX⟨∇𝑌 𝑍, 𝑋⟩ + ⟨𝑍,∇𝑋𝑌⟩ − ⟨𝑍, [𝑋,𝑌 ]⟩

)
−

(
�����⟨∇𝑋𝑍,𝑌⟩ + ⟨[𝑍, 𝑋], 𝑌⟩ +XXXXX⟨𝑋,∇𝑌 𝑍⟩ − ⟨𝑋, [𝑌, 𝑍]⟩

)
= ⟨∇𝑋𝑌, 𝑍⟩ + ⟨𝑍,∇𝑋𝑌⟩ − ⟨𝑍, [𝑋,𝑌 ]⟩ − ⟨[𝑍, 𝑋], 𝑌⟩ + ⟨𝑋, [𝑌, 𝑍]⟩
= 2⟨∇𝑋𝑌, 𝑍⟩ − ⟨𝑍, [𝑋,𝑌 ]⟩ − ⟨[𝑍, 𝑋], 𝑌⟩ + ⟨𝑋, [𝑌, 𝑍]⟩.

Thus,

𝑋 (⟨𝑌, 𝑍⟩) + 𝑌 (⟨𝑍, 𝑋⟩) − 𝑍 (⟨𝑋,𝑌⟩) + ⟨𝑍, [𝑋,𝑌 ]⟩ + ⟨[𝑍, 𝑋], 𝑌⟩ − ⟨𝑋, [𝑌, 𝑍]⟩ = 2 ⟨∇𝑋𝑌, 𝑍⟩ ,

which is equivalent to (4.1.3) since ⟨−,−⟩ is symmetric.

Existence: Define ∇𝑋𝑌 by (4.1.3) and check all properties. □

Definition 4.1.3: Covariant derivative (Levi-Civita connection)

The torson-free and metric connection on 𝑀 satisfying (4.1.3) is called the covariant derivative or the
Levi-Civita connection.

Remark 4.1.4 (Locality). (i) The Koszul formula shows that ∇ is local in the sense that (∇𝑋𝑌 ) |𝑈 = ∇𝑋 |𝑈𝑌 |𝑈
for any open subset𝑈 ⊂ 𝑀 . This holds because ⟨−,−⟩ and [−,−] are also local.

(ii) If (𝑈, 𝜑) is a chart on 𝑀 and 𝑋 |𝑈 = 𝑋 𝑖𝜕𝑖 , 𝑌 |𝑈 = 𝑌 𝑗𝜕 𝑗 , then

∇𝑋𝑌 |𝑈 = ∇𝑋 |𝑈𝑌 |𝑈 = ∇𝑋𝑖𝜕𝑖

(
𝑌 𝑗𝜕 𝑗

)
= 𝑋 𝑖∇𝜕𝑖

(
𝑌 𝑗𝜕 𝑗

)
, by Defn. 4.1.1(i)

= 𝑋 𝑖𝜕𝑖
(
𝑌 𝑗

)
𝜕 𝑗 + 𝑋 𝑖𝑌 𝑗∇𝜕𝑖𝜕 𝑗 , by Defn. 4.1.1(ii) & (iii).

If we define functions Γ𝑘
𝑖 𝑗

: 𝑈 ! R so that ∇𝜕𝑖𝜕 𝑗 = Γ𝑘
𝑖 𝑗
𝜕𝑘 ∈ 𝔛(𝑀), this reads

∇𝑋𝑌 |𝑈 =

(
𝑋 𝑖𝜕𝑖𝑌

𝑘 + 𝑋 𝑖𝑌 𝑗Γ𝑘𝑖 𝑗
)
𝜕𝑘 . (4.1.7)

(iii) Let 𝑐 : 𝐼 ! 𝑀 is a smooth curve satisfying 𝑐(0) = 𝑝 and 𝑐′ (0) = 𝑋 (𝑝). Then the chain rule (Prop. 1.4.9(ii))
shows

𝑋 𝑖 (𝑝)𝜕𝑖𝑌 𝑘
��
𝑝
= 𝑋 𝑖 (𝑝)𝑇𝑝𝑌 𝑘

(
𝜕𝑖

��
𝑝

)
= 𝑇𝑝𝑌

𝑘
(
𝑋 𝑖 (𝑝) 𝜕𝑖

��
𝑝

)
= 𝑇𝑝𝑌

𝑘 (𝑐′ (0))

=

(
𝑌 𝑘 ◦ 𝑐

) ′
(0) .

Combining the above with (4.1.7), we obtain

∇𝑋𝑌 (𝑝) =
[(
𝑌 𝑘 ◦ 𝑐

) ′
(0) +

(
𝑋 𝑖 ◦ 𝑐

)
(0)

(
𝑌 𝑗 ◦ 𝑐

)
(0)Γ𝑘𝑖 𝑗 (𝑐(0))

]
𝜕𝑘

��
𝑐 (0) .

Thus, (4.1.7) implies that ∇𝑋𝑌 (𝑝) only depends on 𝑋 (𝑝) and the values of 𝑌 along a curve 𝑐 satisfying
𝑐(0) = 𝑝 and 𝑐′ (0) = 𝑋 (𝑝).



4.2. THE COVARIANT DERIVATIVE OF SUBMANIFOLDS 52

Definition 4.1.5: Christoffel symbols (Γ𝑘
𝑖 𝑗

)

The functions Γ𝑘
𝑖 𝑗

: 𝑈 ! R in Remark 4.1.4(ii) are called the Christoffel symbols with respect to the chart
(𝑈, 𝜑).

Lemma 4.1.6

Let (𝑈, 𝜑) be a chart of 𝑀 and 𝑔𝑖 𝑗 : 𝑈 ! R be the coefficient functions of the metric. Then we have

Γ𝑘𝑖 𝑗 =
1
2
𝑔𝑘ℓ

(
𝜕𝑖𝑔 𝑗ℓ + 𝜕 𝑗𝑔𝑖ℓ − 𝜕ℓ𝑔𝑖 𝑗

)
. (4.1.8)

Proof. Since
[
𝜕𝑖 , 𝜕 𝑗

]
≡ 0 for coordinate vector fields, (4.1.1) shows ∇𝜕𝑖𝜕 𝑗 = ∇𝜕𝑗 𝜕𝑖 . Since ∇ is metric and ⟨−,−⟩

is symmetric, we get

2
〈
∇𝜕𝑖𝜕 𝑗 , 𝜕ℓ

〉
+ 𝜕ℓ

〈
𝜕𝑖 , 𝜕 𝑗

〉
=

〈
∇𝜕𝑖𝜕 𝑗 , 𝜕ℓ

〉
+

〈
∇𝜕𝑖𝜕 𝑗 , 𝜕ℓ

〉
+

〈
∇𝜕ℓ 𝜕𝑖 , 𝜕 𝑗

〉
+

〈
𝜕𝑖 ,∇𝜕ℓ 𝜕 𝑗

〉
=

〈
∇𝜕𝑖𝜕 𝑗 , 𝜕ℓ

〉
+

〈
∇𝜕𝑗 𝜕𝑖 , 𝜕ℓ

〉
+

〈
𝜕 𝑗 ,∇𝜕𝑖𝜕ℓ

〉
+

〈
𝜕𝑖 ,∇𝜕𝑗 𝜕ℓ

〉
= 𝜕𝑖

〈
𝜕 𝑗 , 𝜕ℓ

〉
+ 𝜕 𝑗 ⟨𝜕𝑖 , 𝜕ℓ⟩ .

We have thus shown 2
〈
∇𝜕𝑖𝜕 𝑗 , 𝜕ℓ

〉
+ 𝜕ℓ𝑔𝑖 𝑗 = 𝜕𝑖𝑔 𝑗ℓ + 𝜕 𝑗𝑔𝑖ℓ . Inserting 𝑋 = 𝜕𝑖 , 𝑌 = 𝜕 𝑗 , 𝑍 = 𝜕ℓ in (4.1.3) yields

2Γ𝑚𝑖 𝑗𝑔𝑚ℓ = 2
〈
Γ𝑚𝑖 𝑗 𝜕𝑚, 𝜕ℓ

〉
= 2

〈
∇𝜕𝑖𝜕 𝑗 , 𝜕ℓ

〉
= 𝜕𝑖𝑔 𝑗ℓ + 𝜕 𝑗𝑔𝑖ℓ − 𝜕ℓ𝑔𝑖 𝑗 .

Multiplying with 𝑔𝑘ℓ yields

2Γ𝑘𝑖 𝑗 = 2𝛿𝑘𝑚Γ𝑚𝑖 𝑗 = 2𝑔𝑘ℓ𝑔𝑚ℓΓ𝑚𝑖 𝑗 = 𝑔
𝑘ℓ

(
𝜕𝑖𝑔 𝑗ℓ + 𝜕 𝑗𝑔𝑖ℓ − 𝜕ℓ𝑔𝑖 𝑗

)
. □

Example 4.1.7. The Christoffel symbols of Ra,𝑛−a with respect to the standard chart are Γ𝑘
𝑖 𝑗
≡ 0 for all 𝑖, 𝑗 , 𝑘 This

is because 𝑔𝑖 𝑗 ≡ const for all 𝑖, 𝑗 so that by (4.1.7),

∇𝑋𝑌 (𝑥) = 𝑋 𝑖 (𝜕𝑖𝑌 𝑗 )𝜕 𝑗 = 𝐷𝑌 |𝑥 (𝑋).

4.2 The Covariant Derivative of Submanifolds
Throughout, let

(
𝑀, 𝑔

)
be a semi-Riemannian manifold and (𝑀, 𝑔) a semi-Riemannian submanifold of

(
𝑀, 𝑔

)
.

The goal will be to compare the Levi-Civita connections ∇,∇ of these manifolds at 𝑝 ∈ 𝑀 ⊂ 𝑀 . For 𝑝 ∈ 𝑀,

𝑇𝑝𝑀 ⊂ 𝑇𝑝𝑀 is a non-degenerate subspace. Thus by Lemma 3.1.11(i),

𝑇𝑝𝑀 = 𝑇𝑝𝑀 ⊕
(
𝑇𝑝𝑀

)⊥
. (4.2.1)

This means that if 𝑣 ∈ 𝑇𝑝𝑀 , then 𝑣 may be decomposed as 𝑣 = (𝑣⊤, 𝑣⊥)
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Definition 4.2.1: Vector fields along 𝑀 , normal fields, & extensions

(i) The space of vector fields in 𝑀 along 𝑀 is

𝔛

(
𝑀, 𝑀

)
:=

{
𝑋 ∈ 𝐶∞

(
𝑀,𝑇𝑀

)
: 𝑋 (𝑝) ∈ 𝑇𝑝𝑀 for all 𝑝 ∈ 𝑀

}
(ii) The space of normal fields on 𝑀 is

𝔛 (𝑀)⊥ :=
{
𝑋 ∈ 𝐶∞

(
𝑀,𝑇𝑀

)
: 𝑋 (𝑝) ∈

(
𝑇𝑝𝑀

)⊥ for all 𝑝 ∈ 𝑀
}

(iii) Let 𝑋 ∈ 𝔛

(
𝑀, 𝑀

)
. A vector field 𝑋 ∈ 𝔛

(
𝑀

)
is called an extension of 𝑋 if 𝑋 |𝑀 = 𝑋 . Such an

extension always exists (use local coordinates and partition of unity).

Note that (4.2.1) induces a splitting

𝔛

(
𝑀, 𝑀

)
= 𝔛 (𝑀) ⊕ 𝔛 (𝑀)⊥

𝑋 7!
(
𝑋⊤, 𝑋⊥)

Definition 4.2.2: ∇𝑋𝑌

Let 𝑋 ∈ 𝔛 (𝑀) , 𝑌 ∈ 𝔛

(
𝑀, 𝑀

)
. Then we define ∇𝑋𝑌 ∈ 𝔛

(
𝑀, 𝑀

)
by

∇𝑋𝑌 := ∇
𝑋
𝑌
��
𝑀
,

where 𝑋,𝑌 ∈ 𝔛

(
𝑀

)
are extensions of 𝑋 and 𝑌 .

By Remark 4.1.4(iii), ∇𝑋𝑌 does not depend on the chosen extension.

Lemma 4.2.3

For all 𝑋, 𝑋1, 𝑋2 ∈ 𝔛 (𝑀) , 𝑌 ,𝑌1, 𝑌2, 𝑍 ∈ 𝔛

(
𝑀, 𝑀

)
, 𝛼 ∈ R, 𝑓 ∈ 𝐶∞ (𝑀), the map in Defn. 4.2.2 satisfies

(i) ∇𝑋1+ 𝑓 𝑋2𝑌 = ∇𝑋1𝑌 + 𝑓∇𝑋2𝑌 ,

(ii) ∇𝑋 (𝑌1 + 𝛼𝑌2) = ∇𝑋𝑌1 + 𝛼∇𝑋𝑌2,

(iii) ∇𝑋 ( 𝑓𝑌 ) = 𝑋 ( 𝑓 )𝑌 + 𝑓∇𝑋𝑌 ,

(iv) 𝑋 (𝑔 (𝑌, 𝑍)) = 𝑔
(
∇𝑋𝑌, 𝑍

)
+ 𝑔

(
𝑌,∇𝑋𝑍

)
.

Proof. Choose extensions of the vector fields, use the rules of the Levi-Civita connection of 𝑔, and restrict to
𝑀 . □

Lemma 4.2.4

Let 𝑋,𝑌 ∈ 𝔛(𝑀) and 𝑋,𝑌 ∈ 𝑋

(
𝑀

)
be extensions of 𝑋,𝑌 respectively. Then [𝑋,𝑌 ] |𝑀 = [𝑋,𝑌 ]; that is,

[𝑋,𝑌 ] ∈ 𝔛(𝑀) is an extension of [𝑋,𝑌 ] ∈ 𝔛(𝑀) and [𝑋,𝑌 ] |𝑀 ∈ 𝔛(𝑀) ⊂ 𝔛

(
𝑀, 𝑀

)
.

Proof. Exercise. □



4.2. THE COVARIANT DERIVATIVE OF SUBMANIFOLDS 54

Lemma 4.2.5

Let 𝑋,𝑌 ∈ 𝔛(𝑀) and decompose ∇𝑋𝑌 =

(
∇𝑋𝑌

)⊤
+

(
∇𝑋𝑌

)⊥
. Then

(i)
(
∇𝑋𝑌

)⊤
= ∇𝑋𝑌 (the Levi-Civita connection on 𝑀).

(ii) (𝑋,𝑌 ) 7!
(
∇𝑋𝑌

)⊥
is 𝐶∞ (𝑀)-bilinear and symmetric.

Proof. (i) We will show that

𝔛(𝑀) × 𝔛(𝑀) ! 𝔛(𝑀)

(𝑋,𝑌 ) 7!
(
∇𝑋𝑌

)⊤
is a torsion-free and metric connection on 𝑀; this will imply

(
∇𝑋𝑌

)⊤
= ∇𝑋𝑌 by uniqueness. Apply (−)⊤ to

Lemma 4.2.3(i-iii) to see that the map is a connection. If 𝑋,𝑌 ∈ 𝔛

(
𝑀

)
are extensions of 𝑋,𝑌 ∈ 𝔛(𝑀), we

have by Lemma 4.2.4,

∇𝑋𝑌 − ∇𝑌 𝑋 =

(
∇
𝑋
𝑌 − ∇

𝑌
𝑋

) ��
𝑀

=

[
𝑋,𝑌

] ��
𝑀

= [𝑋,𝑌 ] .

Thus, (
∇𝑋𝑌

)⊤
−

(
∇𝑌 𝑋

)⊤
= [𝑋,𝑌 ]⊤ = [𝑋,𝑌 ] .

This shows the connection is torsion-free. If in addition, 𝑍 ∈ 𝔛

(
𝑀

)
is an extension of 𝑍 ∈ 𝔛(𝑀), then

𝑋 (𝑔 (𝑌, 𝑍)) = 𝑋
(
𝑔

(
𝑌, 𝑍

)) ��
𝑀

= 𝑔

(
∇
𝑋
𝑌, 𝑍

) ��
𝑀

+ 𝑔
(
𝑌,∇

𝑋
𝑍

) ��
𝑀

= 𝑔

(
∇𝑋𝑌, 𝑍

)
+ 𝑔

(
𝑌,∇𝑋𝑍

)
= 𝑔

((
∇𝑋𝑌

)⊤
+

(
∇𝑋𝑌

)⊥
, 𝑍

)
+ 𝑔

(
𝑌,

(
∇𝑋𝑍

)⊤
+

(
∇𝑋𝑍

)⊥)
= 𝑔

((
∇𝑋𝑌

)⊤
, 𝑍

)
+ 𝑔

(
𝑌,

(
∇𝑋𝑍

)⊤)
.

This shows the connection is metric.

(ii) By (i), we have ∇𝑋𝑌 − ∇𝑌 𝑋 = [𝑋,𝑌 ] so that(
∇𝑋𝑌

)⊥
−

(
∇𝑌 𝑋

)⊥
= [𝑋,𝑌 ]⊥ = 0;

this shows symmetry. By Lemma 4.2.3(i), the map 𝑋 7!
(
∇𝑋𝑌

)⊥
is 𝐶∞-linear. By the symmetry we have

just shown, the map 𝑌 7!
(
∇𝑋𝑌

)⊥
is also 𝐶∞-linear. □

Definition 4.2.6: Second Fundamental Form

The symmetric 𝐶∞ (𝑀)-bilinear map

Π : 𝔛(𝑀) × 𝔛(𝑀) ! 𝔛(𝑀)⊥

(𝑋,𝑌 ) 7!
(
∇𝑋𝑌

)⊥
is called the second fundamental form.
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By 𝐶∞ (𝑀)-multilinearity we see that for all 𝑝 ∈ 𝑀 , it induces a pointwise map

Π (𝑝) : 𝑇𝑝𝑀 × 𝑇𝑝𝑀 !
(
𝑇𝑝𝑀

)⊥
.

(The proof is similar to the proof of Theorem 2.3.10.) We will see that it measures how 𝑀 is “curved” in 𝑀 .

Note. Combining Defn. 4.2.6 with the ccontent of Lemma 4.2.5, we see that ∇𝑋𝑌 decomposes as

∇𝑋𝑌 = ∇𝑋𝑌 + Π(𝑋,𝑌 ).

Remark 4.2.7. Lemma 4.2.5 a posteriori explains the definition of the Levi-Civita connection: If 𝑀 ⊂ R𝑛
is a submanifold equipped with the metric 𝑔 = 𝑔eucl |𝑀 , we could have defined the Levi-Civita connection for
𝑋,𝑌 ∈ 𝔛(𝑀) as

𝑔∇𝑋𝑌 (𝑝) :=
(
R𝑛∇

𝑋
𝑌

)⊤
(𝑝) =

[
𝐷𝑌 |𝑝

(
𝑋 (𝑝)

)]⊤
,

where 𝑋,𝑌 ∈ 𝔛 (R𝑛) are extensions of 𝑋,𝑌 respectively. (See Example 4.1.7.) For example, if 𝑝 ∈ S𝑛−1 ⊂ R𝑛, we
have 𝑣⊤ (𝑝) = 𝑣 − ⟨𝑣, 𝑝⟩𝑝 ∈ 𝑇𝑝S𝑛−1 for 𝑣 ∈ R𝑛. In particular, if 𝑣 = R𝑛∇

𝑋
𝑌 , we get

S𝑛−1∇𝑋𝑌 (𝑝) =
(
R𝑛∇

𝑋
𝑌

)⊤
(𝑝) = 𝐷𝑌 |𝑝

(
𝑋 (𝑝)

)
−

〈
𝐷𝑌 |𝑝

(
𝑋 (𝑝)

)
, 𝑝

〉
𝑝.

This was the first definition of the Levi-Civita connection. Our (axiomatic) definition has the advantage that it does
not need an embedding into R𝑛.

Definition 4.2.8: Weingarten map (Shape Operator)

For a normal field b ∈ 𝔛(𝑀)⊥, the Weingarten map (or shape operator) 𝑆 b ∈ 𝒯1
1 (𝑀) is defined by the

equation
𝑔 (Π (𝑋,𝑌 ) , b) = 𝑔

(
𝑆 b (𝑋) , 𝑌

)
.

(Here, 𝑆 b is considered as a map 𝑆 b : 𝔛(𝑀) ! 𝔛(𝑀).)

Proposition 4.2.9

The Weingarten map fulfills the Weingarten equation: For 𝑋 ∈ 𝔛(𝑀) and b ∈ 𝔛(𝑀)⊥, we have(
∇𝑋b

)⊤
= −𝑆 b (𝑋) . (4.2.2)

Proof. Let 𝑌 ∈ 𝔛(𝑀) be arbitrary. Then

𝑔

((
∇𝑋b

)⊤
, 𝑌

)
= 𝑔

(
∇𝑋b,𝑌

)
, since 𝑌 is tangential

= 𝑋
(
𝑔 (b,𝑌 )

)
− 𝑔

(
b,∇𝑋𝑌

)
, since ∇ is metric

= −𝑔
(
b,∇𝑋𝑌

)
, since b ⊥ 𝑌

= −𝑔
(
b,

(
∇𝑋𝑌

)⊥)
, since b ∈ (𝔛 (𝑀))⊥

= −𝑔
(
𝑆 b (𝑋) , 𝑌

)
. □

Definition 4.2.10: Semi-Riemannian Hypersurfaces

A subset 𝑀 ⊂ 𝑀 is called a semi-Riemannian hypersurface if dim𝑀 = dim𝑀 + 1.
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Lemma 4.2.11

If 𝑀 ⊂ 𝑀 is a semi-Riemannian hypersurface, then for each 𝑝 ∈ 𝑀 , there exists a neighborhood 𝑈 ⊂ 𝑀 of
𝑝 and up to sign a unique b ∈ 𝔛(𝑈)⊥ such that

(i) |𝑔 (b, b) | = 1.

Such a b is called a unit normal field. It also satisfies

(ii)
(
∇𝑋b

)⊥
= 0 for all 𝑋 ∈ 𝔛(𝑈),

(iii) 𝑆 b (𝑋) = −∇𝑋b for all 𝑋 ∈ 𝔛(𝑈),

(iv) Π(𝑋,𝑌 ) = −𝑔 (b, b) · 𝑔
(
∇𝑋b,𝑌

)
· b for all 𝑋,𝑌 ∈ 𝔛(𝑈).

Proof. (i) Let 𝑈 ⊂ 𝑀 be a neighborhood of 𝑝 such that there exists a locally defining function 𝑓 ∈ 𝐶∞
(
𝑈

)
with 𝑈 := 𝑈 ∩ 𝑀 = 𝑓 −1 (0). We claim grad 𝑓 (𝑞) ≠ 0 for all 𝑞 ∈ 𝑈. Since 𝑓 is a locally defining function,
Remark 1.5.10 shows

𝑇𝑝𝑀 = ker 𝑑𝑓 |𝑞 = ker (𝑔 (−, grad 𝑓 (𝑞))) = (grad 𝑓 (𝑞))⊥ .

In particular, this means dim (grad 𝑓 (𝑞))⊥ = dim𝑇𝑝𝑀 < dim𝑇𝑝𝑀 so that grad 𝑓 (𝑞) ≠ 0.

We may thus apply Lemma 3.3.3(i). Since grad 𝑓 ∈ 𝔛(𝑈)⊥, we see that

b :=
grad 𝑓
|grad 𝑓 |

fulfills (i). Uniqueness follows from the fact that dim
(
𝑇𝑝𝑀

)⊥
= 1 for all 𝑝 ∈ 𝑀 .

(ii) For all 𝑋 ∈ 𝔛(𝑈), we may apply the product rule to get that on𝑈:

0 = 𝑋
(
𝑔 (b, b)︸  ︷︷  ︸

±1

)
= 2 · 𝑔

(
∇𝑋b, b

)
.

This implies
∇𝑋b (𝑞) ∈ (b (𝑞))⊥ = 𝑇𝑞𝑀 (𝑞 ∈ 𝑈).

Thus,
(
∇𝑋b

)⊥
= 0.

(iii) By (ii) and Prop. 4.2.9, we have
∇𝑋b =

(
∇𝑋b

)⊤
= −𝑆 b (𝑋) .

(iv) The set {b (𝑞)} is a pseudo-orthonormal basis of
(
𝑇𝑞𝑀

)⊥ for all 𝑞 ∈ 𝑈. This implies that we can write any
normal field [ as

[ = 𝑔 (b, b) · 𝑔 ([, b) b ([ ∈ 𝔛(𝑈)⊥).

In particular, the above equality holds for normal fields of the form [ = Π(𝑋,𝑌 ), where 𝑋,𝑌 ∈ 𝔛(𝑈). Then

Π(𝑋,𝑌 ) = 𝑔 (b, b) · 𝑔
(
Π (𝑋,𝑌 ) , b

)
· b

= 𝑔 (b, b) · 𝑔
(
𝑆 b (𝑋) , 𝑌

)
· b, by Defn. 4.2.8

= −𝑔 (b, b) · 𝑔
(
∇𝑋b,𝑌

)
· b, by Lemma 4.2.11(iii). □
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Definition 4.2.12: Totally Geodesic & Totally Umbilic hypersurfaces

A semi-Riemannian hypersurface is called

(i) totally geodesic if Π = 0.

(ii) totally umbilic if there exists 𝛼 ∈ R such that Π(𝑋,𝑌 ) = 𝛼𝑔(𝑋,𝑌 ) · b for some (and hence every)
choice of unit normal field.

(If b is a unit normal field, then (ii) holds for the only other unit normal field (−b) by replacing 𝛼 with −𝛼.)

Example 4.2.13. (i) Let 𝑀 = R𝑛, equipped with 𝑔eucl and 𝑀 = 𝑣⊥ for 𝑣 ∈ R𝑛 ∖ {0}. Then b := 𝑣
∥𝑣 ∥ ∈ 𝔛 (R𝑛)

is a (constant) vector field such that b = b |𝑀 is a unit normal. This implies

∇𝑋b (𝑥) = 𝐷b |𝑥 (𝑋 (𝑥)) = 0 (𝑥 ∈ R𝑛, 𝑋 ∈ 𝔛(𝑀)).

By Lemma 4.2.11(iv), we have

Π(𝑋,𝑌 ) = −𝑔 (b, b) · 𝑔
(
∇𝑋b,𝑌

)
︸       ︷︷       ︸

=0

· b = 0

and hence 𝑀 is totally geodesic.

(ii) The spaces S𝑛−1
a (𝑟) ⊂ Ra,𝑛−a and H𝑛−1

a−1 (𝑟) ⊂ R
a,𝑛−a are totally umbilic. (Exercise.)

Remark 4.2.14. Recall that Π is symmetric and 𝑔 (Π (𝑋,𝑌 ) , b) = 𝑔
(
𝑆 b (𝑋) , 𝑌

)
(Lemma 4.2.5(ii), Defn. 4.2.6,

& Defn. 4.2.8). This means that for all normal fields b ∈ 𝔛(𝑀)⊥, the map

𝑆 b : 𝔛(𝑀) ! 𝔛(𝑀)

is self-adjoint. (This means that 𝑔
(
𝑆 b (𝑋) , 𝑌

)
= 𝑔

(
𝑋, 𝑆 b (𝑌 )

)
for all 𝑋,𝑌 ∈ 𝔛(𝑀).) More precisely, we have

𝑔

(
𝑆 b (𝑋) , 𝑌

)
= 𝑔 (Π (𝑋,𝑌 ) , b) = 𝑔 (Π (𝑌, 𝑋) , b) = 𝑔

(
𝑆 b (𝑌 ) , 𝑋

)
= 𝑔

(
𝑋, 𝑆 b (𝑌 )

)
.

Since 𝑆 b (𝑝) is self-adjoint, the spectral theorem implies that 𝑆 b (𝑝) admits eigenvalues _1 ≤ . . . ≤ _𝑛 (with
𝑛 = dim𝑀) and 𝑇𝑝𝑀 admits a pseudo-orthonormal basis of eigenvectors of 𝑆 b (𝑝).

Definition 4.2.15: Principal Curvatures

Let 𝑀 ⊂ 𝑀 be a semi-Riemannian hypersurface, let 𝑝 ∈ 𝑀 , and let b be a unit normal field near 𝑝. Then the
eigenvalues of 𝑆 b (𝑝) are called principal curvatures of 𝑀 at 𝑝.

The eigenvectors are called principal curvature directions.

Note that the principal curvatures of 𝑀 at 𝑝 are well-defined up to sign since 𝑆−b (𝑝) = −𝑆 b (𝑝).

Example 4.2.16. Let 𝑓 ∈ 𝐶∞ (R𝑛) be given by 𝑓 (𝑥) = 1
2
∑𝑛
𝑖=1 _𝑖

(
𝑥𝑖

)2 and

𝑀 = Γ( 𝑓 ) = {(𝑥, 𝑓 (𝑥)) : 𝑥 ∈ R𝑛} ⊂ R𝑛+1

(equipped with 𝑔eucl). Let 𝐹 : R𝑛+1 ! R be the locally defining function

𝐹

(
𝑥1, . . . , 𝑥𝑛+1

)
= 𝑥𝑛+1 − 𝑓

(
𝑥1, . . . , 𝑥𝑛

)
.

Then 𝑀 = 𝐹−1 (0). By the proof of Lemma 4.2.11(i), b = grad 𝐹/|grad 𝐹 | is a unit normal field. Observe,

b =
grad 𝐹
|grad 𝐹 | =

(
−_1𝑥

1, . . . ,−_𝑛𝑥𝑛, 1
)√︃

1 + ∑𝑛
𝑖=1 (_𝑖𝑥𝑖)

2
.



4.2. THE COVARIANT DERIVATIVE OF SUBMANIFOLDS 58

Fix 𝑝 = 0. For 1 ≤ 𝑖 ≤ 𝑛, by Lemma 4.2.11(iii), we have

𝑆 b (𝜕𝑖) (0) = −∇𝜕𝑖 b (0) = −𝐷b |0 (𝜕𝑖)

= −
[
𝜕𝑖

(
1

|grad 𝐹 |

) ����
0
· grad 𝐹 (0) + 1

|grad 𝐹 (0) | ∇𝜕𝑖 grad 𝐹 (0)
]

= −
[
𝜕𝑖

(
1

|grad 𝐹 |

) ����
0
· (0, 0, . . . , 1)︸                                 ︷︷                                 ︸

=0

+ 1
|1|_𝑖𝜕𝑖

]

= _𝑖𝜕𝑖 .

This means the principal curvatures are given by _𝑖 and the principal curvature directions are 𝜕𝑖 .

Note that if 𝑀 ⊂ R𝑛+1 is an arbitrary hypersurface and 𝑝 ∈ 𝑀 , it is, up to rotation and translation, of the above
form (with 𝑓 (𝑥) = 1

2
∑𝑛
𝑖=1 _𝑖

(
𝑥𝑖

)2 + O
(
|𝑥 |3

)
.



Chapter 5

Geodesics

Intuition: Geodesics are parametrized curves with no acceleration. On R𝑛, this means that 𝑐′′ = 0 for 𝑐 : 𝐼 ! R𝑛.
Thus, 𝑐(𝑡) = 𝑎𝑡 + 𝑏 for 𝑎, 𝑏 ∈ R𝑛.

On a manifold, we already defined 𝑐′ for 𝑐 ∈ 𝐶∞ (𝐼, 𝑀), but not 𝑐′′. Thus, we need to differentiate vector
fields which are only defined along a parametrized curve 𝑐 (in particular 𝑐′).

From now on, let 𝑀 be a semi-Riemannian manifold.

5.1 The Covariant derivative along curves
Definition 5.1.1: 𝔛(𝑀)𝑐: Vector fields along curves

Let 𝐼 ⊂ R be an interval and 𝑐 ∈ 𝐶∞ (𝐼, 𝑀). Define

𝔛(𝑀)𝑐 :=
{
𝑋 ∈ 𝐶∞ (𝐼, 𝑇𝑀) : 𝑋 (𝑡) ∈ 𝑇𝑐 (𝑡 )𝑀 ∀𝑡 ∈ 𝐼

}
.

Then 𝑋 ∈ 𝔛(𝑀)𝑐 is called a vector field along 𝑐.

Remark 5.1.2. We have 𝑐′ ∈ 𝔛(𝑀)𝑐. (See Remark 1.4.11(iii).) For 𝑍 ∈ 𝔛(𝑀), we have 𝑍 ◦𝑐 ∈ 𝔛(𝑀)𝑐. However,
not every 𝑋 ∈ 𝔛(𝑀)𝑐 is of this form.

Theorem 5.1.3

Let 𝐼 ⊂ R be an interval and 𝑐 ∈ 𝐶∞ (𝐼, 𝑀). Then there exists a unique map

∇
𝑑𝑡

: 𝔛(𝑀)𝑐 ! 𝔛(𝑀)𝑐

𝑋 7!
∇
𝑑𝑡
𝑋

such that for all 𝑋,𝑌 ∈ 𝔛(𝑀)𝑐, 𝑍 ∈ 𝔛(𝑀), and all 𝑓 ∈ 𝐶∞ (𝐼),

(i) ∇
𝑑𝑡

(𝑋 + 𝑌 ) = ∇
𝑑𝑡
𝑋 + ∇

𝑑𝑡
𝑌 ;

(ii) ∇
𝑑𝑡

( 𝑓 · 𝑋) = 𝑓 ′𝑋 + 𝑓 · ∇
𝑑𝑡
𝑋;

(iii) ∇
𝑑𝑡

(𝑍 ◦ 𝑐) = ∇𝑐′𝑍 .

We call ∇
𝑑𝑡

the covariant derivative along 𝑐. It also satisfies

(iv) 𝑑
𝑑𝑡
⟨𝑋,𝑌⟩ = ⟨ ∇

𝑑𝑡
𝑋,𝑌⟩ + ⟨𝑋, ∇

𝑑𝑡
𝑌⟩.

Remark. The expression ∇𝑐′𝑍 in Theorem 5.1.3(iii) can be interpeted as an element in 𝔛(𝑀)𝑐 in the following

59



5.1. THE COVARIANT DERIVATIVE ALONG CURVES 60

way. The map

𝔛(𝑀) × 𝔛(𝑀) ! 𝔛(𝑀)
(𝑊, 𝑍) 7! ∇𝑊𝑍

is 𝐶∞ (𝑀)-linear in the first slot. Thus for fixed 𝑍 ∈ 𝔛(𝑀), the vector ∇𝑊𝑍 (𝑝) ∈ 𝑇𝑝𝑀 only depends on 𝑊 (𝑝).
Therefore, it makes sense to define ∇𝑣𝑍 := ∇𝑊𝑍 , where 𝑊 is any vector field satisfying 𝑊 (𝑝) = 𝑣. As a
consequence we obtain a well-defined linear map

𝑇𝑝𝑀 ! 𝑇𝑝𝑀

𝑣 7! ∇𝑣𝑍.

We may extend this to a 𝐶∞ (𝐼)-linear map

𝔛(𝑀)𝑐 ! 𝔛(𝑀)𝑐
𝑋 7! ∇𝑋𝑍

by setting ∇𝑋𝑍 (𝑡) = ∇𝑋 (𝑡 )𝑍 ∈ 𝑇𝑐 (𝑡 )𝑀 . Setting 𝑋 = 𝑐′ in the above, we see that ∇𝑐′𝑍 is a 𝐶∞ (𝐼)-linear map.

Proof. Uniqueness: A cutoff function argument (such as the one given in the proof of Theorem 2.3.10) shows that
∇
𝑑𝑡

is local, i.e.
(
∇
𝑑𝑡
𝑋

) ��
𝐽
= ∇
𝑑𝑡

(𝑋 |𝐽 ) for an open subinterval 𝐽 ⊂ 𝐼. (For a more detailed proof of this, see
following Remark.)

Take 𝐽 so small that 𝑐(𝐽) ⊂ 𝑈 for a chart (𝑈, 𝜑) of 𝑀 . Write 𝑋 |𝐽 = 𝑋 𝑖𝜕𝑖 ◦ 𝑐 and 𝜑◦ 𝑐(𝑡) = (𝑐1 (𝑡), . . . , 𝑐𝑛 (𝑡))
for 𝑡 ∈ 𝐽, where 𝜕𝑖 ◦ 𝑐(𝑡) = 𝜕𝑖 |𝑐 (𝑡 ) . Then 𝑐′ |𝐽 = (𝑐 𝑗 )′𝜕 𝑗 ◦ 𝑐 (see (1.4.8)). Then(

∇
𝑑𝑡
𝑋

) ���
𝐽
=

∇
𝑑𝑡

(𝑋 |𝐽 ) =
∇
𝑑𝑡

(
𝑋 𝑖𝜕𝑖 ◦ 𝑐

)
=

(
𝑋 𝑖

) ′
𝜕𝑖 ◦ 𝑐 + 𝑋 𝑖

∇
𝑑𝑡

(𝜕𝑖 ◦ 𝑐) , by (i) & (ii)

=
(
𝑋 𝑖

) ′
𝜕𝑖 ◦ 𝑐 + 𝑋 𝑖∇𝑐′𝜕𝑖 , by (iii)

=
(
𝑋 𝑖

) ′
𝜕𝑖 ◦ 𝑐 + 𝑋 𝑖∇(𝑐 𝑗 ) ′𝜕𝑗◦𝑐𝜕𝑖

=
(
𝑋 𝑖

) ′
𝜕𝑖 ◦ 𝑐 + 𝑋 𝑖 ·

(
𝑐 𝑗

) ′ ∇𝜕𝑗◦𝑐𝜕𝑖
=

(
𝑋 𝑖

) ′
𝜕𝑖 ◦ 𝑐 + 𝑋 𝑖 ·

(
𝑐 𝑗

) ′ · (Γ𝑘𝑗𝑖 ◦ 𝑐) · (𝜕𝑘 ◦ 𝑐) , by (i)

=

[(
𝑋 𝑘

) ′
+ 𝑋 𝑖 ·

(
𝑐 𝑗

) ′ · (Γ𝑘𝑖 𝑗 ◦ 𝑐)] (𝜕𝑘 ◦ 𝑐) .
This implies uniqueness. In particular, we have(

∇
𝑑𝑡
𝑋

) ���
𝐽
=

(
𝑋 𝑖

) ′
𝜕𝑖 ◦ 𝑐 + 𝑋 𝑖∇(𝑐 𝑗 ) ′𝜕𝑗◦𝑐 (𝜕𝑖 ◦ 𝑐) =

[(
𝑋 𝑘

) ′
+ 𝑋 𝑖

(
𝑐 𝑗

) ′
Γ𝑘𝑖 𝑗 ◦ 𝑐

]
(𝜕𝑘 ◦ 𝑐) . (5.1.1)

Existence: Define ∇
𝑑𝑡
𝑋 locally by (5.1.1) and check the properties (i)-(iv). By uniqueness, this defintion does not

depend on the chosen chart. □

Remark. Here we give a more detailed proof of the locality property of ∇
𝑑𝑡

.

Step 1. The restriction
(
∇
𝑑𝑡
𝑋

) ���
𝐽

depends only on 𝑋 |𝐽 .

Let 𝑡 ∈ 𝐽 and pick an open interval 𝐾 with 𝑡 ∈ 𝐾 and 𝐾 ⊂ 𝐽. Pick a cutoff function 𝜒 ∈ 𝐶∞ (𝐼) with supp 𝜒 ⊂ 𝐽

and 𝜒 |𝐾 ≡ 1. Suppose 𝑋 ∈ 𝔛(𝑀)𝑐 satisfies 𝑋 |𝐽 = 𝑋 |𝐽 . Since 𝜒′ (𝑠) = 0 for all 𝑠 ∈ 𝐾 and since 𝜒 · 𝑋 = 𝜒 · 𝑋 , we
have for all 𝑠 ∈ 𝐾 , (

∇
𝑑𝑡
𝑋

)
(𝑠) = 𝜒′ (𝑡) 𝑋 (𝑡) + 𝜒 (𝑡)

(
∇
𝑑𝑡
𝑋

)
(𝑠) =

(
∇
𝑑𝑡

(𝜒 · 𝑋)
)
(𝑠)

=

(
∇
𝑑𝑡

(
𝜒 · 𝑋

))
(𝑠) =

(
∇
𝑑𝑡
𝑋

)
(𝑠) .

This shows
(
∇
𝑑𝑡
𝑋

) ���
𝐾
=

(
∇
𝑑𝑡
𝑋

) ���
𝐾

whenever 𝑋 |𝐽 = 𝑋 |𝐽 for any 𝑡 ∈ 𝐽 and any such neighborhood 𝐾 of 𝑡.
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Step 2. The map ∇
𝑑𝑡

restricts to a map ∇
𝑑𝑡

��
𝐽

: 𝔛(𝑀)𝑐 |𝐽 ! 𝔛(𝑀)𝑐 |𝐽 in such a way that
(
∇
𝑑𝑡
𝑋

) ���
𝐽
= ∇
𝑑𝑡

��
𝐽
(𝑋 |𝐽 ).

Given ∇
𝑑𝑡

: 𝔛(𝑀)𝑐 ! 𝔛(𝑀)𝑐, define

∇
𝑑𝑡

��
𝐽

: 𝔛(𝑀)𝑐 |𝐽 ! 𝔛(𝑀)𝑐 |𝐽

𝑋 7!

(
∇
𝑑𝑡
𝑋

) ���
𝐽
,

where 𝑋 is an extension of 𝑋 . By Step 1, this map does not depend on the chosen extension. It remains to show ∇
𝑑𝑡

��
𝐽

satisfies (i)-(iv) of Theorem 5.1.3. To show (i), observe that for 𝑋,𝑌 ∈ 𝔛(𝑀)𝑐 |𝐽 with extensions 𝑋,𝑌 ∈ 𝔛(𝑀)𝑐,

∇
𝑑𝑡

��
𝐽
(𝑋 + 𝑌 ) = ∇

𝑑𝑡

(
𝑋 + 𝑌

)
=

∇
𝑑𝑡
𝑋 + ∇

𝑑𝑡
𝑌 =

∇
𝑑𝑡

��
𝐽
(𝑋) + ∇

𝑑𝑡

��
𝐽
(𝑌 ) .

The verification of (ii)-(iv) is similar. For all 𝑋 ∈ 𝔛(𝑀)𝑐, since 𝑋 is an extension of 𝑋 |𝐽 , see that

∇
𝑑𝑡

��
𝐽
(𝑋 |𝐽 ) =

(
∇
𝑑𝑡
𝑋

) ���
𝐽
,

as desired.

Definition 5.1.4: Parallel Vector Fields

Let 𝑐 ∈ 𝐶∞ (𝐼, 𝑀). A vector field 𝑋 ∈ 𝔛(𝑀)𝑐 is called parallel if ∇
𝑑𝑡
𝑋 = 0.

Theorem 5.1.5

Let 𝑐 ∈ 𝐶∞ ( [𝑎, 𝑏], 𝑀), 𝑣 ∈ 𝑇𝑐 (𝑎)𝑀 . Then there exists exactly one parallel vector field 𝑋 ∈ 𝔛(𝑀)𝑐 such that
𝑋 (𝑎) = 𝑣.

Proof. Case 1: Suppose first that there exists a chart (𝑈, 𝜑) such that 𝑐( [𝑎, 𝑏]) ⊂ 𝑈. (For example, such a chart
exists if 𝑎, 𝑏 are chosen so that 𝑏 − 𝑎 is small.) Then for 𝑋 ∈ 𝔛(𝑀)𝑐, 𝑋 = 𝑋 𝑖𝜕𝑖 ◦ 𝑐, the condition ∇

𝑑𝑡
𝑋 = 0 is

equivalent to the ODE system (
𝑋 𝑘

) ′
+ 𝑋 𝑖

(
𝑐 𝑗

) ′
Γ𝑘𝑖 𝑗 = 0 (1 ≤ 𝑖 ≤ 𝑛). (5.1.2)

(See (5.1.1).)

Write 𝑣 = 𝑣𝑖𝜕𝑖 |𝑐 (𝑎) ∈ 𝑇𝑐 (𝑎)𝑀 . By ODE theory, there exists a unique solution
{
𝑋 𝑖 ∈ 𝐶∞ ( [𝑎, 𝑏],R)

}
1≤𝑖≤𝑛

of (5.1.2) with 𝑋 𝑖 (𝑎) = 𝑣𝑖 . This implies 𝑋 = 𝑋 𝑖𝜕𝑖 ◦ 𝑐 ∈ 𝔛(𝑀)𝑐 is the unique parallel vector field on 𝑐 such
that 𝑋 (𝑎) = 𝑣.

Case 2: For the general case, the compactness of 𝑐 ( [𝑎, 𝑏]) lets us choose finitely may (𝑈 𝑗 , 𝜑 𝑗 ) (1 ≤ 𝑗 ≤ 𝑁) and
𝑎 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑁 = 𝑏 such that

𝑐
(
[𝑡 𝑗−1, 𝑡 𝑗 ]

)
⊂ 𝑈 𝑗 .

The result follows from 𝑁 applications of the argument in Case 1. □

Definition 5.1.6: Parallel Transport

For 𝑐 ∈ 𝐶∞ ( [𝑎, 𝑏], 𝑀), we define a map

𝑃𝑏𝑎 : 𝑇𝑐 (𝑎)𝑀 ! 𝑇𝑐 (𝑏)𝑀

𝑣 7! 𝑋 (𝑏),

where 𝑋 ∈ 𝔛(𝑀)𝑐 is the parallel vector field such that 𝑋 (𝑎) = 𝑣. We call 𝑃𝑏𝑎 the parallel transport.
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Lemma 5.1.7

The map 𝑃𝑏𝑎 : 𝑇𝑐 (𝑎)𝑀 ! 𝑇𝑐 (𝑏)𝑀 is a linear isometry.

Proof. Linearity: The relation 𝑃𝑏𝑎 (𝑣 + 𝛼𝑤) = 𝑃𝑏𝑎 (𝑣) + 𝛼𝑃𝑏𝑎 (𝑤) follows from the fact that the ODE-system (5.1.2)
is linear.

Isometry: Let 𝑣, 𝑤 ∈ 𝑇𝑐 (𝑎)𝑀 and 𝑋,𝑌 ∈ 𝔛(𝑀)𝑐 be the parallel vector fields with 𝑋 (𝑎) = 𝑣,𝑌 (𝑎) = 𝑤. Then

𝑑

𝑑𝑡
⟨𝑋,𝑌⟩ = ⟨ ∇

𝑑𝑡
𝑋,𝑌⟩ + ⟨𝑋, ∇

𝑑𝑡
𝑌⟩ = 0,

so
⟨𝑃𝑏𝑎 (𝑣), 𝑃𝑏𝑎 (𝑤)⟩ = ⟨𝑋 (𝑏), 𝑌 (𝑏)⟩ = ⟨𝑋 (𝑎), 𝑌 (𝑎)⟩ = ⟨𝑣, 𝑤⟩. □

5.2 Geodesics
Definition 5.2.1: Geodesic

A curve 𝑐 ∈ 𝐶∞ (𝐼, 𝑀) is called geodesic if ∇
𝑑𝑡
𝑐′ = 0. That is, if 𝑐′ is parallel.

Lemma 5.2.2

Let 𝑎 ∈ R. For each 𝑝 ∈ 𝑀 and 𝑣 ∈ 𝑇𝑝𝑀 , there exists an interval I with 𝑎 ∈ 𝐼 and a unique geodesic
𝑐 : 𝐼 ! 𝑀 with 𝑐(𝑎) = 𝑝 and 𝑐′ (𝑎) = 𝑣.

Proof. Let (𝑈, 𝜑) be a chart around 𝑝. By (5.1.2), 𝑐 : 𝐼 ! 𝑈 is a geodesic if and only if the functions 𝑐𝑖 : 𝐼 ! R
defined by 𝜑 ◦ 𝑐(𝑡) = (𝑐1 (𝑡), . . . , 𝑐𝑛 (𝑡)) satisfy(

𝑐𝑘
) ′′

+
(
𝑐𝑖

) ′ (
𝑐 𝑗

) ′
Γ𝑘𝑖 𝑗 ◦ 𝑐 = 0 (1 ≤ 𝑘 ≤ 𝑛). (5.2.1)

(See (5.1.2).) Standard theory of 2nd order ODE-systems yield a unique solution �̃�(𝑡) =
(
𝑐1 (𝑡), . . . , 𝑐𝑛 (𝑡)

)
for

given initial data
(
𝑐1 (𝑎), . . . , 𝑐𝑛 (𝑎)

)
:= 𝜑(𝑝) and

(
(𝑐1)′ (𝑎), . . . , (𝑐𝑛)′ (𝑎)

)
:= 𝑇𝑝𝜑(𝑣), defined on an interval 𝐼

around 𝑎. This implies 𝑐 := 𝜑−1 ◦ �̃� is the desired unique geodesic. □

Example 5.2.3. (i) On Ra,𝑛−a , we have Γ𝑘
𝑖 𝑗

= 0 for all 𝑖, 𝑗 , 𝑘 in the standard chart. This means that for
𝑥 ∈ Ra,𝑛−a and 𝑣 ∈ 𝑇𝑥Ra,𝑛−a � R𝑛, the geodesic with 𝑐(0) = 𝑥 and 𝑐′ (0) = 𝑣 is 𝑐 : 𝑡 7! 𝑥 + 𝑡𝑣.

(ii) The cylinder 𝑀 =
{
(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥2 + 𝑦2 − 1 = 0

}
is covered by charts of the form

𝜑 : (cos \, sin \, 𝑧) 7! (\, 𝑧) (𝑧 ∈ R, \ ∈ (𝑎, 𝑎 + 2𝜋)) .

In each of these charts, 𝜕𝑧 =
©«
0
0
1

ª®¬ and 𝜕\ =
©«
− sin \
cos \

0

ª®¬. If we equip 𝑀 with the Riemannian metric 𝑔 := 𝑔eucl |𝑀 ,

we get {
𝑔𝑖 𝑗

}
𝑖, 𝑗∈{𝑧, \ } =

{
𝑔eucl

(
𝜕𝑖 , 𝜕 𝑗

)}
𝑖, 𝑗∈{𝑧, \ } =

(
1 0
0 1

)
=⇒ Γ𝑘𝑖 𝑗 = 0.

This means 𝑐 : 𝐼 ! 𝑀 is a geodesic ⇐⇒ In each of these charts, the components (𝑐\ , 𝑐𝑧) satisfy
(𝑐\ )′′ = 0 = (𝑐𝑧)′′. This means 𝑐\ , 𝑐𝑧 are of the form 𝑎 + 𝑡𝑏.

Thus, if 𝑐(0) = (cos \0, sin \0, 𝑧0) and 𝑐′ (0) = 𝑎𝜕\ |𝑐 (0) + 𝑏𝜕𝑧 |𝑐 (0) (in a chart of the above form around 𝑐(0)),
then

𝑐(𝑡) = (cos (\0 + 𝑎𝑡) , sin (\0 + 𝑎𝑡) , 𝑧0 + 𝑏𝑡) .

(iii) For an arbitrary semi-Riemannian manifold, the geodesic 𝑐 : 𝐼 ! 𝑀 with 𝑐(0) = 𝑝 and 𝑐′ (0) = 0 ∈ 𝑇𝑝𝑀 is
the constant curve 𝑐(𝑡) = 𝑝 for all 𝑡 ∈ 𝐼. We call all other geodesics nonconstant
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Lemma 5.2.4

Let 𝑐1, 𝑐2 : 𝐼 ! 𝑀 be geodesics such that 𝑐1 (𝑎) = 𝑐2 (𝑎) and 𝑐′1 (𝑎) = 𝑐
′
2 (𝑎) for some 𝑎 ∈ 𝐼. Then 𝑐1 = 𝑐2.

Proof. Let 𝐽 :=
{
𝑡 ∈ 𝐼 : 𝑐1 (𝑡) = 𝑐2 (𝑡), 𝑐′1 (𝑡) = 𝑐

′
2 (𝑡)

}
. Then the following are true.

(i) 𝐽 ≠ ∅ since 𝑎 ∈ 𝐽.

(ii) 𝐽 is closed since it is defined by a continuous equation.

(iii) 𝐽 is open. To see this, let 𝑏 ∈ 𝐽, then by Lemma 5.2.2, there exists Y > 0 such that 𝑐1 (𝑡) = 𝑐2 (𝑡) for all
𝑡 ∈ (𝑏 − Y, 𝑏 + Y). This means 𝑐′1 (𝑡) = 𝑐

′
2 (𝑡) for all 𝑡 ∈ (𝑏 − Y, 𝑏 + Y) so that (𝑏 − Y, 𝑏 + Y) ⊂ 𝐽 and 𝐽 is open.

As 𝐼 is connected, we have 𝐽 = 𝐼. □

As a consequence, we obtain

Proposition 5.2.5

For 𝑝 ∈ 𝑀 and 𝑣 ∈ 𝑇𝑝𝑀 , there exists a unique geodesic 𝑐𝑣 : 𝐼 ! 𝑀 such that

(i) 𝑐𝑣 (0) = 𝑝, 𝑐′𝑣 (0) = 𝑣,

(ii) The domain of 𝑐𝑣 is maximal, i.e. if 𝑐 : 𝐽 ! 𝑀 with 0 ∈ 𝐽 is another geodesic with 𝑐(0) = 𝑝 and
𝑐′ (0) = 𝑣, then 𝐽 ⊂ 𝐼 and 𝑐𝑣 |𝐽 = 𝑐.

Definition 5.2.6: Maximal Geodesics & Geodesically Complete

We call the geodesic 𝑐𝑣 from Prop. 5.2.5 maximal. If for each 𝑝 ∈ 𝑀, 𝑣 ∈ 𝑇𝑝𝑀 , the geodesic 𝑐𝑣 is defined
on R, then 𝑀 is called geodesically complete.

Example 5.2.7. (i) Ra,𝑛−a is geodesically complete.

(ii) Ra,𝑛−a ∖ {0} is not geodesically complete.
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Lemma 5.2.8

let 𝑐 : 𝐼 ! 𝑀 be a nonconstant geodesic and ℎ : 𝐽 ! 𝐼 a diffeomorphism of intervals. Then the following
are equivalent

(i) 𝑐 ◦ ℎ is a geodesic.

(ii) ℎ(𝑡) = 𝑎𝑡 + 𝑏 for 𝑎, 𝑏 ∈ R.

Proof. (ii) ⇒ (i): Chain rule & (5.2.1).

(i) ⇒ (ii): Let 𝑡1 ∈ 𝐽 and 𝑠1 := ℎ(𝑡1) ∈ 𝐼. Then (𝑐 ◦ ℎ) (𝑡1) = 𝑐(𝑠1) and (𝑐 ◦ ℎ)′ (𝑡1) = 𝑐′ (𝑠1) · ℎ′ (𝑡1). Set
𝑎 = ℎ′ (𝑡1), 𝑏 = 𝑠1 − 𝑎𝑡1 and ℎ̃(𝑡) = 𝑎𝑡 + 𝑏. Then 𝑐 ◦ ℎ̃ is a geodesic by the implication (ii) ⇒ (i) with(

𝑐 ◦ ℎ̃
)
(𝑡1) = 𝑐(𝑠1) = (𝑐 ◦ ℎ) (𝑡1),(

𝑐 ◦ ℎ̃
) ′
(𝑡1) = 𝑐′ (𝑠1) · 𝑎 = 𝑐′ (ℎ (𝑡1)) · ℎ′ (𝑡1) = (𝑐 ◦ ℎ)′ (𝑡1) .

By uniqueness, we have 𝑐 ◦ ℎ̃ = 𝑐 ◦ ℎ. As 𝑐 is nonconstant, this means ℎ̃ = ℎ. □

Lemma 5.2.9

Let 𝑝 ∈ 𝑀 and 𝑣 ∈ 𝑇𝑝𝑀 ⊂ 𝑇𝑀 . Then there exists an open neighborhood 𝑈 of 𝑣 in 𝑇𝑀 and an interval I
around 0 such that the mapping

𝑈 × 𝐼 ! 𝑀

(𝑤, 𝑠) 7! 𝑐𝑤 (𝑠)

is 𝐶∞.

Proof. ODE-theory (smooth dependence of ODE’s with 𝐶∞-coefficients on initial data). □

5.3 The Exponential Map
Definition 5.3.1: Exponential map (exp𝑝)

For 𝑝 ∈ 𝑀 , set 𝐷 𝑝 =
{
𝑣 ∈ 𝑇𝑝𝑀 : 𝑐𝑣 is well-defined on [0, 1]

}
. We call the map

exp𝑝 : 𝐷 𝑝 ! 𝑀

𝑣 7! 𝑐𝑣 (1) (5.3.1)

the exponential map at 𝑝.

Remark 5.3.2. (i) 𝐷 𝑝 is the maximal domain of exp𝑝 . If 𝑀 is geodesically complete, then 𝐷 𝑝 = 𝑇𝑝𝑀 for all
𝑝 ∈ 𝑀 .

(ii) For 𝑣 ∈ 𝑇𝑝𝑀, 𝑡 ∈ R, the map 7! 𝑐𝑣 (𝑡 · 𝑠) is a geodesic (by Lemma 5.2.8) with initial point 𝑝 and initial
velocity 𝑡 · 𝑐′𝑣 (0) = 𝑡 · 𝑣. This implies 𝑐𝑣 (𝑡 · 𝑠) = 𝑐𝑡 ·𝑣 (𝑠) if both sides of the equation are defined. This gives
the relation

exp𝑝 (𝑡 · 𝑣) = 𝑐𝑡𝑣 (1) = 𝑐𝑣 (𝑡). (5.3.2)

(iii) 𝐷 𝑝 contains an open neighborhood of 0 ∈ 𝑇𝑝𝑀 . To see this, let 𝑈 ⊂ 𝑇𝑀 be the neighborhood of 0 ∈ 𝑇𝑝𝑀
in Lemma 5.2.9. Then there exists Y > 0 such that (−Y, Y) ⊂ 𝐼 (with I as in Lemma 5.2.9). The set
𝑈𝑝 := 𝑈 ∩ 𝑇𝑝𝑀 is an open neighborhood of 0 ∈ 𝑇𝑝𝑀 . For all 𝑣 ∈ 𝑈𝑝 , 𝑐𝑣 is defined up to (−Y, Y). Thus,
for Y

2 · 𝑣, 𝑣 ∈ 𝑈𝑝 , 𝑐Y/2𝑣 : 𝑠 7! 𝑐Y/2·𝑣 (𝑠) = 𝑐𝑣 (Y/2, 𝑠) is defined up to (−2, 2) so that
{
Y
2 𝑣 : 𝑣 ∈ 𝑈𝑝

}
is a

neighborhood of 0 ∈ 𝑇𝑝𝑀 contained in 𝐷 𝑝 .



5.3. THE EXPONENTIAL MAP 65

Theorem 5.3.3

Let 𝑝 ∈ 𝑀 . Then there exist open neighborhoods 𝑉 ⊂ 𝑇𝑝𝑀 of 0 and𝑈 ⊂ 𝑀 of 𝑝 such that exp𝑝 : 𝑉 ! 𝑈 is
a diffeomorphism.

Proof. As 𝑇𝑝𝑀 is a vector space, there is a canonical identifcation 𝑇𝑝𝑀 � 𝑇𝑣 (𝑇𝑝𝑀), given by

𝑇𝑝𝑀 ! 𝑇𝑣 (𝑇𝑝𝑀)
𝑤 7! [𝑐 : 𝑡 7! 𝑣 + 𝑡𝑤]𝑣 ∈ 𝑇𝑣 (𝑇𝑝𝑀).

Now we compute
𝑇0 exp𝑝 : 𝑇0 (𝑇𝑝𝑀) � 𝑇𝑝𝑀 ! 𝑇exp𝑝 (0)𝑀 = 𝑇𝑝𝑀.

Let 𝑣 ∈ 𝑇𝑝𝑀 and 𝑐 : 𝑡 7! 𝑡 · 𝑣 a straight line in 𝑇𝑝𝑀 . Then by the chain rule,

𝑇0 exp𝑝 (𝑣) = 𝑇0 exp𝑝 (𝑐′ (0)) =
(
exp𝑝 ◦𝑐

) ′
(0) = 𝑑

𝑑𝑡

���
𝑡=0

exp𝑝 (𝑡𝑣)

=
𝑑

𝑑𝑡

���
𝑡=0
𝑐𝑣 (𝑡) = 𝑐′𝑣 (0) = 𝑣.

Thus, 𝑇0 exp𝑝 = id𝑇𝑝𝑀 and thus is a linear isomorphism. The assertion now follows from Lemma 1.5.3. □

Definition 5.3.4: Geodesic Chart

Let 𝑝 ∈ 𝑀 and ℬ = {𝑒1, . . . , 𝑒𝑛} be an ordered basis of 𝑇𝑝𝑀 . Then we have an isomorphism 𝜑ℬ : 𝑇𝑝𝑀 !
R𝑛, 𝑣 = 𝑣𝑖𝑒𝑖 7! (𝑣1, . . . , 𝑣𝑛). With𝑈 and𝑉 as in Theorem 5.3.3, we call (𝑈, 𝜑), with 𝜑 = 𝜑ℬ = (exp𝑝 |𝑉 )−1 :
𝑈 ! R𝑛 a geodesic chart of 𝑀 centered at 𝑝 with respect to the basisℬ.

Proposition 5.3.5

Let 𝑝 ∈ 𝑀 and ℬ = {𝑒1, . . . , 𝑒𝑛} be a pseudo-orthonormal basis of 𝑇𝑝𝑀 (ie ⟨𝑒𝑖 , 𝑒 𝑗⟩ = Y𝑖𝛿𝑖 𝑗 , Y𝑖 ∈ {±1}).
Then in the geodesic chart at 𝑝 with respect toℬ, we have for all 𝑖, 𝑗 , 𝑘 ,

(i) 𝑔𝑖 𝑗 (𝑝) = Y𝑖𝛿𝑖 𝑗 ,

(ii) Γ𝑘
𝑖 𝑗
(𝑝) = 0,

(iii) 𝜕𝑖𝑔 𝑗𝑘 (𝑝) = 0

This implies 𝑔𝑖 𝑗 ◦ 𝜑−1 (𝑥) = Y𝑖𝛿𝑖 𝑗 + O
(
|𝑥 |2

)
.

Proof. (i) Let { 𝑓1, . . . , 𝑓𝑛} be the standard basis of R𝑛. Then 𝑇0𝜑ℬ (𝑒𝑖) = 𝐷𝜑ℬ |0 (𝑒𝑖) = 𝑓𝑖 for all 𝑖. Since(
𝑇0 exp𝑝

)−1
= id, we get

𝑇𝑝𝜑(𝑒𝑖) = 𝑇0𝜑ℬ ◦
(
𝑇0 exp𝑝

)−1
(𝑒𝑖) = 𝑇𝑝𝜑ℬ (𝑒𝑖) = 𝑓𝑖 .

This means 𝜕𝑖 |𝑝 = (𝑇𝑝𝜑)−1 ( 𝑓𝑖) = 𝑒𝑖 so that

𝑔𝑖 𝑗 (𝑝) = ⟨𝜕𝑖 |𝑝 , 𝜕 𝑗 |𝑝⟩ = ⟨𝑒𝑖 , 𝑒 𝑗⟩ = Y𝑖𝛿𝑖 𝑗 .

(ii) For 𝑣 = 𝑣𝑖𝑒𝑖 ∈ 𝑇𝑝𝑀 , the corresponding geodesic 𝑐𝑣 : 𝑡 7! exp𝑝 (𝑡𝑣) has local components (𝑐1 (𝑡), . . . , 𝑐𝑛 (𝑡)) =
𝜑 ◦ 𝑐(𝑡) = (𝑡𝑣1, . . . , 𝑡𝑣𝑛). By (5.2.1) with 𝑡 = 0, we get 0 = 𝑣𝑖𝑣 𝑗Γ𝑘

𝑖 𝑗
(𝑝) for all 𝑘 . Then the symmetric bilinear

form 𝑄𝑘 : (𝑣, 𝑤) 7! 𝑣𝑘𝑤 𝑗Γ𝑘
𝑖 𝑗
(𝑝) satisfies 𝑄𝑘 (𝑣, 𝑣) = 0 for all 𝑣 ∈ 𝑇𝑝𝑀 . By polarization, we get 𝑄𝑘 = 0 so

that Γ𝑘
𝑖 𝑗
(𝑝) = 0 for all 𝑖, 𝑗 , 𝑘 .
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(iii) Observe

𝜕𝑖𝑔 𝑗𝑘 (𝑝) =
(
𝜕𝑖 ⟨𝜕 𝑗 , 𝜕𝑘⟩

)
(𝑝)

= ⟨∇𝜕𝑖𝜕 𝑗 , 𝜕𝑘⟩(𝑝) + ⟨𝜕 𝑗 ,∇𝜕𝑖𝜕 𝑗⟩, since ∇ is metric

=

(
Γℓ𝑖 𝑗𝑔ℓ𝑘

)
(𝑝) +

(
Γℓ𝑖𝑘𝑔 𝑗ℓ

)
(𝑝)

= 0, by (ii). □

Remark 5.3.6. The properties of geodesic charts in Prop. 5.3.5 are sometimes very useful for calculational purposes.

Example 5.3.7. On Ra,𝑛−a and 𝑥 ∈ Ra,𝑛−a , the exponential map is given by

exp𝑥 : 𝑣 7! 𝑐𝑣 (1) = 𝑥 + 1 · 𝑣 = 𝑥 + 𝑣.

5.4 Geodesics in Submanifolds
Let 𝑀 be a semi-Riemannian submanifold of the semi-Riemannian manifold 𝑀 . We denote the covariant derivatie
along curves in 𝑀 and 𝑀 by ∇

𝑑𝑡
and ∇

𝑑𝑡
, respectively.

Lemma 5.4.1

Let 𝑐 : 𝐼 ! 𝑀 ⊂ 𝑀 be smooth and 𝑋 ∈ 𝔛(𝑀)𝑐 ⊂ 𝔛(𝑀)𝑐. Then

∇
𝑑𝑡
𝑋 =

∇
𝑑𝑡
𝑋 + Π(𝑋, 𝑐′). (5.4.1)

In particular,
∇
𝑑𝑡
𝑐′ =

∇
𝑑𝑡
𝑐′ + Π(𝑐′, 𝑐′). (5.4.2)

Proof. Let (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛, . . . , 𝑥𝑚)) be a submanifold chart Then on 𝐽 ⊂ 𝐼 with 𝑐(𝐽) ⊂ 𝑈, we have

∇
𝑑𝑡
𝑋 =

∇
𝑑𝑡

(
𝑛∑︁
𝑖=1

𝑋 𝑖𝜕𝑖 ◦ 𝑐
)

=

𝑛∑︁
𝑖=1

(𝑋𝑐)′ 𝜕𝑖 ◦ 𝑐 +
𝑛∑︁
𝑗=1

𝑋 𝑖 (𝑐 𝑗 )′∇𝜕𝑖𝜕 𝑗 ◦ 𝑐
 , by Theorem 5.1.3

=

𝑛∑︁
𝑖=1

(
𝑋 𝑖

) ′
𝜕𝑖 ◦ 𝑐 +

𝑛∑︁
𝑖, 𝑗=1

𝑋 𝑖 (𝑐 𝑗 )′
[
∇𝜕𝑖𝜕 𝑗 + Π

(
𝜕𝑖 , 𝜕 𝑗

) ]
◦ 𝑐, by Lem. 4.2.5 and Defn. 4.2.6

= · · · = ∇
𝑑𝑡
𝑋 + Π(𝑋, 𝑐′). □

Corollary 5.4.2. Let 𝑐 ∈ 𝐶∞ (𝐼, 𝑀) ⊂ 𝐶∞ (𝐼, 𝑀). Then 𝑐 is a geodesic in 𝑀 if and only if ∇
𝑑𝑡
𝑐′ is orthogonal

to 𝑀 .

Proof. 𝑐 is a geodesic in 𝑀 if and only if ∇
𝑑𝑡
𝑐′ = 0; by (5.4.2), this is equivalent to ∇

𝑑𝑡
𝑐′ = Π(𝑐′, 𝑐′) ⊥ 𝑀 . □

Corollary 5.4.3. The following are equivalent:

(i) 𝑀 ⊂ 𝑀 is a totally geodesic submanifold.

(ii) Every 𝑐 ∈ 𝐶∞ (𝐼, 𝑀) ⊂ 𝐶∞ (𝐼, 𝑀) which is a geodesic in 𝑀 is also a geodesic in 𝑀 .
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Proof. (i) ⇒ (ii): If 𝑐 is a geodesic in 𝑀 then

∇
𝑑𝑡
𝑐′ =

∇
𝑑𝑡
𝑐′︸︷︷︸

=0

+Π (′, 𝑐′)︸   ︷︷   ︸
by (i)

= 0

so that 𝑐 is a geodesic in 𝑀 .

(ii) ⇒ (i): Let 𝑝 ∈ 𝑀 and 𝑣 ∈ 𝑇𝑝𝑀 be arbitrary and let 𝑐𝑣 be the geodesic in𝑀 satisfying 𝑐𝑣 (0) = 𝑝 and 𝑐′𝑣 (0) = 𝑣.
By (ii), 𝑐 is a geodesic in 𝑀 so

0 =
∇
𝑑𝑡
𝑐′ (0) = ∇

𝑑𝑡
𝑐′ (0)︸   ︷︷   ︸
=0

+Π(𝑣, 𝑣);

thus Π(𝑣, 𝑣) = 0 for all 𝑣 ∈ 𝑇𝑝𝑀 and all 𝑝 ∈ 𝑀 . By the symmetry of Π and polarization, we get Π(𝑣, 𝑤) = 0
for all 𝑣, 𝑤 ∈ 𝑇𝑝𝑀, 𝑝 ∈ 𝑀 . This shows (i) holds. □

Example 5.4.4. Let𝑀 = (R𝑛, 𝑔eucl) and𝑀 =
(
S𝑛−1, 𝑔S𝑛−1 = 𝑔eucl |S𝑛−1

)
. Let 𝑝 ∈ S𝑛−1 and 𝑣 ∈ 𝑇𝑝S𝑛−1 = 𝑝⊥, 𝑣 ≠ 0.

Then the maximal geodesic 𝑐𝑣 ∈ S𝑛−1 with 𝑐𝑣 (0) = 𝑝, 𝑐′𝑣 (0) = 𝑣 is given by

𝑐𝑣 : R! S𝑛−1

𝑡 7! cos ( |𝑣 | 𝑡) · 𝑝 + 𝑣

|𝑣 | sin ( |𝑣 | 𝑡) .

Then

• ⟨𝑐𝑣 (𝑡), 𝑐𝑣 (𝑡)⟩ = · · · = 1 implies 𝑐𝑣 ∈ 𝐶∞ (
R, S𝑛−1) .

• Check 𝑐𝑣 (0) = 𝑝, 𝑐′𝑣 (0) = 𝑣.

• ∇
𝑑𝑡
𝑐′𝑣 (𝑡) = 𝑐′′𝑣 (𝑡) = − |𝑣 |2 · 𝑐𝑣 (𝑡) ∈ R𝑐𝑣 (𝑡) =

(
𝑇𝑐𝑣 (𝑡 )𝑀

)⊥ so that 𝑐𝑣 is a geodesic.



Chapter 6

Curvature

As usual, let 𝑀 be a fixed semi-Riemannian manifold with Levi-Civita connction ∇.

6.1 The Riemannian Curvature Tensor
Definition 6.1.1: Hessian

The Hessian of a function 𝑓 ∈ 𝐶∞ (𝑀) is

∇2 𝑓 : 𝔛(𝑀) × 𝔛(𝑀) ! 𝐶∞ (𝑀)
(𝑋,𝑌 ) 7! ∇2

𝑋,𝑌 𝑓 = 𝑋 (𝑌 ( 𝑓 )) − (∇𝑋𝑌 ) ( 𝑓 ).

Lemma 6.1.2

(i) ∇2 𝑓 ∈ 𝒯0
2 (𝑀).

(ii) ∇2
𝑋,𝑌

𝑓 = ∇2
𝑌,𝑋

𝑓 for all 𝑋,𝑌 ∈ 𝔛(𝑀).

(iii) ∇2
𝑋,𝑌

𝑓 = ⟨∇𝑋 grad 𝑓 , 𝑌⟩ for all 𝑋,𝑌 ∈ 𝔛(𝑀).

Proof. (i) It follows from the definition that

∇ℎ𝑋,𝑌 𝑓 = ℎ∇2
𝑋,𝑌 𝑓 (ℎ ∈ 𝐶∞ (𝑀), 𝑋,𝑌 ∈ 𝔛(𝑀)).

Then

∇2
𝑋,ℎ𝑌 𝑓 = 𝑋 (ℎ · 𝑌 ( 𝑓 )) − (∇𝑋 (ℎ · 𝑌 )) ( 𝑓 )

=((((((
𝑋 (ℎ) · 𝑌 ( 𝑓 ) + ℎ · 𝑌 ( 𝑓 ) − [((((((

𝑋 (ℎ) · 𝑌 ( 𝑓 ) + ℎ · (∇𝑋𝑌 ) ( 𝑓 )]
= ℎ · ∇2

𝑋,𝑌 𝑓 .

This shows ∇2 𝑓 is 𝐶∞ (𝑀)-bilinear, hence a tensor field.

(ii) Observe that

∇2
𝑋,𝑌 𝑓 − ∇2

𝑌,𝑋 𝑓 = 𝑋 (𝑌 ( 𝑓 )) − (∇𝑋𝑌 ) ( 𝑓 ) − 𝑌 (𝑋 ( 𝑓 )) + (∇𝑌 𝑋) ( 𝑓 )
= [𝑋,𝑌 ] ( 𝑓 ) − [(∇𝑋𝑌 ) − (∇𝑌 𝑋)]︸                 ︷︷                 ︸

=[𝑋,𝑌 ]

( 𝑓 )

= 0.

(iii) ∇2
𝑋,𝑌

𝑓 = 𝑋 (𝑌 ( 𝑓 )) − (∇𝑋𝑌 ) ( 𝑓 ) = 𝑋 (⟨grad 𝑓 , 𝑌⟩) − ⟨grad 𝑓 ,∇𝑋𝑌⟩ = ⟨∇𝑋 grad 𝑓 , 𝑌⟩. □

68
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Remark 6.1.3. Lemma 6.1.2(ii) asserts that the Schwartz thereom also holds in manifolds, i.e. covariant derviatives
commute when applied to functions. This is no longer true if 𝑓 is replaced by a vector field 𝑍 . Our first notion of
curvature measures the failure of commutativity.

Definition 6.1.4: Riemannian Curvature Tensor

The map

𝑅 : 𝔛(𝑀) × 𝔛(𝑀) × 𝔛(𝑀) ! 𝔛(𝑀)
(𝑋,𝑌, 𝑍) 7! 𝑅𝑋,𝑌 𝑍 := ∇2

𝑋,𝑌 𝑍 − ∇2
𝑌,𝑋𝑍 (6.1.1)

:= ∇𝑋 (∇𝑌 𝑍) − ∇∇𝑋𝑌 𝑍 −
(
∇𝑌 (∇𝑋𝑍) − ∇∇𝑌𝑋𝑍

)
= ∇𝑋 (∇𝑌 𝑍) − ∇𝑌 (∇𝑋𝑍) − ∇[𝑋,𝑌 ]𝑍

is called the Riemannian curvature tensor.

Lemma 6.1.5

𝑅 is 𝐶∞ (𝑀)-trilinear, hence defines a (1, 3)-tensor field.

Proof. The 𝐶∞ (𝑀)-bilinearity of (𝑋,𝑌 ) 7! ∇2
𝑋,𝑌

𝑍 = ∇𝑋 (∇𝑌 𝑍) − ∇∇𝑋𝑌 𝑍 is shown as in Lemma 6.1.2(i). Thus,
(𝑋,𝑌 ) 7! 𝑅𝑋,𝑌 𝑍 is 𝐶∞ (𝑀)-bilinear. It remains to show 𝐶∞ (𝑀)-linearity in 𝑍 . Observe that

∇2
𝑋,𝑌 ( 𝑓 𝑍) = ∇𝑋 (∇𝑌 ( 𝑓 𝑍)) − ∇∇𝑋𝑌 ( 𝑓 𝑍)

= ∇𝑋 (𝑌 ( 𝑓 ) + 𝑓∇𝑌 𝑍) − (∇𝑋𝑌 ) ( 𝑓 ) · 𝑍 − 𝑓∇∇𝑋𝑌 𝑍

= 𝑋 (𝑌 ( 𝑓 )) + 𝑌 ( 𝑓 ) ∇𝑋𝑍 + 𝑋 ( 𝑓 ) ∇𝑌 𝑍 + ∇𝑋 (∇𝑌 𝑍) − (∇𝑋𝑌 ) ( 𝑓 ) · 𝑍 − 𝑓∇∇𝑋𝑌 𝑍

= ∇2
𝑋,𝑌 𝑓 · 𝑍 + 𝑌 ( 𝑓 )∇𝑋𝑍 + 𝑋 ( 𝑓 )∇𝑌 𝑍 + 𝑓∇2

𝑋,𝑌 𝑍.

Antisymmetrizing in 𝑋,𝑌 and Lemma 6.1.2(ii) yields 𝑅𝑋,𝑌 ( 𝑓 𝑍) = 𝑓 𝑅𝑋,𝑌 𝑍 . □

Lemma 6.1.6

Let (𝑈, 𝜑) be a chart of 𝑀 and write

𝑅 |𝑈 = 𝑅𝑖𝑗𝑘ℓ𝜕𝑖 ⊗ 𝑑𝑥
𝑗 ⊗ 𝑑𝑥𝑘 ⊗ 𝑑𝑥ℓ

Then 𝑅𝑖
𝑗𝑘ℓ

= 𝜕 𝑗Γ
𝑖
𝑘ℓ

− 𝜕𝑘Γ𝑖𝑗ℓ + Γ𝑚
𝑘ℓ
Γ𝑖
𝑗𝑚

− Γ𝑚
𝑗ℓ
Γ𝑖
𝑘𝑚

.

Proof. We compute

𝑅𝑖𝑗𝑘ℓ = 𝑑𝑥
𝑖
(
𝑅𝜕𝑗 ,𝜕𝑘𝜕ℓ

)
= 𝑑𝑥𝑖

(
∇𝜕𝑗

(
∇𝜕𝑘𝜕ℓ

)
− ∇𝜕𝑘

(
∇𝜕𝑗 𝜕ℓ

))
, since

[
𝜕 𝑗 , 𝜕𝑘

]
= 0

= 𝑑𝑥𝑖
(
∇𝜕𝑗

(
Γ𝑚𝑘ℓ𝜕𝑚

)
− ∇𝜕𝑘

(
Γ𝑚𝑗ℓ𝜕𝑚

))
= 𝑑𝑥𝑖

( (
𝜕 𝑗Γ

𝑚
𝑘ℓ

)
𝜕𝑚 + Γ𝑚𝑘ℓ∇𝜕𝑗 𝜕𝑚 −

(
𝜕𝑘Γ

𝑚
𝑗ℓ

)
𝜕𝑚 − Γ𝑚𝑗ℓ∇𝜕𝑘𝜕𝑚

)
= 𝑑𝑥𝑖

(
𝜕 𝑗Γ

𝑚
𝑘ℓ · 𝜕𝑚 + Γ𝑚𝑘ℓΓ

𝑝

𝑗𝑚
𝜕𝑝 − 𝜕𝑘Γ𝑚𝑗ℓ − Γ𝑚𝑗ℓΓ

𝑝

𝑘𝑚
𝜕𝑝

)
= 𝜕 𝑗Γ

𝑖
𝑘ℓ + Γ𝑚𝑘ℓΓ

𝑖
𝑗𝑚 − 𝜕𝑘Γ𝑖𝑗ℓ − Γ𝑚𝑗ℓΓ

𝑖
𝑘𝑚. □
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Theorem 6.1.7

For all 𝑋,𝑌, 𝑍,𝑊 ∈ 𝔛(𝑀), the Riemannian curvature tensor satisfies

(i) 𝑅𝑋,𝑌 𝑍 = −𝑅𝑌,𝑋𝑍 ,

(ii) 𝑅𝑋,𝑌 𝑍 + 𝑅𝑌,𝑍𝑋 + 𝑅𝑍,𝑋𝑌 = 0 (First Bianchi identity),

(iii) ⟨𝑅𝑋,𝑌 𝑍,𝑊⟩ = −⟨𝑅𝑋,𝑌𝑊, 𝑍⟩,

(iv) ⟨𝑅𝑋,𝑌 𝑍,𝑊⟩ = ⟨𝑅𝑍,𝑊𝑋,𝑌⟩ (pair symmetry).

Proof.

(i) Immediate from the definition.

(ii) Observe that

𝑅𝑋,𝑌 𝑍 + 𝑅𝑌,𝑍𝑋 + 𝑅𝑍,𝑋𝑌 = ∇𝑋∇𝑌 𝑍 − ∇𝑌∇𝑋𝑍 − ∇[𝑋,𝑌 ]𝑍

+ ∇𝑌∇𝑍𝑋 − ∇𝑍∇𝑌 𝑋 − ∇[𝑌,𝑍 ]𝑋

+ ∇𝑍∇𝑋𝑌 − ∇𝑋∇𝑍𝑌 − ∇[𝑍,𝑋]𝑌

= ∇𝑋 [𝑌, 𝑍] + ∇𝑌 [𝑍, 𝑋] + ∇𝑍 [𝑋,𝑌 ] − ∇[𝑋,𝑌 ]𝑍 − ∇[𝑌,𝑍 ]𝑋 − ∇[𝑍,𝑋]𝑌

= [𝑋, [𝑌, 𝑍]] + [𝑌, [𝑍, 𝑋]] + [𝑍, [𝑋,𝑌 ]] ,

where the last two equalities follow from ∇ being torsion-free. Then the result follows from Lemma 2.1.9.

(iii) By polarization, we have that (iii) holds if and only if ⟨𝑅𝑋,𝑌 𝑍, 𝑍⟩ = 0 for all 𝑋,𝑌, 𝑍 ∈ 𝔛(𝑀). Since ∇ is
metric, we have

⟨𝑅𝑋,𝑌 𝑍, 𝑍⟩ = ⟨∇𝑋∇𝑌 𝑍 − ∇𝑌∇𝑋𝑍 − ∇[𝑋,𝑌 ]𝑍, 𝑍⟩

= 𝑋 (⟨∇𝑌 𝑍, 𝑍⟩) − ⟨∇𝑌 𝑍,∇𝑋𝑍⟩ − 𝑌 (⟨∇𝑋𝑍, 𝑍⟩) + ⟨∇𝑋𝑍,∇𝑌 𝑍⟩ −
1
2
[𝑋,𝑌 ] (⟨𝑍, 𝑍⟩)

=
1
2
𝑋 (𝑌 (⟨𝑍, 𝑍⟩)) − 1

2
𝑌 (𝑋 (⟨𝑍, 𝑍⟩)) − 1

2
[𝑋,𝑌 ] (⟨𝑍, 𝑍⟩)

= 0.

(iv) By (ii),

⟨𝑅𝑋,𝑌 𝑍,𝑊⟩︸        ︷︷        ︸
(1)

+ ⟨𝑅𝑌,𝑍𝑋,𝑊⟩︸         ︷︷         ︸
(2′ )

+ ⟨𝑅𝑍,𝑋𝑌,𝑊⟩︸        ︷︷        ︸
(5)

= 0

⟨𝑅𝑌,𝑍𝑊, 𝑋⟩︸         ︷︷         ︸
(2)

+ ⟨𝑅𝑍,𝑊𝑌, 𝑋⟩︸         ︷︷         ︸
(3′ )

+ ⟨𝑅𝑊,𝑌 𝑍, 𝑋⟩︸         ︷︷         ︸
(6)

= 0

⟨𝑅𝑍,𝑊𝑋,𝑌⟩︸         ︷︷         ︸
(3)

+ ⟨𝑅𝑊,𝑋𝑍,𝑌⟩︸        ︷︷        ︸
(4′ )

+ ⟨𝑅𝑋,𝑍𝑊,𝑌⟩︸        ︷︷        ︸
(5′ )

= 0

⟨𝑅𝑊,𝑋𝑌, 𝑍⟩︸        ︷︷        ︸
(4)

+ ⟨𝑅𝑋,𝑌𝑊, 𝑍⟩︸        ︷︷        ︸
(1′ )

+ ⟨𝑅𝑌,𝑊𝑋, 𝑍⟩︸         ︷︷         ︸
(6′ )

= 0.

Then (iii) implies (𝑘) + (𝑘 ′) = 0 for 𝑘 = 1, 2, 3, 4. By (i) and (iii), we have (𝑘) = (𝑘 ′) for 𝑘 = 5, 6. Adding
up the four equations above yields

0 = ⟨𝑅𝑍,𝑋𝑌,𝑊⟩ + ⟨𝑅𝑊,𝑌 𝑍, 𝑋⟩
= ⟨𝑅𝑍,𝑋𝑌,𝑊⟩ − ⟨𝑅𝑌,𝑊𝑍, 𝑋⟩, by (i).

This implies (iv). □

Remark 6.1.8. Often, we consider the Riemannian curvature tensor as a (0, 4)-tensor field by setting 𝑅(𝑋,𝑌, 𝑍,𝑊) =
⟨𝑅𝑋,𝑌 𝑍,𝑊⟩. Both tensor fields contain the same information and it will be clear from the context whether 𝑅 is
considered as a (1, 3) or a (0, 4) tensor field.
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Definition 6.1.9: Flat Manifolds

A semi-Riemannian manifold is flat if 𝑅 ≡ 0.

Example 6.1.10. Ra,𝑛−a is flat: In standard coordinates on R𝑛, we have Γ𝑘
𝑖 𝑗
= 0 for all 𝑖, 𝑗 , 𝑘; by Lemma 6.1.5, we

have 𝑅𝑖
𝑗𝑘ℓ

≡ 0 for all 𝑖, 𝑗 , 𝑘, ℓ so that 𝑅 ≡ 0.

Remark 6.1.11. One can show that in geodesic coordinates centered at 𝑝 ∈ 𝑀 , we have

𝑔𝑖 𝑗 ◦ 𝜑−1 (𝑥) = Y𝑖𝛿𝑖 𝑗 +
1
3
𝑅𝑖𝑘 𝑗ℓ (𝑝)𝑥𝑘𝑥ℓ + O

(
|𝑥 |3

)
.

This implies that 𝑅 measures the deviation of the metric from being the standard (flat) semi-Riemannian metric 𝑔a
on R𝑛.

6.2 Sectional Curvature
Let 𝑉 be an 𝑛-dimensional real vector space equipped with a scalar product ⟨−,−⟩, 𝜎 ⊂ 𝑉 be a 2-dimensional
subspace (2-plane) and {𝑢, 𝑣} ⊂ 𝜎 be a basis of 𝜎. Define

𝑄(𝑢, 𝑣) = ⟨𝑢, 𝑢⟩⟨𝑣, 𝑣⟩ − ⟨𝑢, 𝑣⟩2.

If ⟨−,−⟩ is positive definite, then 𝑄(𝑢, 𝑣) measures the area of the parallelogram spanned by 𝑢 and 𝑣.

Recall. 𝜎 ⊂ 𝑉 is non-degenerate if and only if ⟨−,−⟩|𝜎 is a scalar product, i.e. still non-degenerate.

Lemma 6.2.1

A subspace 𝜎 ⊂ 𝑉 is non-degenerate if and only if 𝑄(𝑢, 𝑣) ≠ 0 for any basis {𝑢, 𝑣} of 𝜎.

Proof. With respect to a basis {𝑢, 𝑣}, ⟨−,−⟩|𝜎 has the matrix representation

𝐴 :=
(
⟨𝑢, 𝑢⟩ ⟨𝑢, 𝑣⟩
⟨𝑢, 𝑣⟩ ⟨𝑣, 𝑣⟩

)
.

By linear algebra, we have 𝜎 is non-degenerate if and only if 𝑄(𝑢, 𝑣) = det 𝐴 ≠ 0. □

Definition 6.2.2: Sectional Curvature

For 𝑝 ∈ 𝑀 , the sectional curvature of a non-degenerate 2-plane 𝜎 ⊂ 𝑇𝑝𝑀 is

𝐾 (𝜎) := 𝐾 (𝑢, 𝑣) :=
𝑅(𝑢, 𝑣, 𝑣, 𝑢)
𝑄(𝑢, 𝑣) ,

where {𝑢, 𝑣} is a basis of 𝜎.

Lemma 6.2.3

𝐾 (𝜎) is well-defined, i.e. independent of the chosen basis {𝑢, 𝑣} of 𝜎.

Proof Sketch. Let {�̃�, �̃�} be another basis of 𝜎 and write �̃� = 𝑎𝑢 + 𝑏𝑣, �̃� = 𝑐𝑢 + 𝑑𝑣. Then by the symmetries of 𝑅,
we have 𝑅 (�̃�, �̃�, �̃�, �̃�) = (𝑎𝑑 − 𝑐𝑏)2 𝑅 (𝑢, 𝑣, 𝑣, 𝑢). Similarly, 𝑄 (�̃�, �̃�) = (𝑎𝑑 − 𝑐𝑏)2𝑄 (𝑢, 𝑣). □
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Definition 6.2.4: Gauß Curvature

For a two-dimensional semi-Riemannian manifold 𝑀 , we call 𝐾 ∈ 𝐶∞ (𝑀), given by 𝐾 (𝑝) := 𝐾 (𝑇𝑝𝑀) the
Gauß curvature.

Remark 6.2.5 (Interpretation). If 𝑀 is a Riemannian manifold and 𝑢, 𝑣 an orthonormal basis of a 2-plane𝜎 ⊂ 𝑇𝑝𝑀
for some 𝑝 ∈ 𝑀 , then one can show that

𝑑
(
exp𝑝 (𝑡𝑢), exp𝑝 (𝑡𝑣)

)2
= 𝑡2 ∥𝑢 − 𝑣∥2 − 1

3
𝐾 (𝜎)𝑡4 + O

(
𝑡5

)
.

Proposition 6.2.6

The Riemannian curvature tensor and the sectional curvatures are equivalent. More precisely, the following
holds for all 𝑝 ∈ 𝑀:

(i) 𝑅(𝑝) determines 𝐾 (𝜎) for all 2-planes 𝜎 ⊂ 𝑇𝑝𝑀 .

(ii) 𝐾 (𝜎) of all 2-planes determines 𝑅(𝑝).

Proof.

(i) Follows from the definition.

(ii)

Step 1. The sectional curvatures determine 𝑅(𝑢, 𝑣, 𝑣, 𝑢) for all 𝑢, 𝑣 ∈ 𝑇𝑝𝑀 .

𝑅(𝑢, 𝑣, 𝑣, 𝑢) = 𝐾 (𝑢, 𝑣) · 𝑄(𝑢, 𝑣) for all linear independent 𝑢, 𝑣, which span a non-degenerate 2-plane. The
set of such pairs (𝑢, 𝑣) is dense in 𝑇𝑝𝑀 × 𝑇𝑝𝑀 , so 𝑅(𝑢, 𝑣, 𝑣, 𝑢) is determined by continuity.

Step 2. The expressions 𝑅(𝑢, 𝑣, 𝑣, 𝑢) determine 𝑅(𝑢, 𝑣, 𝑣, 𝑤) for all 𝑢, 𝑣, 𝑤 ∈ 𝑇𝑝𝑀 .

By Theorem 6.1.7, 𝐵𝑣 (𝑢, 𝑤) 7! 𝑅(𝑢, 𝑣, 𝑣, 𝑤) is a symmetric bilinear form, through polarization determined
by the associated quadratic form which we know from Step 1.

Step 3. The expressions 𝑅(𝑢, 𝑣, 𝑣, 𝑤) determine 𝑅(𝑢, 𝑣, 𝑧, 𝑤) + 𝑅(𝑢, 𝑧, 𝑣, 𝑤) for all 𝑢, 𝑣, 𝑧, 𝑤 ∈ 𝑇𝑝𝑀 .

By Theorem 6.1.7, 𝐵𝑢,𝑤 (𝑧, 𝑣) 7! 𝑅(𝑢, 𝑣, 𝑧, 𝑤) + 𝑅(𝑢, 𝑧, 𝑣, 𝑤) is a symmetric bilinear form determined by the
associated quadratic form which we know from Step 2.

Step 4. The expressions 𝑅(𝑢, 𝑣, 𝑧, 𝑤) + 𝑅(𝑢, 𝑧, 𝑣, 𝑤) determine 𝑅(𝑢, 𝑣, 𝑧, 𝑤) for all 𝑢, 𝑣, 𝑧, 𝑤 ∈ 𝑇𝑝𝑀 .

Observe that

𝑅(𝑢, 𝑣, 𝑧, 𝑤) + 𝑅(𝑢, 𝑧, 𝑣, 𝑤) − 𝑅(𝑣, 𝑢, 𝑧, 𝑤) − 𝑅(𝑣, 𝑧, 𝑢, 𝑤)
=𝑅(𝑢, 𝑣, 𝑧, 𝑤) + 𝑅(𝑢, 𝑣, 𝑧, 𝑤) − 𝑅(𝑧, 𝑢, 𝑣, 𝑤) − 𝑅(𝑣, 𝑧, 𝑢, 𝑤)︸                                 ︷︷                                 ︸

=𝑅 (𝑢,𝑣,𝑧,𝑤) by Theorem 6.1.7(ii)

=3𝑅(𝑢, 𝑣, 𝑧, 𝑤). □

Corollary 6.2.7. Let 𝑝 ∈ 𝑀 and ^ ∈ R. Then the following are equivalent.

(i) 𝐾 (𝜎) = ^ for all non-degenerate 2-planes 𝜎 ⊂ 𝑇𝑝𝑀 .

(ii) 𝑅(𝑢, 𝑣, 𝑤, 𝑧) = ^ (⟨𝑢, 𝑧⟩⟨𝑣, 𝑤⟩ − ⟨𝑢, 𝑤⟩⟨𝑣, 𝑧⟩).

Proof. Exercise. □
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Definition 6.2.8: Constant Curvature

A semi-Riemannian manifold is of constant curvature if there exists ^ ∈ R (independent of 𝑝 ∈ 𝑀) such
that Corollary 6.2.7(i) and (ii) hold for all 𝑝 ∈ 𝑀 .

6.3 Curvature of Submanifolds
Let (𝑀, 𝑔) be a semi-Riemannian manifold with curvature tensor 𝑅 and (𝑀, 𝑔) a semi-Riemannian submanifold
of (𝑀, 𝑔) with curvature tensor 𝑅.

Proposition 6.3.1

For all 𝑋,𝑌, 𝑍,𝑊 ∈ 𝔛(𝑀), we have

𝑅 (𝑋,𝑌, 𝑍,𝑊) = 𝑅(𝑋,𝑌, 𝑍,𝑊) + 𝑔 (Π (𝑋, 𝑍) ,Π (𝑌,𝑊)) − 𝑔 (Π (𝑌, 𝑍) ,Π (𝑋,𝑊)) .

Proof. By Lemma 4.2.5 and Defn. 4.2.6, we have

𝑔

(
∇𝑋∇𝑌 𝑍,𝑊

)
= 𝑔

(
∇𝑋 (∇𝑌 𝑍 + Π (𝑌, 𝑍)) ,𝑊

)
= 𝑔

©«∇𝑋∇𝑌 𝑍 + Π (𝑋,∇𝑌 𝑍)︸        ︷︷        ︸
⊥𝑀

,𝑊
ª®®¬ + 𝑔

(
∇𝑋 (Π (𝑌, 𝑍)) ,𝑊

)
= 𝑔 (∇𝑋∇𝑌 𝑍,𝑊) − 𝑔

(
𝑆Π (𝑌,𝑍 ) (𝑋) ,𝑊

)
, by Lemma 4.2.11(iii)

= 𝑔 (∇𝑋∇𝑌 𝑍,𝑊) − 𝑔 (Π (𝑌, 𝑍) ,Π (𝑋,𝑊)) , by Defn. 4.2.8.

Analogously, we have

−𝑔
(
∇𝑋∇𝑌 𝑍,𝑊

)
= −𝑔 (∇𝑌∇𝑋𝑍,𝑊) + 𝑔 (Π (𝑌,𝑊) ,Π (𝑋, 𝑍)) .

Finally, by Lemma 4.2.5 and Defn. 4.2.6 we get

−𝑔
(
∇[𝑋,𝑌 ]𝑍,𝑊

)
= −𝑔

©«∇[𝑋,𝑌 ]𝑍 + Π ( [𝑋,𝑌 ], 𝑍)︸           ︷︷           ︸
⊥𝑀

,𝑊
ª®®¬ = −𝑔

(
∇[𝑋,𝑌 ]𝑍,𝑊

)
and adding up yields the result. □

Corollary 6.3.2. The sectional curvatures 𝐾 (𝑣, 𝑤) and 𝐾 (𝑣, 𝑤) of a basis {𝑣, 𝑤} of a non-degenerate 2-plane
𝜎 ⊂ 𝑇𝑝𝑀 ⊂ 𝑇𝑝𝑀 are related by

𝐾 (𝑣, 𝑤) = 𝐾 (𝑣, 𝑤) − 𝑔 (Π (𝑣, 𝑣) ,Π (𝑤, 𝑤)) − 𝑔 (Π (𝑣, 𝑤) ,Π (𝑣, 𝑤))
𝑔(𝑣, 𝑣)𝑔(𝑤, 𝑤) − 𝑔(𝑣, 𝑤)2 .

Proof. Immediate from Prop. 6.3.1. □

Example 6.3.3. (i) Let (𝑀, 𝑔) = (R3, 𝑔eucl) and (𝑀, 𝑔) be a 2-dimensional (Riemannian) hypersurface. Let
𝑝 ∈ 𝑀 ⊂ R3, b a unit normal field around 𝑝, and {𝑒1, 𝑒2} be an orthonormal basis of 𝑇𝑝𝑀 . Then by
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Corollary 6.3.2,

0 = 𝐾 (𝑒1, 𝑒2) = 𝐾 (𝑒1, 𝑒2) − 𝑔 (Π (𝑒1, 𝑒2) ,Π (𝑒2, 𝑒2)) + 𝑔 (Π (𝑒1, 𝑒2) ,Π (𝑒1, 𝑒2))

= 𝐾 (𝑒1, 𝑒2) − 𝑔
(
𝑔

(
𝑆 b (𝑒1) , 𝑒1

)
· b, 𝑔

(
𝑆 b (𝑒2) , 𝑒2

))
+ 𝑔

(
𝑔

(
𝑆 b (𝑒1) , 𝑒2

)
· b, 𝑔

(
𝑆 b (𝑒1) , 𝑒2

))
, by Defn. 4.2.8 and b unit normal

= 𝐾 (𝑒1, 𝑒2) − 𝑔
(
𝑆 b (𝑒1) , 𝑒1

)
· 𝑔

(
𝑆 b (𝑒2) , 𝑒2

)
+ 𝑔

(
𝑆 b (𝑒1) , 𝑒2

)2

= 𝐾 (𝑝) − det
(
𝑆 b

)
, by definition of Gauß curvature.

This implies
𝐾 (𝑝) = det

(
𝑆 b

)
= _1 · _2,

if _1, _2 are the principal curvatures of 𝑀 at 𝑝.

Next, suppose 𝑀 =
{
(𝑥, 𝑓 (𝑥)) : 𝑥 ∈ R2} ⊂ R3 with 𝑓 (𝑥) = 1

2

(
_1

(
𝑥1)2 + _2

(
𝑥2)2

)
. Then by Exam-

ple 4.2.16, 𝐾 (0) = _1 · _2.

(ii) Let (𝑀, 𝑔) = (R𝑛, 𝑔a) and (𝑀, 𝑔) =
(
𝑓 −1
a (𝑐) , 𝑔a | 𝑓 −1

a (𝑐)

)
, with 𝑓a (𝑥) = 𝑔a (𝑥, 𝑥) for 𝑐 ≠ 0. That is,

(𝑀, 𝑔) =
{
S𝑛−1
a

(√
𝑐
)

if 𝑐 > 0
H𝑛−1
a−1

(√
−𝑐

)
if 𝑐 < 0.

(See Example 3.3.4.) By Problem 24, we have Π(𝑋,𝑌 ) = 1√
|𝑐 |
𝑔a (𝑋,𝑌 ) · b, where b = grad 𝑓a

|grad 𝑓a | =
grad 𝑓a
2
√

|𝑐 |
. For

any non-degenerate 2-plane 𝜎 ⊂ 𝑇𝑀 , Corollary 6.3.2 implies

0 = 𝐾 (𝜎) = 𝐾 (𝜎) −
(

1√︁
|𝑐 |

)2

𝑔 (b, b) = 𝐾 (𝜎) − 1
|𝑐 | sgn(𝑐).

Thus, (𝑀, 𝑔) has constant curvature 1
|𝑐 | sgn (𝑐) = 1

𝑐
. In particular, S𝑛−1

a (𝑟) has constant curvature 1
𝑟2 and

H𝑛−1
a (𝑟) has constant curvature − 1

𝑟2 .

6.4 Ricci and scalar curvature
Definition 6.4.1: Ric and Ricci tensors

For 𝑝 ∈ 𝑀 and 𝑣, 𝑤 ∈ 𝑇𝑝𝑀 , we define

Ric(𝑣, 𝑤) := tr
(
𝑢 7! 𝑅𝑢,𝑣𝑤︸        ︷︷        ︸

∈ (𝑇𝑝𝑀 )1
1

)
= tr𝑔

(
(𝑢, 𝑧) 7! 𝑅 (𝑢, 𝑣, 𝑤, 𝑧)︸                      ︷︷                      ︸

∈ (𝑇𝑝𝑀 )2
0

)
.

The function Ric ∈ 𝒯0
2 (𝑀) is called the Ricci tensor.

(See Problem 17.) If {𝑒𝑖} is an orthonormal basis of 𝑇𝑝𝑀 , we have

𝑅(𝑣, 𝑤) =
𝑛∑︁
𝑖=1

Y𝑖 ⟨𝑅𝑒𝑖 ,𝑣𝑤, 𝑒𝑖⟩ =
𝑛∑︁
𝑖=1

Y𝑖𝑅 (𝑒𝑖 , 𝑣, 𝑤, 𝑒𝑖) .
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Lemma 6.4.2

Let 𝑝 ∈ 𝑀 . Then we have

(i) Ric(𝑣, 𝑤) = Ric(𝑤, 𝑣) for all 𝑣, 𝑤 ∈ 𝑇𝑝𝑀 .

(ii) If 𝑣 ∈ 𝑇𝑝𝑀 is such that ⟨𝑣, 𝑣⟩ ≠ 0 and {𝑒2, . . . , 𝑒𝑛} is an orthonormal basis of 𝑣⊥, then 𝑅(𝑣, 𝑣) =

⟨𝑣, 𝑣⟩∑𝑛
𝑗=2 𝐾 (𝑣, 𝑒𝑖).

Proof. Let {𝑒1, . . . , 𝑒𝑛} be a pseudo-orthonormal basis of 𝑇𝑝𝑀 .

(i) Observe that

Ric(𝑣, 𝑤) =
𝑛∑︁
𝑖=1

Y𝑖 ⟨𝑅𝑒𝑖 ,𝑣𝑤, 𝑒𝑖⟩

=

𝑛∑︁
𝑖=1

Y𝑖 ⟨𝑅𝑒𝑖 ,𝑤𝑣, 𝑒𝑖⟩, by Theorem 6.1.7

= Ric(𝑤, 𝑣).

(ii) Without loss of generality, we may assume that 𝑔(𝑣, 𝑣) = ±1 and {𝑒1, . . . , 𝑒𝑛} is chosen such that 𝑒1 = 𝑣.
Then

Ric(𝑣, 𝑣) =
𝑛∑︁
𝑖=1

Y𝑖 ⟨𝑅𝑒𝑖 ,𝑣𝑣, 𝑒𝑖⟩

=

𝑛∑︁
𝑖=2

Y𝑖 ⟨𝑅𝑒𝑖 ,𝑣𝑣, 𝑒𝑖⟩, by Theorem 6.1.7

=

𝑛∑︁
𝑖=2

Y𝑖𝐾 (𝑣, 𝑒𝑖)
⟨𝑣, 𝑣⟩ ⟨𝑒𝑖 , 𝑒𝑖⟩︸  ︷︷  ︸

=Y𝑖

− ⟨𝑣, 𝑒𝑖⟩︸︷︷︸
=0


= ⟨𝑣, 𝑣⟩

𝑛∑︁
𝑖=2

𝐾 (𝑣, 𝑒𝑖) · (Y𝑖)2︸︷︷︸
=1

. □

Remark 6.4.3 (Interpretation of the Ricci curvature). (i) Lemma 6.4.2(ii) asserts that Ric(𝑣, 𝑣) is the “mean”
of all sectional curvatures of 2-planes containing 𝑣.

(ii) If 𝑀 is a Riemannian manifold, 𝑝 ∈ 𝑀 , 𝑣 ∈ 𝑇𝑝𝑀 , then Ric(𝑣, 𝑣) measures volume distortion of a cone at 𝑝
pointing in the direction of 𝑣.

Definition 6.4.4: Scalar curvature

The scalar curvature is the function scal = tr𝑔 Ric ∈ 𝐶∞ (𝑀).

With respect to a pseudo-orthonormal basis {𝑒1, . . . , 𝑒𝑛} of 𝑇𝑝𝑀 , we have

scal(𝑝) =
𝑛∑︁
𝑖=1

Y𝑖 Ric (𝑒𝑖 , 𝑒𝑖) =
𝑛∑︁

𝑖, 𝑗=1
Y𝑖Y 𝑗𝑅

(
𝑒 𝑗 , 𝑒𝑖 , 𝑒𝑖 , 𝑒 𝑗

)
.

Remark 6.4.5 (Interpretation). (i) Since

scal(𝑝) =
𝑛∑︁

𝑖, 𝑗=1
Y𝑖Y 𝑗𝑅

(
𝑒 𝑗 , 𝑒𝑖 , 𝑒𝑖 , 𝑒 𝑗

)
=

∑︁
𝑖≠ 𝑗

𝐾
(
𝑒𝑖 , 𝑒 𝑗

)
,

we have that scal(𝑝) is the “mean” over all 𝑖 ≠ 𝑗 sectional curvatures of non-degenerate 2-planes in 𝑇𝑝𝑀 .
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(ii) If 𝑀 is a Riemannian manifold, scal measures the volume growth of small geodesic balls. That is, for
𝐵𝑟 (0) ⊂ 𝑇𝑝𝑀 and 𝑟 small, exp𝑝 (𝐵𝑟 (0)) = {𝑞 ∈ 𝑀 : 𝑑 (𝑝, 𝑞) < 𝑟} =: 𝐵𝑟 (𝑝) and

vol
(
𝐵𝑝 (𝑝)

)
=

(
1 − scal

6 (𝑛 − 2) 𝑟
2 + O

(
𝑟4

))
· vol (𝐵𝑟 (0)) .

Remark 6.4.6. In general, Ric and scal contain less information than 𝑅 and 𝐾 .

(i) In 1-dimensional spaces, 𝑅 = 𝐾 = Ric = scal = 0 (since all vectors are linearly dependent and so 𝑅𝑢,𝑣𝑤 = 0
by Theorem 6.1.7).

(ii) In 2-dimensional spaces, we have by Corollary 6.2.7 that 𝑅(𝑋,𝑌, 𝑍,𝑊) = 𝐾 [⟨𝑌, 𝑍⟩⟨𝑋,𝑊⟩ − ⟨𝑋, 𝑍⟩⟨𝑌,𝑊⟩],
where 𝐾 is the Gauß curvature. This implies Ric(𝑋,𝑌 ) = 𝐾 · ⟨𝑋,𝑌⟩ and scal = 2𝐾 . Thus, all quantities
contain the same information.

(iii) In 3-dimensional spaces, one can compute 𝑅 (and hence 𝐾) out of Ric.

Summarizing,

dim𝑀 2 3 ≥ 4
𝑅 𝑅 𝑅

⇕ ⇕ ⇕
𝐾 𝐾 𝐾

⇕ ⇕ ⇓
Ric Ric Ric
⇕ ⇓ ⇓

scal scal scal

Definition 6.4.7: Einstein’s equations (with cosmological constant Λ)

The equations are

Ric−1
2

scal ·𝑔 + Λ · 𝑔︸                     ︷︷                     ︸
geometry

=
8𝜋𝐺
𝑐4 𝑇︸ ︷︷ ︸
matter

, (6.4.1)

where 𝑇 is the energy momentum tensor, 𝐺 is the gravitational constant, and 𝑐 is the speed of light.

Lorentzian manifolds solving (6.4.1) for a suitable matter model 𝑇 are models of our universe.

Example 6.4.8. (i) If 𝑀𝑛 is a Lorentzian manifold of constant curvature ^, then by Lemma 6.4.2(ii), Ric =

(𝑛 − 1)^𝑔 so that scal = 𝑛(𝑛 − 1)^. Thus, (6.4.1) holds with 𝑇 = 0 and Λ = 1
2 (𝑛 − 2) (𝑛 − 1)^.

In Minkowski space, de-Sitter space S4
1 (1) and anti de-Sitter space H1

1 (1) are solutions (see Example 6.1.10
and Example 6.3.3).

(ii) The Schwartzchild metric in Example 3.4.6(i) is a solution of (6.4.1) with Λ = 0 and 𝑇 = 0.

Remark 6.4.9. Einstein’s equation form in local coordinates a highly complicated system of partial differential
equations in 𝑛(𝑛+1)

2 variables. Even in the (most relevant) case 𝑛 = 4, we have 10 variables involved. The equations
are far from being well understood and their analysis forms a very active area of current research.



Chapter 7

Differential Forms and Stokes’ Theorem

7.1 Alternating Tensors
Throughout this section, let 𝑉 be an 𝑛-dimensional real vector space.

Definition 7.1.1: Alternating Tensors

A tensor 𝑡 ∈ 𝑉0
𝑘

is alternating if

𝑡
(
𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣 𝑗 , . . . , 𝑣𝑘

)
= −𝑡

(
𝑣1, . . . , 𝑣 𝑗 , . . . , 𝑣𝑖 , . . . , 𝑣𝑘

)
(𝑣1, . . . , 𝑣𝑘 ∈ 𝑉, 1 ≤ 𝑖 < 𝑗 ≤ 𝑘).

The set Λ𝑘𝑉 :=
{
𝑡 ∈ 𝑉0

𝑘
: 𝑡 is alternating

}
is a subspace of 𝑉0

𝑘
.

Lemma 7.1.2

Let 𝑡 ∈ 𝑉0
𝑘
. Then the following are equivalent.

(i) 𝑡 is alternating;

(ii) 𝑡
(
𝑣𝜎 (1) , . . . , 𝑣𝜎 (𝑘 )

)
= sgn(𝜎) · 𝑡 (𝑣1, . . . , 𝑣𝑘) for every permutation 𝜎 ∈ 𝔖𝑘 ;

(iii) 𝑡 (−, . . . ,−, 𝑣,−, . . . ,−, 𝑣,−, . . . ,−) = 0 for all 𝑣 ∈ 𝑉 and all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , where the 𝑣’s appear in
the 𝑖th and 𝑗 th positions.

(ii) ⇒ (i): (i) asserts that (ii) holds for each transposition.

(i) ⇒ (ii): Write 𝜎 ∈ 𝔖𝑘 as a product of transpositions 𝜎 = 𝜎1 ◦ · · · ◦ 𝜎ℓ . Then sgn(𝜎) = (−1)ℓ and (ii) follows
by applying (i) ℓ times.

(i) ⇒ (iii): By setting 𝑣 = 𝑣𝑖 = 𝑣 𝑗 in Defn. 7.1.1, we see that

𝑡 (−, . . . ,−, 𝑣,−, . . . ,−, 𝑣,−, . . . ,−) = −𝑡 (−, . . . ,−, 𝑣,−, . . . ,−, 𝑣,−, . . . ,−)

so that 𝑡 (−, . . . ,−, 𝑣,−, . . . ,−, 𝑣,−, . . . ,−) = 0.

(iii) ⇒ (i): Polarization: by (iii),

0 = 𝑡
(
−, . . . , 𝑣𝑖 + 𝑣 𝑗 , . . . , 𝑣𝑖 + 𝑣 𝑗 , . . . ,−

)
= 𝑡 (−, . . . , 𝑣𝑖 , . . . , 𝑣𝑖 , . . .−)︸                            ︷︷                            ︸

=0

+ 𝑡
(
−, . . . , 𝑣𝑖 , . . . , 𝑣 𝑗 , . . . ,−

)
+ 𝑡

(
−, . . . , 𝑣 𝑗 , . . . , 𝑣𝑖 , . . . ,−

)
+ 𝑡

(
−, . . . , 𝑣 𝑗 , . . . , 𝑣 𝑗 , . . .−

)︸                            ︷︷                            ︸
=0

.

Remark 7.1.3. We set Λ0𝑉 = 𝑉0
0 = R and Λ1𝑉 = 𝑉0

1 = 𝑉∗.

77
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Definition 7.1.4: Wedge Product

The wedge product of 𝑣∗1, . . . , 𝑣
∗
𝑘
∈ 𝑉∗ = Λ1𝑉 is a map

𝑣∗1 ∧ · · · ∧ 𝑣∗𝑘 (𝑢1, . . . , 𝑢𝑘) = det
( (
𝑣∗𝑖

(
𝑢 𝑗

) )
1≤𝑖, 𝑗≤𝑘

)
=

∑︁
𝜎∈𝔖𝑘

sgn (𝜎) 𝑣∗
𝜎 (1) (𝑢1) · · · 𝑣∗𝜎 (𝑘 ) (𝑢𝑘)

=
∑︁
𝜎∈𝔖𝑘

sgn (𝜎) 𝑣∗
𝜎 (1) ⊗ · · · ⊗ 𝑣∗

𝜎 (𝑘 ) (𝑢1, . . . , 𝑢𝑘) .

Remark 7.1.5. By the properties of the determinant, 𝑣∗1∧· · ·∧𝑣
∗
𝑘
∈ Λ𝑘𝑉 and 𝑣∗

𝜎 (1)∧· · ·∧𝑣
∗
𝜎 (𝑘 ) = sgn(𝜎)𝑣∗1∧· · ·∧𝑣

∗
𝑘

for each 𝜎 ∈ 𝔖𝑘 .

Proposition 7.1.6

Let {𝑒1, . . . , 𝑒𝑛} be a basis of 𝑉 and
{
𝑒1, . . . , 𝑒𝑛

}
its dual basis. Then

{
𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑘

}
1≤𝑖1<· · ·<𝑖𝑘≤𝑛 is a basis

of Λ𝑘𝑉 . In particular, dimΛ𝑘𝑉 =
(𝑛
𝑘

)
and Λ𝑘𝑉 = {0} for 𝑘 > 𝑛. For 𝜔 ∈ Λ𝑘𝑉 , written as

𝜔 =
∑︁

1≤𝑖1<· · ·𝑖𝑘≤𝑛
𝜔𝑖1 ,...,𝑖𝑘 𝑒

𝑖1 ∧ · · · ∧ 𝑒𝑖𝑘 (7.1.1)

the coefficients are given by
𝜔𝑖1 ,...,𝑖𝑘 = 𝜔

(
𝑒𝑖1 , . . . , 𝑒𝑖𝑘

)
.

Proof. Exercise. □

Proposition 7.1.7

Let 𝑒1, . . . , 𝑒𝑘 ∈ 𝑉∗ and 𝑓 1, . . . , 𝑓 𝑘 ∈ 𝑉∗ such that 𝑓 𝑖 = 𝑎𝑖
𝑗
𝑒 𝑗 for some matrix 𝐴 =

{
𝑎𝑖
𝑗

}
. Then

𝑓 1 ∧ · · · ∧ 𝑓 𝑘 = det(𝐴)𝑒1 ∧ · · · ∧ 𝑒𝑘 .

Proof. For 𝑣1, . . . , 𝑣𝑘 ∈ 𝑉 arbitrary, we have (by the multiplicity of the determinant)

𝑓 1 ∧ · · · ∧ 𝑓 𝑘 (𝑣1, . . . , 𝑣𝑘) = det
( (
𝑓 𝑖

(
𝑣 𝑗

) )
1≤𝑖, 𝑗≤𝑘

)
= det

((
𝑎𝑖ℓ𝑒

ℓ
(
𝑣 𝑗

) )
1≤𝑖, 𝑗≤𝑘

)
= det

( (
𝑎𝑖ℓ

)
1≤𝑖,ℓ≤𝑛

)
· det

((
𝑒ℓ

(
𝑣 𝑗

) )
1≤ℓ, 𝑗≤𝑛

)
= det(𝐴)𝑒1 ∧ · · · ∧ 𝑒𝑘 (𝑣1, . . . , 𝑣𝑘) . □

Theorem 7.1.8

There is exactly one bilinear map
∧ : Λ𝑘𝑉 × Λℓ𝑉 ! Λ𝑘+ℓ𝑉

such that (
𝑣1 ∧ · · · ∧ 𝑣𝑘

)
∧

(
𝑣𝑘+1 ∧ · · · ∧ 𝑣𝑘+ℓ

)
= 𝑣1 ∧ · · · ∧ 𝑣𝑘+ℓ (𝑣1, . . . , 𝑣𝑘+ℓ ∈ 𝑉∗).
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Proof. Let 𝑒1, . . . , 𝑒𝑛 be a basis of 𝑉∗. For

𝜔 =
∑︁

1≤𝑖1<· · ·<𝑖𝑘≤𝑛
𝜔𝑖1 ,...,𝑖𝑘 𝑒

𝑖1 ∧ · · · ∧ 𝑒𝑖𝑘 and [ =
∑︁

1≤𝑖1<· · ·<𝑖𝑘≤𝑛
[𝑖1 ,...,𝑖𝑘 𝑒

𝑖1 ∧ · · · ∧ 𝑒𝑖𝑘 ,

set
𝜔 ∧ [ =

∑︁
1≤𝑖1<· · ·<𝑖𝑘≤𝑛
1≤ 𝑗1<· · ·< 𝑗ℓ≤𝑛

𝜔𝑖1 ,...,𝑖𝑘 · [ 𝑗1 ,..., 𝑗ℓ 𝑒𝑖1 ∧ · · · 𝑒𝑖𝑘 ∧ 𝑒 𝑗1 ∧ · · · ∧ 𝑒 𝑗ℓ . (7.1.2)

With this definition, ∧ is bilinear and satisifes the desired property. It is unique as it is determined by how it acts
on the bases

{
𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑘

}
1≤𝑖1<· · ·<𝑖𝑘≤𝑛 and

{
𝑒 𝑗1 ∧ · · · ∧ 𝑒 𝑗ℓ

}
1≤ 𝑗1<· · ·< 𝑗ℓ≤𝑛. □

Lemma 7.1.9

For 𝜔 ∈ Λ𝑘𝑉, [ ∈ Λℓ𝑉 and _ ∈ Λ𝑚𝑉 , we have

(i) (𝜔 ∧ [) ∧ _ = 𝜔 ∧ ([ ∧ _)

(ii) 𝜔 ∧ [ = (−1)𝑘 ·ℓ[ ∧ 𝜔.

Proof. Straightforward from (7.1.2). □

7.2 Differential forms and the exterior derivative
Throughout, let 𝑀𝑛 be a 𝐶∞-manifold (but not necessarily semi-Riemannian).

Definition 7.2.1: Differential 𝑘-form

A tensor field 𝜔 ∈ 𝒯0
𝑘
(𝑀) is called a differential 𝑘-form (or 𝑘-form for short) if 𝜔(𝑝) ∈ Λ𝑘𝑇𝑝𝑀 for all

𝑝 ∈ 𝑀 . We denote by Ω𝑘 (𝑀) the 𝐶∞ (𝑀)-module of differential 𝑘-forms on 𝑀 .

Remark 7.2.2. (Compare with Lemma 7.1.2.) Let 𝜔 ∈ 𝒯0
𝑘
(𝑀). Then the following are equivalent.

(i) 𝜔 ∈ Ω𝑘 (𝑀);

(ii) 𝜔
(
−, . . . , 𝑋𝑖 , . . . , 𝑋 𝑗 , . . . ,−

)
= −𝜔

(
−, . . . , 𝑋 𝑗 , . . . , 𝑋𝑖 , . . . ,−

)
for all 𝑋𝑖 , 𝑋 𝑗 ∈ 𝔛(𝑀), 1 ≤ 𝑖 < 𝑗 < 𝑛;

(iii) 𝜔
(
𝑋𝜎 (1) , . . . , 𝑋𝜎 (𝑘 )

)
= sgn(𝜎)𝜔 (𝑋1, . . . , 𝑋𝑘) for all 𝑋1, . . . , 𝑋𝑘 ∈ 𝔛(𝑀) and all 𝜎 ∈ 𝔖𝑘 ;

(iv) 𝜔 (−, . . . , 𝑋,−, . . . ,−, 𝑋, . . . ,−) = 0 for all 𝑋 ∈ 𝔛(𝑀).

Remark 7.2.3. (i) We have an operation ∧ : Ω𝑘 (𝑀) ×Ωℓ (𝑀) ! Ω𝑘+ℓ (𝑀) by setting

(𝜔 ∧ [) (𝑝) = 𝜔(𝑝) ∧ [(𝑝).

(ii) With respect to a chart (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛)), we can express 𝜔 ∈ Ω𝑘 (𝑀) as

𝜔 |𝑈 =
∑︁

1≤𝑖1<· · ·<𝑖𝑘≤𝑛
𝜔𝑖1 ,...,𝑖𝑘𝑑𝑥

𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘 ,

where (see 7.1.1), 𝜔𝑖1 ,...,𝑖𝑘 = 𝜔
(
𝜕𝑥𝑖1 , . . . , 𝜕𝑥𝑖𝑘

)
∈ 𝐶∞ (𝑈).

(iii) Ω0 (𝑀) := 𝐶∞ (𝑀) and Ω1 (𝑀) = 𝒯0
1 (𝑀). (This is why they are called 1-forms.)
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Definition 7.2.4: Pullback

Let 𝑀, 𝑁 be 𝐶∞-manifolds and 𝜑 ∈ 𝐶∞ (𝑀, 𝑁). Then we have a linear map 𝜑∗ : Ω𝑘 (𝑁) ! Ω𝑘 (𝑀) defined
by

(𝜑∗𝜔) (𝑝) (𝑣1, . . . , 𝑣𝑘) := 𝜔 (𝜑 (𝑝))
(
𝑇𝑝𝜑 (𝑣1) , . . . , 𝑇𝑝𝜑 (𝑣𝑘)

) (
𝑝 ∈ 𝑀, 𝑣1, . . . , 𝑣𝑘 ∈ 𝑇𝑝𝑀

)
.

The map 𝜑∗𝜔 is called the pullback of 𝜔 under 𝜑.

Remark 7.2.5. (i) For 𝑓 ∈ 𝐶∞ (𝑁) = Ω0 (𝑁), we have 𝜑∗ 𝑓 = 𝑓 ◦ 𝜑 ∈ 𝐶∞ (𝑀).

(ii) For 𝜔 ∈ Ω𝑘 (𝑀), [ ∈ Ωℓ (𝑀),
𝜑∗ (𝜔 ∧ [) = (𝜑∗𝜔) ∧ (𝜑∗[) .

Notation

Given arbitrary sets 𝐴, 𝐵, elements 𝑎0, . . . , 𝑎𝑚 ∈ 𝐴, and a map 𝜑 :
∏𝑚
𝑗=1 𝐴! 𝐵, we will use the shorthand

𝜑 (𝑎0, . . . , 𝑎𝑖 , . . . , 𝑎𝑚) = 𝜑 (𝑎0, . . . , 𝑎𝑖−1, 𝑎𝑖+1, . . . , 𝑎𝑚) .

In otherwords, the term 𝑎𝑖 denotes “removing the input 𝑎𝑖”.

Definition 7.2.6: Exterior Derivative

The exterior derivative 𝑑 is the map 𝑑 : Ω𝑘 (𝑀) ! Ω𝑘+1 (𝑀) defined by

𝑑𝜔 (𝑋0, . . . , 𝑋𝑘) =
𝑘∑︁
𝑗=0

(−1) 𝑗𝑋 𝑗
(
𝜔

(
𝑋0, . . . , 𝑋 𝑗 , . . . , 𝑋𝑘

))
+

∑︁
0≤𝑖< 𝑗≤𝑘

(−1)𝑖+ 𝑗𝜔
( [
𝑋𝑖 , 𝑋 𝑗

]
, 𝑋0, . . . , 𝑋𝑖 , . . . , 𝑋 𝑗 , . . . , 𝑋𝑘

)
.

Lemma 7.2.7

𝑑 is well-defined.

Proof. Check that 𝑑𝜔 : 𝔛(𝑀) × · · · × 𝔛(𝑀) ! 𝐶∞ (𝑀) is 𝐶∞ (𝑀)-multilinear (so that 𝑑𝜔 ∈ 𝒯0
𝑘+1 (𝑀)) and

antisymmetric in all variables (so that 𝑑𝜔 ∈ Ω𝑘+1 (𝑀))). Then the result follows from an exercise. □

Remark 7.2.8. For 𝑘 = 0, 𝑑 : Ω0 (𝑀) = 𝐶∞ (𝑀) ! Ω1 (𝑀) = 𝒯0
1 (𝑀) coincides with the differential of functions.

For 𝑓 ∈ 𝐶∞ (𝑀), 𝑑𝑓 (𝑋) = 𝑋 ( 𝑓 ).

Lemma 7.2.9

Let 𝑓 ∈ 𝐶∞ (𝑀), 𝑁 another 𝐶∞-manifold and 𝜑 ∈ 𝐶∞ (𝑁, 𝑀). Then

(i) 𝑑 (𝜑∗ 𝑓 ) = 𝜑∗𝑑𝑓 ;

(ii) 𝑑 (𝑑𝑓 ) = 0.

Proof. (i) For 𝑝 ∈ 𝑁 , 𝑔 ∈ 𝐶∞ (𝑁), 𝑑𝑔(𝑝) (𝑣) = 𝑣(𝑔) = 𝑇𝑝𝑔(𝑣) for all 𝑣 ∈ 𝑇𝑝𝑁 . Thus,

𝑑 (𝜑∗ 𝑓 ) (𝑝) (𝑣) = 𝑇𝑝 (𝜑∗ 𝑓 ) (𝑣) = 𝑇𝜑 (𝑝) ( 𝑓 ◦ 𝜑) (𝑣) = 𝑇𝑝 𝑓 (𝑇𝑝𝜑) (𝑣) = 𝑑𝑓 (𝜑 (𝑝))
(
𝑇𝑝𝜑 (𝑣)

)
= (𝜑∗𝑑𝑓 ) (𝑝) (𝑣)
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(ii) If 𝜔 = 𝑑𝑓 then

𝑑𝜔 (𝑋,𝑌 ) = 𝑋 (𝜔 (𝑌 )) − 𝑌 (𝜔 (𝑋)) − 𝜔 ( [𝑋,𝑌 ])
= 𝑋 (𝑑𝑓 (𝑌 )) − 𝑌 (𝑑𝑓 (𝑋)) − 𝑑𝑓 ( [𝑋,𝑌 ])
= 𝑋 (𝑌 ( 𝑓 )) − 𝑌 (𝑋 ( 𝑓 )) − [𝑋,𝑌 ] ( 𝑓 ) = 0. □

Lemma 7.2.10

Let 𝜔 ∈ Ω𝑘 (𝑀) and (𝑈, 𝜑) be a chart of 𝑀 . Then if

𝜔 |𝑈 =
∑︁

1≤𝑖1<· · ·<𝑖𝑘≤𝑛
𝜔𝑖1 ,...,𝑖𝑘𝑑𝑥

𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘 ,

we have
𝑑𝜔|𝑈 =

∑︁
1≤𝑖1<· · ·<𝑖𝑘≤𝑛

𝑑𝜔𝑖1 ,...,𝑖𝑘 ∧ 𝑑𝑥𝑖1 · · · ∧ 𝑑𝑥𝑖𝑘 .

Proof.

𝑑𝜔𝑖1 ,...,𝑖𝑘 ∧ 𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘 =

𝑛∑︁
𝑖0=1

𝑖0∉{𝑖1 ,...,𝑖𝑘 }

𝜕𝑖0𝜔𝑖1 ,...,𝑖𝑘𝑑𝑥
𝑖0 ∧ 𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘

=
∑︁
𝑖0<𝑖1

(
𝜕𝑖0𝜔𝑖1 ,...,𝑖𝑘

)
𝑑𝑥𝑖0 ∧ 𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘

−
∑︁

𝑖1<𝑖0<𝑖2

(
𝜕𝑖0𝜔𝑖1 ,...,𝑖𝑘

)
𝑑𝑥𝑖1 ∧ 𝑑𝑥𝑖0 ∧ · · · ∧ 𝑑𝑥𝑖𝑘

+
∑︁

𝑖2<𝑖0<𝑖3

. . . −
∑︁

𝑖3<𝑖0<𝑖4

. . . + · · ·

=
∑︁

1≤𝑖1<· · ·<𝑖𝑘≤𝑛
𝑑𝜔𝑖1 ,...,𝑖𝑘 ∧ 𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘 , by changing indices

=
∑︁

1≤𝑖0<𝑖1<· · ·<𝑖𝑘≤𝑛

𝑘∑︁
𝑚=0

(−1)𝑚𝜕𝑖𝑚𝜔𝑖0 ,...,𝑖𝑚 ,...,𝑖𝑘︸                            ︷︷                            ︸
=𝑑𝜔(𝜕𝑖0 ,...,𝜕𝑖𝑘 ) by def of 𝑑

𝑑𝑥𝑖0 ∧ · · · ∧ 𝑑𝑥𝑖𝑘

= 𝑑𝜔|𝑈 . □

Lemma 7.2.11

Let 𝜔 ∈ Ω𝑘 (𝑀), [ ∈ Ωℓ (𝑀) and 𝜑 ∈ 𝐶∞ (𝑁, 𝑀). Then

(i) 𝑑 (𝜔 ∧ [) = 𝑑𝜔 ∧ [ + (−1)𝑘𝜔 ∧ 𝑑[;

(ii) 𝑑2𝜔 = 𝑑 (𝑑𝜔) = 0;

(iii) 𝜑∗𝑑𝜔 = 𝑑 (𝜑∗𝜔).

Proof. Because 𝑑 and 𝜑∗ are R-linear operations, it suffices to check these identities for forms supported in a
coordinate neighborhood. (Otherwise, use a partition of unity and write 𝜔 =

∑
𝑖 𝜒𝑖𝜔.)

(i) Write
𝜔 ∧ [ =

∑︁
𝑖1<· · ·<𝑖𝑘
𝑗1<· · ·< 𝑗ℓ

𝜔𝑖1 ,...,𝑖𝑘 · [ 𝑗1 ,..., 𝑗ℓ 𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘 ∧ 𝑑𝑥 𝑗1 ∧ · · · ∧ 𝑑𝑥 𝑗ℓ .
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Then

𝑑 (𝜔 ∧ [) =
∑︁

𝑖1<· · ·<𝑖𝑘
𝑗1<· · ·< 𝑗ℓ

(
𝑑𝜔𝑖1 ,...,𝑖𝑘 · [ 𝑗1 ,..., 𝑗ℓ + 𝜔𝑖1 ,...,𝑖𝑘 · 𝑑[ 𝑗1 ,..., 𝑗ℓ

)
𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘 ∧ 𝑑𝑥 𝑗1 ∧ · · · ∧ 𝑑𝑥 𝑗ℓ

=
∑︁

𝑖1<· · ·<𝑖𝑘
𝑗1<· · ·< 𝑗ℓ

[ (
𝑑𝜔𝑖1 ,...,𝑖𝑘 ∧ 𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘

)
∧

(
[ 𝑗1 ,..., 𝑗ℓ 𝑑𝑥

𝑗1 ∧ · · · ∧ 𝑑𝑥 𝑗ℓ
)

+ (−1)𝑘
(
𝜔𝑖1 ,...,𝑖𝑘𝑑𝑥

𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘
)
∧ 𝑑[ 𝑗1 ,..., 𝑗ℓ ∧ 𝑑𝑥 𝑗1 ∧ · · · ∧ 𝑑𝑥 𝑗ℓ

]
= 𝑑𝜔 ∧ [ + (−1)𝑘𝜔 ∧ 𝑑[.

(ii) By Lemma 7.2.9(ii), we see that (ii) holds for 𝑘 = 0. Then

𝑑 (𝑑𝜔) = 𝑑
( ∑︁
𝑖1<· · ·<𝑖𝑘

𝑑𝜔𝑖1 ,...,𝑖𝑘 ∧ 𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘
)

=
∑︁

𝑖1<· · ·<𝑖𝑘

𝑑
2𝜔𝑖1 ,...,𝑖𝑘︸      ︷︷      ︸

=0

∧𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘 +
𝑘∑︁
𝑚=1

(−1)𝑚𝑑𝜔𝑖1 ,...,𝑖𝑘𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑2𝑥𝑖𝑚︸︷︷︸
=0

∧ · · · ∧ 𝑑𝑥𝑖𝑘
 , by (i)

= 0.

(iii) By Lemma 7.2.9(i), we see that (iii) holds for 𝑘 = 0. Then

2𝜑∗𝑑𝜔 =
∑︁

𝑖1<· · ·<𝑖𝑘
𝜑∗

(
𝑑𝜔𝑖1 ,...,𝑖𝑘 ∧ 𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘

)
=

∑︁
𝑖1<· · ·<𝑖𝑘

(
𝜑∗𝑑𝜔𝑖1 ,...,𝑖𝑘

)
∧

(
𝜑∗𝑑𝑥𝑖1

)
∧ · · · ∧

(
𝜑∗𝑑𝑥𝑖𝑘

)
, by Remark 7.2.5(ii)

=
∑︁

𝑖1<· · ·<𝑖𝑘
𝑑

(
𝜑∗𝜔𝑖1 ,...,𝑖𝑘

)
∧ 𝑑

(
𝜑∗𝑥𝑖1

)
∧ · · · ∧ 𝑑

(
𝜑∗𝑥𝑖𝑘

)
, by (iii) for 𝑘 = 0

= 𝑑

( ∑︁
𝑖1<· · ·<𝑖𝑘

𝜑∗𝜔𝑖1 ,...,𝑖𝑘 · 𝑑
(
𝜑∗𝑥𝑖1

)
∧ · · · ∧ 𝑑

(
𝜑∗𝑥𝑖𝑘

))
, by (i) & (ii)

= 𝑑

(
𝜑∗

( ∑︁
𝑖1<· · ·<𝑖𝑘

𝜔𝑖1 ,...,𝑖𝑘𝑑𝑥
𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘

))
, by (iii) for 𝑘 = 0 and Remark 7.2.5(ii)

= 𝑑 (𝜑∗𝜔) . □

Lemma 7.2.12

There are identifications Ω1 (R3) � 𝔛(R3),Ω2 (R3) � 𝔛(R3),Ω3 (R3) � 𝐶∞ (R3) such that we have a
commutative diagram

Ω0 (
R3) Ω1 (

R3) Ω2 (R3) Ω3 (R3)

𝐶∞ (
R3) 𝔛(R3) 𝔛(R3) 𝐶∞ (R3)

𝑑 𝑑

∼

𝑑

∼ ∼

grad curl div

.

Proof. Exercise. □
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Definition 7.2.13: Closed & Exact 𝑘-forms, 𝑘-th de-Rham Cohomology, 𝑘-th Betti number, & Euler
Characteristic

(i) The space of closed 𝑘-forms is

𝐶𝑘 (𝑀) :=
{
𝜔 ∈ Ω𝑘 (𝑀) : 𝑑𝜔 = 0

}
= 𝑑−1 ({0}) .

The space of exact 𝑘-forms is the set

𝐸𝑘 (𝑀) :=
{
𝜔 ∈ Ω𝑘 (𝑀) : 𝜔 = 𝑑[ for some [ ∈ Ω𝑘−1 (𝑀)

}
= 𝑑

(
Ω𝑘−1 (𝑀)

)
.

(ii) The 𝑘-th de-Rham cohomology is the set 𝐻𝑘 (𝑀) = 𝐶𝑘 (𝑀)/𝐸𝑘 (𝑀).

(iii) The 𝑘-th Betti number is 𝑏𝑘 (𝑀) := dim𝐻𝑘 (𝑀).

The Euler characteristic is

𝜒 (𝑀𝑛) :=
𝑛∑︁
𝑘=0

(−1)𝑘 𝑏𝑘 (𝑀).

Note that by Lemma 7.2.11(ii), we have 𝐸𝑘 (𝑀) ⊂ 𝐶𝑘 (𝑀) so the quotient 𝐶𝑘 (𝑀)/𝐸𝑘 (𝑀) is well-defined.

Remark 7.2.14. (i) If 𝜑 : 𝑀 ! 𝑁 is a diffeomorphism, then by Lemma 7.2.11(iii), 𝜑∗ restricts to an isomor-
phism

𝜑∗ : 𝐶𝑘 (𝑁)
∼
−! 𝐶𝑘 (𝑀), 𝜑∗ : 𝐸𝑘 (𝑁)

∼
−! 𝐸𝑘 (𝑀), and 𝜑∗ : 𝐻𝑘 (𝑁)

∼
−! 𝐻𝑘 (𝑀).

Thus, 𝑏𝑘 (𝑀) = 𝑏𝑘 (𝑁) and 𝜒(𝑀) = 𝜒(𝑁). These equalities hold even for homeomorphisms.

(ii) If 𝑀 is compact, then 𝑏𝑘 (𝑀) < ∞ and 𝜒(𝑀) < ∞.

7.3 Integration on Manifolds
We first need the concept of orientation. Let 𝑉 be an 𝑛-dimensional real vectore space and 𝜔 ∈ Λ𝑛𝑉 ∖ {0}. Then
for each basis 𝑒1, . . . , 𝑒𝑛 of 𝑉 , 𝜔1,...,𝑛 := 𝜔(𝑒1, . . . , 𝑒𝑛) ≠ 0 (as 𝜔 = 𝜔1,...,𝑛𝑒

1 ∧ · · · ∧ 𝑒𝑛, where
{
𝑒𝑖

}
is the dual

basis). Then 𝜔 induces an orientation on 𝑉 as follows:

(i) A basis {𝑒1, . . . , 𝑒𝑛} of 𝑉 is called positively (negatively) oriented if 𝜔(𝑒1, . . . , 𝑒𝑛) > 0 (< 0).

(ii) Two bases {𝑒1, . . . , 𝑒𝑛} and { 𝑓1, . . . , 𝑓𝑛} are equally oriented ⇐⇒ the matrix 𝐴 =

(
𝑎
𝑗

𝑖

)
1≤𝑖, 𝑗≤𝑛

with

𝑓 𝑗 = 𝑎
𝑖
𝑗
𝑒𝑖 satisfies det 𝐴 > 0. Note that by Prop. 7.1.7, we have 𝜔 ( 𝑓1, . . . , 𝑓𝑛) = det 𝐴𝜔(𝑒1, . . . , 𝑒𝑛).

From now on, let 𝑀𝑛 be a 𝐶∞-manifold.

Definition 7.3.1: Orientable, Oriented Manifolds, & Orientation-preserving diffeomorphisms

(i) 𝑀 is called orientable if there exists 𝜔 ∈ Ω𝑛 (𝑀) such that 𝜔(𝑝) ≠ 0 for all 𝑝 ∈ 𝑀 . The pair (𝑀,𝜔)
is an oriented manifold.

(ii) Let (𝑀,𝜔𝑀 ) and (𝑁, 𝜔𝑁 ) be oriented manifolds and 𝜑 ∈ 𝐶∞ (𝑀, 𝑁) a diffeomorphism. Then 𝜑 is
orientation-preserving if there exists a positive function 𝑓 ∈ 𝐶∞ (𝑀) such that 𝜑∗𝜔𝑁 = 𝑓 · 𝜔𝑀 .

Notation

We often just write 𝑀 instead of (𝑀,𝜔) when the map 𝜔 is clear from context.
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Lemma 7.3.2

The following are equivalent.

(i) 𝑀 is orientable.

(ii) There exists an atlas𝒜 = {(𝑈𝑖 , 𝜑𝑖) : 𝑖 ∈ 𝐼} of 𝑀 such that

det𝐷
(
𝜑𝑖 ◦ 𝜑−1

𝑗

) ��
𝑥
> 0

(
𝑥 ∈ 𝜑 𝑗

(
𝑈𝑖 ∩𝑈 𝑗

)
, 𝑖, 𝑗 ∈ 𝐼

)
.

Proof. Exercise. □

Example 7.3.3. (i) S1 � 𝐼 is orientable. Mobius strips are nonorientable.

(ii) Any open subset𝑈 ⊂ R𝑛 admits a canonical orientation, induced by

𝑑𝑥1 ∧ · · · ∧ 𝑑𝑥𝑛 ∈ Ω𝑛 (𝑈),

where (𝑥1, . . . , 𝑥𝑛) are the standard coordinates. From now on, open subsets 𝑈 ⊂ R𝑛 are always equipped
with this orientation unless stated otehrwise.

Lemma 7.3.4

Let 𝑈,𝑉 ⊂ R𝑛 be open and 𝜑 : 𝑉 ! 𝑈 a diffeomorphism. Then 𝜑 is orientation-preserving ⇐⇒
det(𝐷𝜑|𝑦) > 0 for all 𝑦 ∈ 𝑉 .

Proof. Let 𝑥1, . . . , 𝑥𝑛 be the coordinates on𝑈 and 𝑦1, . . . , 𝑦𝑛 the coordinates on𝑉 . Then with 𝜑 = (𝑥1 ◦𝜑, . . . , 𝑥𝑛 ◦
𝜑) = (𝜑1, . . . , 𝜑𝑛), we have

𝜑∗
(
𝑑𝑥1 ∧ · · · ∧ 𝑑𝑥𝑛

)
= 𝜑∗𝑑𝑥1 ∧ · · · ∧ 𝜑∗𝑑𝑥𝑛

= 𝑑

(
𝜑∗𝑥1

)
∧ · · · ∧ 𝑑 (𝜑∗𝑥𝑛)

= 𝑑𝜑1 ∧ · · · ∧ 𝑑𝜑𝑛

= 𝜕𝑖1𝜑
1𝑑𝑦𝑖1 ∧ · · · ∧ 𝜕𝑖𝑛𝜑𝑛𝑑𝑦𝑖𝑛

= det (𝐷𝜑) 𝑑𝑦1 ∧ · · · ∧ 𝑑𝑦𝑛, by Prop. 7.1.7

and the result follows from Defn. 7.3.1 since det (𝐷𝜑) > 0. □

Definition 7.3.5: Integral of 𝜔 ∈ Ω𝑛 (𝑈) with compact support (𝑈 ⊂ R𝑛)

Let𝑈 ⊂ R𝑛 be an open subset. Then for 𝜔 ∈ Ω𝑛 (𝑈) with compact support, define the integral of 𝜔 as∫
𝑈

𝜔 =

∫
𝑈

𝜔1,...,𝑛𝑑𝑥
1 · · · 𝑑𝑥𝑛,

where 𝜔 = 𝜔1,...,𝑛𝑑𝑥
1 ∧ · · · ∧ 𝑑𝑥𝑛.

Proposition 7.3.6

Let 𝑈,𝑉 ⊂ R𝑛 be open and 𝜑 : 𝑉 ! 𝑈 an orientation-preserving diffeomorphism. Then
∫
𝑉
𝜑∗𝜔 =

∫
𝑈
𝜔 for

any 𝜔 ∈ Ω𝑛 (𝑈) with compact support.
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Proof. Let 𝑥1, . . . , 𝑥𝑛 and 𝑦1, . . . , 𝑦𝑛 be the coordinates on𝑈 and𝑉 , respectively. Write𝜔 = 𝜔1,...,𝑛𝑑𝑥
1∧· · ·∧𝑑𝑥𝑛.

By the proof of Lemma 7.3.4, we have

𝜑∗
(
𝜔1,...,𝑛𝑑𝑥

1 ∧ · · · ∧ 𝑑𝑥𝑛
)
= 𝜔1,...,𝑛 ◦ 𝜑 · det(𝐷𝜑)𝑑𝑦1 ∧ · · · ∧ 𝑑𝑦𝑛

= 𝜔1,...,𝑛 ◦ 𝜑 · |det(𝐷𝜑) | 𝑑𝑦1 ∧ · · · ∧ 𝑑𝑦𝑛, by assumption and Lemma 7.3.4.

Thus, ∫
𝑉

𝜑∗𝜔 =

∫
𝑉

𝜔1,...,𝑛 ◦ 𝜑 |det(𝐷𝜑) | 𝑑𝑦1 · · · 𝑑𝑦𝑛

=

∫
𝑈

𝜔1,...,𝑛𝑑𝑥
1 · · · 𝑑𝑥𝑛, by the multi-dimensional chain rule

=

∫
𝑈

𝜔. □

Definition 7.3.7: Integral of 𝜔 ∈ Ω𝑛 (𝑀𝑛) with compact support

Let

(i) 𝑀𝑛 be an oriented manifold,

(ii) 𝒜 = {(𝑈𝑖 , 𝜑𝑖) : 𝑖 ∈ 𝐼} a positively oriented atlas (i.e. all 𝜑𝑖 : 𝑈𝑖 ! 𝜑𝑖 (𝑈𝑖) are orientation-preserving),

(iii) {𝜒𝑖}𝑖∈𝐼 a partition of unity subordinate to𝒜.

Then for 𝜔 ∈ Ω𝑛 (𝑀) with compact support, we define∫
𝑀

𝜔 =
∑︁
𝑖∈𝐼

∫
𝜑𝑖 (𝑈𝑖 )

(
𝜑−1
𝑖

)∗
(𝜒𝑖𝜔) ,

where the integrals on the right are as in Defn. 7.3.5.

Lemma 7.3.8∫
𝑀
𝜔 is independent of the choices of positively oriented atlas and partition of unity.

Proof. Letℬ =
{(
𝑉 𝑗 , 𝜓 𝑗

)
: 𝑗 ∈ 𝐽

}
be another positively oriented atlas and

{
𝜌 𝑗

}
𝑗∈𝐽 a partition of unity subordinate

toℬ. Observe that all 𝜑𝑖 ◦ 𝜓−1
𝑗

: 𝜓 𝑗 (𝑈𝑖 ∩𝑉 𝑗 ) ! 𝜑𝑖 (𝑈𝑖 ∩𝑉 𝑗 ) are orientation-preserving diffeomorphisms. Thus,

∑︁
𝑗∈𝐽

∫
𝜓𝑗 (𝑉𝑗 )

(
𝜓−1
𝑗

)∗ (
𝜌 𝑗𝜔

)
=

∑︁
𝑗∈𝐽

∫
𝜓𝑗 (𝑉𝑗 )

(
𝜓−1
𝑗

)∗ (( =1︷︸︸︷∑︁
𝑖∈𝐼

𝜒𝑖

)
𝜌 𝑗𝜔

)
=

∑︁
𝑖∈𝐼
𝑗∈𝐽

∫
𝜓𝑗 (𝑉𝑗∩𝑈𝑖)

(
𝜑−1
𝑖 ◦ 𝜑𝑖 ◦ 𝜓−1

𝑗

)∗︸                 ︷︷                 ︸
=

(
𝜑𝑖◦𝜓−1

𝑗

)∗ (𝜑−1
𝑖 )∗

(
𝜒𝑖𝜌 𝑗𝜔

)

=
∑︁
𝑖∈𝐼
𝑗∈𝐽

∫
𝜑𝑖 (𝑉𝑗∩𝑈𝑖)

(
𝜑−1
𝑖

)∗ (
𝜒𝑖𝜌 𝑗𝜔

)
, by Prop. 7.3.6

= · · · =
∑︁
𝑖∈𝐼

∫
𝜑𝑖 (𝑈𝑖 )

(
𝜑−1
𝑖

)∗
(𝜒𝑖𝜔) . □



7.4. MANIFOLDS WITH BOUNDARY & STOKES’ THEOREM 86

7.4 Manifolds with Boundary & Stokes’ theorem
Stokes’ theorem will relate integrals on 𝑀 and 𝜕𝑀 . In the simplest case, 𝑀 = [𝑎, 𝑏] and 𝜕𝑀 = {𝑎, 𝑏}. Then∫

[𝑎,𝑏]
𝑓 𝑑𝑥︸︷︷︸

∈Ω1 (𝑀 )

= 𝐹 (𝑏) − 𝐹 (𝑎)︸          ︷︷          ︸
“=” integral on {𝑎,𝑏}

,

where 𝐹′ = 𝑓 .

Standard manifolds (i.e. without boundary) are modeled over open sets of R𝑛. That is, R𝑛 is the “model space” of
the manifold. Manifolds with boundary are modeled over the half-space.

Definition 7.4.1: Half-space

The half-space is R𝑛− :=
{
(𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 : 𝑥1 ≤ 0

}
⊂ R𝑛 with the subspace topology.

Let𝑉 ⊂ R𝑛− be open. Then 𝑓 : 𝑉 ! R𝑚 is smooth (or𝐶∞) on𝑉 if there exists𝑈 ⊂ R𝑛 open with𝑉 = 𝑈∩R𝑛−
and a function �̂� ∈ 𝐶∞ (𝑈,R𝑚) such that �̂� |𝑉 = 𝑓 . For 𝑥 ∈ 𝑉 , set 𝐷 𝑓 |𝑥 = 𝐷 �̂� |𝑥 .

(i) By definition of the subspace topology on R𝑛− , we have 𝑉 ⊂ R𝑛− is open if there exists𝑈 ⊂ R𝑛 open such that
𝑉 = 𝑈 ∩ R𝑛− . Furthermore,

𝜕R𝑛− = {0} × R𝑛−1︸                  ︷︷                  ︸
boundary of R𝑛−

and R̊𝑛− = R𝑛− ∖ 𝜕R
𝑛
−︸              ︷︷              ︸

interior of R𝑛−

.

(ii) The derivative 𝐷 𝑓 |𝑥 of 𝑓 : 𝑉 ! R𝑚 is well-defined: For 𝑥 ∈ 𝑉 , 𝐷 �̂� |𝑥 depends only on �̂� |𝑉 .

Definition 7.4.2: Manifolds with boundary & Boundary points

(i) A topological manifold with boundary of dimension 𝑛 ∈ Z≥0 is a second countable, Hausdorff
topological space such that for all 𝑝 ∈ 𝑀 , there is a neighborhood𝑈 of 𝑝, an open subset 𝑉 ⊂ R𝑛− , and
a homeomorphism 𝜑 : 𝑈 ! 𝑉 . The pair (𝑈, 𝜑) is a chart of 𝑀 .

(ii) Two charts (𝑈1, 𝜑1), (𝑈2, 𝜑2) are 𝐶∞-compatible if𝑈1 ∩𝑈2 = ∅ or

𝜑2 ◦ 𝜑−1
1 : 𝜑1 (𝑈1 ∩𝑈2)︸          ︷︷          ︸

⊂R𝑛−

! 𝜑2 (𝑈1 ∩𝑈2)︸          ︷︷          ︸
⊂R𝑛−

is a diffeomorphism.

(iii) A smooth atlas on 𝑀 is a set 𝒜 = {(𝑈𝑖 , 𝜑𝑖) : 𝑖 ∈ 𝐼} of pairwise compatible charts such that 𝑀 =⋃
𝑖∈𝐼 𝑈𝑖 .

We have an equivalence relation𝒜 ∼ 𝒜′ ⇐⇒ 𝒜 ∪𝒜′ is a 𝐶∞-atlas.

A 𝐶∞-manifold with boundary is a pair (𝑀, [𝒜]) of a topological manifold with boundary 𝑀 and an
equivalence class [𝒜] of smooth atlases on 𝑀 .

(iv) 𝑝 ∈ 𝑀 is called a boundary point of𝑀 if there exists a chart (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛)) such that 𝑥1 (𝑝) = 0.
We denote by 𝜕𝑀 the set of all boundary points on 𝑀 .

Lemma 7.4.3

If 𝑝 ∈ 𝑀 is such that 𝑥1 (𝑝) = 0 for a chart (𝑈, 𝜑 = (𝑥1, . . . , 𝑥𝑛)), then we have 𝑦1 (𝑝) = 0 for any other chart
(𝑉, 𝜓 = (𝑦1, . . . , 𝑦𝑛)).

Proof. Suppose 𝑦1 (𝑝) < 0. Let 𝑣 ∈ R𝑛 be such that 𝐷 (𝜑 ◦𝜓−1) |𝜓 (𝑝) (𝑣) = 𝑒1 = (1, 0, . . . , 0). For small 𝑡, we have
𝑐 : 𝑡 7! 𝜓(𝑝) + 𝑡𝑣 is a curve in 𝜓(𝑈∩𝑉), hence �̃� = 𝜑◦𝜓−1◦𝑐 is a curve in 𝜑(𝑈∩𝑉). However, �̃�(0) = 𝜑(𝑝) ∈ 𝜕R𝑛−
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and
�̃�′ (0) = 𝐷

(
𝜑 ◦ 𝜓−1

) ���
𝜓 (𝑝)

(
𝑐′ (0)︸︷︷︸
=𝑣

)
= 𝑒1,

so �̃�(𝑡) ∉ R𝑛− for 𝑡 > 0 small. This is a contradiction. □

Remark 7.4.4. If 𝑀 is a 𝐶∞-manifold of dimension 𝑛 with boundary, then 𝜕𝑀 is a 𝐶∞-manifold of dimension
𝑛 − 1 in its own right.

(i) 𝑀 is Hausdorff and second countable, so 𝜕𝑀 is Hausdorff and second countable (by Problem 1).

(ii) The proof of Lemma 7.4.3 shows that if 𝑈,𝑉 ⊂ R𝑛− are open, 𝜒 : 𝑈 ! 𝑉 is a diffeomorphism, then
𝜒

(
𝑈 ∩ 𝜕R𝑛−

)
⊂ 𝜕R𝑛− and 𝜒 : 𝑈 ∩ 𝜕R𝑛− ! 𝑉 ∩ 𝜕R𝑛− is also a diffeomorphism. This implies that if

𝒜 = {(𝑈𝑖 , 𝜑𝑖) : 𝑖 ∈ 𝐼} is a 𝐶∞-atlas of 𝑀 , then𝒜𝜕𝑀 =
{(
𝑈𝑖 ∩ 𝜕𝑀, 𝜑𝑖 |𝑈𝑖∩𝜕𝑀

)
: 𝑖 ∈ 𝐼

}
is a 𝐶∞-atlas on 𝜕𝑀 .

(iii) If 𝑈,𝑉 ⊂ R𝑛− are open and 𝜒 : 𝑈 ! 𝑉 is an orientation-preserving diffeomorphism, then 𝜒𝜕 := 𝜒 |𝑈∩𝜕R𝑛− is
also orientation preserving: One can show that for (0, 𝑥′) = 𝑥 ∈ 𝑈 ∩ 𝜕R𝑛− , we have

𝐷𝜒 |𝑥 =
©«
𝜕1𝜒

1 0 · · · 0
∗

𝐷𝜒𝜕 |𝑥′...

∗

ª®®®®¬
with 𝜕1𝜒

1 > 0 so det (𝐷𝜒 |𝑥) > 0 ⇐⇒ det (𝐷𝜒𝜕 |𝑥′ ) > 0.

Here, the orientation on 𝜕R𝑛− ⊂ R𝑛− is defined as follows: A basis 𝑣1, . . . , 𝑣𝑛−1 of R𝑛−1 � 𝜕R𝑛− is positively
oriented if and only if 𝑒1, 𝑣1, . . . , 𝑣𝑛−1 is a positively oriented basis of R𝑛. Now if 𝒜 is an oriented atlas on
𝑀 , we see from the above that𝒜𝜕𝑀 is an oriented atlas on 𝜕𝑀 . Thus, 𝜕𝑀 is orientable (c.f. Lemma 7.3.2).
We equip 𝜕𝑀 with the orientation such that 𝒜𝜕𝑀 is a positively oriented atlas whenever 𝒜 is positively
oriented.

(iv) Many concepts we developed so far (𝐶∞-maps, tangent space, tensor fields) carry over to this setting without
problems. We have that the inclusion map 𝑖𝜕 : 𝜕𝑀 ↩! 𝑀 is 𝐶∞ and 𝑇𝑝𝜕𝑀 ⊂ 𝑇𝑝𝑀 is a subspace.

Theorem 7.4.5: Stokes’ theorem

Let 𝑀𝑛 be an oriented manifold with boundary and let 𝜔 ∈ Ω𝑛−1 (𝑀) be of compact support. THen∫
𝑀

𝑑𝜔 =

∫
𝜕𝑀

𝑖∗𝛿𝜔,

where 𝑖𝛿 : 𝜕𝑀 ! 𝑀 is the inclusion map.

Proof. Let𝒜 = {(𝑈𝑖 , 𝜑𝑖) : 𝑖 ∈ 𝐼} be a positively oriented atlas of 𝑀 and
𝒜𝜕𝑀 =

{
(𝑉𝑖 , 𝜓𝑖) := (𝑈𝑖 ∩ 𝜕𝑀, 𝜑𝑖 |𝑈𝑖∩𝜕𝑀 ) : 𝑖 ∈ 𝐼

}
be the induced (positively oriented) atlas on 𝜕𝑀 . Let {𝜒𝑖}𝑖∈𝐼

be a partition of unity subordinate to {𝑈𝑖}𝑖∈𝐼 . Then∫
𝑀

𝑑𝜔 =
∑︁
𝑖∈𝐼

∫
𝑀

𝑑 (𝜒𝑖𝜔) =
∑︁
𝑖∈𝐼

∫
𝜑𝑖 (𝑈𝑖 )

(
𝜑−1
𝑖

)∗
(𝑑 (𝜒𝑖𝜔)) , by defn of integral

=
∑︁
𝑖∈𝐼

∫
𝜑𝑖 (𝑈𝑖 )

𝑑

((
𝜑−1
𝑖

)∗
(𝜒𝑖𝜔𝑖)

)
, by Lemma 7.2.9(i).

Since 𝜑𝑖 ◦ 𝑖𝜕 = 𝑖𝜕R𝑛− ◦ 𝜓𝑖 for the inclusion 𝑖𝜕R𝑛− : 𝜕R𝑛− ↩! R𝑛− , we have∫
𝜕𝑀

𝑖∗𝜕𝜔 =
∑︁
𝑖∈𝐼

∫
𝜓𝑖 (𝑉𝑖 )

(
𝜓−1
𝑖

)∗ (
𝑖∗𝜕 (𝜒𝑖𝜔𝑖)

)
=

∑︁
𝑖∈𝐼

∫
𝜑𝑖 (𝑈𝑖 )∩𝜕R𝑛−

𝑖𝜕R𝑛−

(
𝜑−1
𝑖

)∗
(𝜒𝑖𝜔𝑖) .
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This means that it suffices to prove Stokes’ theorem for open subsets in R𝑛− . Let 𝜔 =
∑𝑛
𝑗=1 𝜔 𝑗𝑑𝑥

1 ∧ · · · ∧ �̂�𝑥 𝑗 ∧
· · · ∧ 𝑑𝑥𝑛 ∈ Ω𝑛−1 (R𝑛−) be compactly supported. Then

𝑑𝜔 =

𝑛∑︁
𝑗=1

(
𝑛∑︁
𝑘=1

𝜕𝜔 𝑗

𝜕𝑥𝑘
𝑑𝑥𝑘

)
∧ 𝑑𝑥1 ∧ · · · ∧ �̂�𝑥 𝑗 ∧ · · · ∧ 𝑑𝑥𝑛

=

𝑛∑︁
𝑗=1

𝜕𝜔 𝑗

𝜕𝑥 𝑗
𝑑𝑥 𝑗 ∧ 𝑑𝑥1 ∧ · · · ∧ �̂�𝑥 𝑗 ∧ · · · ∧ 𝑑𝑥𝑛

=
©«
𝑛∑︁
𝑗=1

(−1) 𝑗−1 𝜕𝜔
𝑗

𝜕𝑥 𝑗
ª®¬ 𝑑𝑥1 ∧ · · · ∧ 𝑑𝑥𝑛.

Since 𝑖∗
𝜕R𝑛−

𝑑𝑥1 = 𝑑

(
𝑖∗
𝜕R𝑛−

𝑥1
)
= 𝑑

(
𝑥1 ◦ 𝑖𝜕R𝑛−

)
= 0, we have

𝑖∗𝜕R𝑛−𝜔 =
(
𝜔1 ◦ 𝑖𝜕R𝑛−

)
𝑑𝑥2 ∧ · · · ∧ 𝑑𝑥𝑛.

So,∫
𝑑𝜔 =

∫
R𝑛−

©«
𝑛∑︁
𝑗=1

(−1) 𝑗−1 𝜕𝜔 𝑗

𝜕𝑥 𝑗
ª®¬ 𝑑𝑥1 · · · 𝑑𝑥𝑛

=

𝑛∑︁
𝑗=1

∫ ∞

−∞
· · ·

∫ ∞

−∞

∫ ∞

−∞
(−1) 𝑗−1 𝜕𝜔 𝑗

𝜕𝑥 𝑗
𝑑𝑥1𝑑𝑥2 · · · 𝑑𝑥𝑛

=

∫ ∞

−∞
· · ·

∫ ∞

−∞

[∫ 0

−∞

𝜕𝜔1

𝜕𝑥1 𝑑𝑥
1
]

︸             ︷︷             ︸
=𝜔1 (0,𝑥2 ,...,𝑥𝑛 )

𝑑𝑥2 · · · 𝑑𝑥𝑛 −
∫ ∞

−∞
· · ·

∫ 0

−∞

[∫ ∞

−∞

𝜕𝜔2

𝜕𝑥2 𝑑𝑥
2
]

︸              ︷︷              ︸
=0 (cpt. support)

𝑑𝑥1 · · · 𝑑𝑥𝑛 + similar terms

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
𝜔1 ◦ 𝑖𝜕R𝑛−𝑑𝑥

2 · · · 𝑑𝑥𝑛

=

∫
𝑖∗𝜕R𝑛−𝜔,

where we have used the fundamental theorem of calculus in the third equality. □

7.5 Integration on Riemannian Manifolds
Goal: We want to integrate functions! For doing this, we need a (semi-)Riemannian manifold. For simplicity, we
restrict to the Riemannian case here. Let 𝑀𝑛 be an oriented Riemannian manifold (with or without boundary 𝜕𝑀).

Definition 7.5.1: volume form (dvol)

The volume form is the form dvol ∈ Ω𝑛 (𝑀) defined by

dvol(𝑒1, . . . , 𝑒𝑛) = 1 (7.5.1)

for each positively oriented orthogonormal basis {𝑒1, . . . , 𝑒𝑛} of 𝑇𝑝𝑀 (for all 𝑝 ∈ 𝑀).

Remark 7.5.2. For any basis {𝑣1, . . . , 𝑣𝑛} of 𝑇𝑝𝑀 and the matrix 𝐴 =

{
𝑎
𝑗

𝑖

}
1≤𝑖, 𝑗≤𝑛

with 𝑣𝑖 = 𝑎 𝑗𝑖 𝑒 𝑗 , we get

dvol(𝑣1, . . . , 𝑣𝑛) = det 𝐴 · dvol(𝑒1, . . . , 𝑒𝑛) = det 𝐴.

(See Prop. 7.1.7.)

(i) In particular, if {𝑣1, . . . , 𝑣𝑛} is another positively oriented orthonormal basis, then det 𝐴 = 1 so dvol is
well-defined (i.e. if (7.5.1) holds for one positively oriented orthonormal basis it holds for all of them).
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(ii) If (𝑈, 𝜑) is a chart and 𝑣𝑖 = 𝜕𝑖 in (i), then

𝑔𝑖 𝑗 = ⟨𝜕𝑖 , 𝜕 𝑗⟩ = ⟨𝑎𝑘𝑖 𝑒𝑘 , 𝑎ℓ𝑗𝑒ℓ⟩ =
𝑛∑︁
𝑘=1

𝑎𝑘𝑖 𝑎
𝑘
𝑗 = (𝐴 ◦ 𝐴𝑇 )𝑖 𝑗 .

So,
det

( (
𝑔𝑖 𝑗

)
1≤𝑖, 𝑗≤𝑛

)
= det

(
𝐴 ◦ 𝐴𝑇

)
= (det 𝐴)2 .

This implies dvol (𝜕1, . . . , 𝜕𝑛) = det 𝐴 =
√︃

det
(
𝑔𝑖 𝑗

)
1≤𝑖, 𝑗≤𝑛 and thus

dvol =
√︃

det
(
𝑔𝑖 𝑗

)
1≤𝑖, 𝑗≤𝑛𝑑𝑥

1 ∧ · · · ∧ 𝑑𝑥𝑛.

Definition 7.5.3: Integral of a compactly supported function 𝑓 ∈ 𝐶∞ (𝑀)

The integral of a function 𝑓 ∈ 𝐶∞ (𝑀) with compact support is∫
𝑀

𝑓 dvol .

In other words, we define the integral of 𝑓 to be the integral of the 𝑛-form 𝑓 dvol ∈ Ω𝑛 (𝑀). (In the physics
literature, you often see the notation

∫
𝑓
√︁

det 𝑔𝑑𝑥.)

Theorem 7.5.4: Gauß divergence theorem

Let (𝑀, 𝑔) be an oriented Riemannian manifold with boundary 𝜕𝑀 and let ℎ = 𝑔 |𝜕𝑀 . Then if 𝑋 ∈ 𝔛(𝑀) has
compact support, we have ∫

𝑀

div 𝑋 · dvol𝑔 =
∫
𝜕𝑀

⟨𝑋, a⟩ dvolℎ,

where a is the outward pointing unit normal.

(In the above, div = tr ◦∇ : 𝔛(𝑀) ! 𝐶∞ (𝑀), which locally looks like 𝜕𝑖𝑋 𝑖 + Γ𝑖
𝑖 𝑗
𝑋 𝑗 .)

Idea of proof. Let 𝜔 = dvol𝑔 (𝑋,−, . . . ,−) ∈ Ω𝑛−1 (𝑀), show

𝑑𝜔 = div 𝑋 · dvol𝑔
𝑖∗𝜕𝜔 = ⟨𝑋, a⟩ dvolℎ

and then apply Stokes’ theorem. □

Remark 7.5.5. Theorem 7.5.4 has a physical interpretation:
∫
𝜕𝑀

⟨𝑋, a⟩ dvolℎ is the total flux of 𝑋 through 𝜕𝑀
and div 𝑋 is the infinitesimal change of dvol along 𝑋 .



Chapter 8

Outline: Important questions in
Riemannian geometry

Note. Material from this chapter will not be on the exam.

For a compact orientable surface 𝑀 , there exists a topological invariant, called the genus ℊ, counting the number
of holes. One can show 𝜒(𝑀) = 2(1 − ℊ).

Theorem 8.0.1: Gauß-Bonnet theorem

For each metric 𝑔 on a compact oriented surface, we have∫
𝑀

𝐾𝑔 dvol𝑔 = 2𝜋𝜒(𝑀) = 4𝜋 (1 − ℊ) .

This allows you to deduce from local assumptions (“curvature”) information on the global structure, e.g.

• 𝐾 > 0 everywhere implies
∫
𝐾 dvol > 0 so 𝑀 is diffeomorphic to S2 (no holes).

• 𝐾 < 0 everywhere implies
∫
𝐾 dvol < 0 so 𝑀 is a surface of genus ℊ ≥ 2 and hence not diffeomorphic to a

sphere or torus.

Many statements are also known in higher dimensions, e.g.

Theorem 8.0.2: Sphere-Theorem (Brendle-Schoen, 2009)

If 𝑀𝑛 is a simply-connected Riemannian manifold with 1
4 < 𝐾 (𝜎) ≤ 1 for all 2-planes 𝜎 ⊂ 𝑇𝑀 , then 𝑀𝑛 is

diffeomorphic to S𝑛.

But many questions are still open, e.g.

Conjecture 8.0.3 (Hopf conjecture). S2 × S2 does not admit a Riemannian metric such that 𝐾 (𝜎) > 0 for all
2-planes in 𝑇𝑀 . (The product metric satisfies 𝐾 (𝜎) ≥ 0.)
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