ADVANCED COURSE

Distributed Systems

Distributed
Data Management

Paris Carbone

COURSE TOPICS

» Intro to Distributed Systems

» Fundamental Abstractions and Failure Detectors

» Reliable and Causal Order Broadcast

» Distributed Shared Memory-CRDTs

» Consensus (Paxos)

» Replicated State Machines (OmniPaxos, Raft, Zab etc.)
» Time Abstractions and Interval Clocks (Spanner etc.)

» Consistent Snapshotting (Stream Data Management)
» Distributed ACID Transactions (Cloud DBs)

¢ Hin22e3

KTH-2023

WHY DO WE NEED DISTRIBUTED SYSTEMS AGAIN?

* The majority of applications and problems come
from the domain of scalable data management

o Goals: Make data systems more scalable and reliable

DBs and Data Storage Data Processing

Systems Systems S

KTH-2023

Distributed ACID

Databases

THE CONCURRENT POWER OF DATABASES

Why DBMSs are so trusted:
» Concurrent Accessibility / scalability

» >100k-million transactions per second per
dbms process.

» Consistent recovery from failures.

» Isolation Guarantees

Also...your bank accounts (active, savings, investments) ,

ATM interactions, online banking, your medical data

records etc. are handled by the same databases that handle

other million users.

¢ Hip2203

KTH-2023

ANATOMY OF A TRANSACTION

Classic Example

T1: We want to transfer 100sek from X to Q. 1000

n 100

That involves the following operations: %

1. read(X)

2. X:=X-100
3. write(X)
4. read(Q)

5. Q:=Q+100
¢ >1p2203
6. write(Q) 7y

KTH-2023

ANATOMY OF A TRANSACTION

Classic Example

T1: We want to transfer 100sek from X to Q. 1000
That invol he followi ' n "
at involves the following operations: -
< =
1. read(X) — R —
2. X:=X-100
3. write(X)
4. read(Q)
5. Q:=Q+100
¢ S1p2203
6. write(Q) Py

KTH-2023

ANATOMY OF A TRANSACTION

Classic Example

T1: We want to transfer 100sek from X to Q. 1000
That involves the following operations: % ! ;
= =
1. read(X) — T —
2. X:=X-100 {a}
3. write(X)
4. read(Q)
5. Q:=Q+100
6. write(Q) (Dms

KTH-2023

ANATOMY OF A TRANSACTION

Classic Example

T1: We want to transfer 100sek from X to Q. 900
That involves the following operations: % o ;
AN =
1. read(X) — D —
2. X:=X-100 el
3. write(X)
4. read(Q)
5. Q:=Q+100 |
6. write(Q) [o

KTH-2023

ANATOMY OF A TRANSACTION

Classic Example

T1: We want to transfer 100sek from X to Q. 900
B w
That involves the following operations: —
> =
1. read(X) — =D —
2. X:=X-100 X:=X-100
— = —
3. write(X)
4. read(Q)
5. Q:=Q+100
¢ Hip2203
6. write(Q)

KTH-2023

ANATOMY OF A TRANSACTION

Classic Example

T1: We want to transfer 100sek from X to Q. 900
B o
That involves the following operations:
x> -
AN =
1. read(X) — =D —
2. X:=X-100 X:=X-100
— D
3. write(X)
4. 1ead(@
5. Q=Q+100 C:)
6. write(Q)

KTH-2023

ANATOMY OF A TRANSACTION

Classic Example

T1: We want to transfer 100sek from X to Q. 900
a 200
That involves the following operations:
N -
AN =
1. read(X) — R —
2. X:=X-100 el
— =y —
3. write(X)
4. read(Q)
5. Q=Q+100 C: f
6. write(Q) — KD —

KTH-2023

ACID

The core 4 properties for Transactions

» Atomicity : “all transaction commands are committed or none”

» Durability: “all transaction object updates are persisted”

»Isolation: “transactions do not ‘compete’ but are isolated”

Jim Gray
Turing Award Winner
° « ° ° ° ° »
» Consistency: “no relational model/constraint violations 192 a20
Application
It's ACID! Application
No need to care about
concurrency
Application V\’
w Application (@ w2262

Application

KTH-2023

T5

T6

T2

T8

T3

T1

T4

Transaction Manager

equivalent aborted

serial
“schedule”

aborted

aborted

- THE TwWO OUTCOMES OF ATOMICITY

changes
partially persisted
all statements Wittty
executed
violation
active
/crash
A .)
' violation
. /crash
. failed
: rollback
: h
: changes
1

option 1: restart

X

option 2: give up

¢ S1p2203

KTH-2023

ACID CHALLENGES

Single-DB Transactions | Distributed Transactions
1. read(X)
> XeeX-100 shard #1 shard #2
4.read(Q)
1000 5.Q:=Q+100 1000 B 1o
B 100 6. write(Q)

Atomicity:
Durability:

Isolation:

]
write ahead log + rollback

persistent storage

concurrency control

B
+Atomic Commit Protocol

+Replication (i.e., SMR)

¢ Hin22e3

KTH-2023

T,

R-LOCK(Q)
R(Q)

UNLOCK(Q)
W-LOCK(Q)

X

w(Q

UNLOCK(Q)

ISOLATION THROUGH LOCKING

T,

W-LOCK(Q)
Ww(Q)

UNLOCK(Q)
R-LOCK(Q)

A standard (pessimistic) concurrency control mechanism

to isolate transaction is to grant read and write locks.

However, naive locking does not enforce isolation

¢ Hin22e3

KTH-2023

TwO PHASE LOCKING (2PL)

Each transaction should acquire all necessary locks first and then release them.

Growing Phase: Locks are acquired/upgraded and no locks are released.

Shrinking Phase: Locks are released/downgraded but no locks are acquired.

lelele

commit

Core invariant: never acquire any lock after a lock has been released.

¢ Hin22e3
i

FKTHY

KTH-2023

2PL + CASCADING ABORTS

Txn 1

W-LOCK(Q)
W-LOCK(X)

R(Q)
Ww(Q

UNLOCK(Q)
R(X)

W (X)

Txn 2

W-LOCK(Y)
W—L%K(Q)

X

W(Y)
UNLOCK(Y)

R(Q
Ww(Q

Txn 3

W-LOCK(Y)

W (Y)

ﬂ ! ! Txn2 and Txn3 also need to abort
abort
¢ Nip2203

Cascading Aborts are common in multi-
transactional workloads.

Basic 2PL does not prevent cascading
aborts and as a result...we can lose
progress across many transactions.

STRONG STRICT 2PL EXAMPLE
Strong-Strict 2PL (SS2PL) or Rigorous 2PL adds the following constraint to PL:

o Alllocks are released only after the transaction has completed (abort/commit)

Txn 1 Txn 2

W-LOCK(Q)
R(Q) [W-LOCK(Q)
W(Q) Z
commit -
UNLOCK(Q)
R(Q)
W(Q)
commit
UNLOCK(Q)

¢ S1p2203

T

KTH-2023

20

DISTRIBUTED ACID

shard #1 shard #2

=) o

commit

Transaction 7T}

1. read(X)
2. X:=X-100
3. write(X)

.

- Contact shard #1

- Coordinator of shard#1 acquires X lock and commits 7}

¢ Hin22e3

k>

KTH-2023

DISTRIBUTED ACID

shard #1 shard #2
commit abort
Transaction T,
1. read(X) « We need to commit/abort transaction across shards.
2. X:=X-100
3. write(X) « Either all partitions/shards should commit transaction or none!
4.read(Q) « How do we achieve that?
5.Q:=Q+100
6. write(Q) ip2203

- Using Atomic Commitment

y r‘

— KTH-2023

22

ATOMIC COMMIT

e Transaction Coordinator (leader)

e Cohorts (followers) « Request: Transaction T

e Indication: Commit | Abort

* Given a proposed transaction T

o Commit if all followers agree to commit

o Abort if at least one follower aborts or fails

¢ Hin22e3

KTH-2023

23

ATOMIC COMMIT VS CONSENSUS(PAXOS)

Validity

Decide Commit
or Abort

Decide any Proposed Value

Fault Tolerance

f=0
(but can be improved)

f<N/2

Leader

Single Coordinator
Process

Any process can propose

Agreement Unanimous

Two Phase Commit (2PC) is the defacto Atomic Commitment Protocol

Quorum-based

¢ Hin22e3
i

FKTHY

KTH-2023

2PC (T'w0O PHASE COMMIT)

Prepare T ok Commit T
Coordinator
shard#1 =
shard#2 L
« acquire locks « log commit statement
« execute T o release locks

« log changes

¢ Hin22e3

2 M el
KTH-2023

2PC (T'w0O PHASE COMMIT)

Prepare T ok timeout AbortT
Coordinator
shard#1 \\g
shard#2
* acquire 10CkS « roll-back T’s changes
 execute T « release locks

« log changes

¢ Hin22e3

" M el
KTH-2023

2PC (T'w0O PHASE COMMIT)

Prepare T oké Commit T

Coordinator

shard#1 X

®©@
)

hard#2 :

b L—J E S
« acquire locks : « log commit statement
e execute T : « release locks

« log changes

If any process fails here the 2PC If any process fails here the decision
times out and aborts has already be made but is the

transaction durably persisted?

26

¢ Hin22e3

KTH-2023

2PC (T'w0O PHASE COMMIT)

Prepare T ok Commit T
Coordinator
RSM
shard#1 @ ~=
shard#2 LJ _
» acquire locks « log commit statement
RSM « execute T « release locks
What about cluster- - log changes
wide outages? |
Can we durably » All 2PC actions are decided commands in each shard’s RSM 12203

* Protocol is executed by each respected leader in a shard

persist that?

27

KTH-2023

2PC (T'w0O PHASE COMMIT)

Prepare T ok Commit T
Coordinator
RSM
P * i.e., Google
a1 a Spanner geo-
replication
hard#3 X
. & LJ -
» acquire locks « log commit statement
RSM o execute T o release locks
« log changes
» All 2PC actions are decided commands in each shard’s RSM 12203

* Protocol is executed by each respected leader shard and replicated to other shards

Za KTH-2023

2PC COORDINATOR CRASHES

What if the coordinator crashes here? The

protocol might block in an undecided state

Prepare T ok Commit T

Coordinator

shard#1

Shard#Z U é |

« acquire locks : + log commit statement

e execute T release locks

+ log changes

29

¢ Hin22e3

KTH-2023

RELIABLE 2PC V.1

Coordinator, Log Prepare T Log Decision

Prepare T okl Commit T

shard#0
shard#1 X /
Shard#Z u

* This approach ensures that Transaction Decisions are reliably decided on a log.

OIoICH

¢ Hin22e3

* (New) Coordinator can access status from RSM (Zookeeper, Raft, OmniPaxos)
, and finalize phase 2 of the protocol or restart it if stuck in prepare phase.

— KTH-2023

RELIABLE ZPC VZ (STATE OF THE ART)

Coordinator Log Prepare T Log Decision and access “indefinitely” in RSM

Prepare T ok

I—Y
J

O
commit

commit
~\
7 U O

* This approach ensures that Transaction Decisions are reliably replicated across shards.

shard#0

shard#1

shard#2

=

() (o) (@3

>1D2203
o All servers can apply finalize (rollbacks/commits) based on transaction status read from local

RSM replica (Zookeeper, Raft, OmniPaxos)

S KTH-2023

Distributed Data

Processing and Snapshots

DISTRIBUTED SNAPSHOTS

SNAP
()
« Distributed algorithms that capture the G ﬁ @ a G
lobal state of a distributed system.
° y &2

(e er) elr) -]
M 1= - =)

C Network)
k Distributed System J

SNAPSHOT USAGES

1. Stable Property Detection

SNAP

%@@... h

MMM
g J

analyze | peadlocked execution

> o Computation Terminated
e No tokens in transit

“A stable property is one that persists: once a stable

property becomes true it remains true thereafter”

- Chandy, Lamport 88

34

>ID2203

KTH-2023

SNAPSHOT USAGES

2. Failure Recovery and Reconfiguration

-

G[P1

=

[P2
5

[

~

\

Network

Y,

Restart system

s [

2] 7]

=

ﬂvl

SNAP from snapshot
900 | >
M .
Restart system
with new
configuration

Network

=)

A0 P2
=2

Network

&

)

C51D2203

KTH-2023

36

PROCESS GRAPH

PROCESS MODEL

» Processes are connected by Input (I,)/
Output channels (O,)

» For each message m in Ip:
2 S,p _ process(m, Sp, Oy)

» Updates local state Sp - S,p

» Adds output messages in O,

>ID2203

KTH-2023

37

CONSISTENT SNAPSHOTTING

» Observation: Impossible to get a direct snapshot
without “freezing” all processes and channels

» Goal: Acquire a consistent snapshot instead

» Consistent Snapshot: Reflects a “valid” configuration
of the running system (states and in-transit messages)

» Valid Configuration ~ “consistent cut”

Distributed Snapshots: Determining Global
States of Distributed Systems

K. MANI CHANOY
University of Texas at Austn

LESLIE LAMPORT
Stanford Reseerch Insttute

This papes zreseres an agorithie. by which & geoces i 2 ditsituted eyetes determizes 4 gloal
stase of Mas pesticus b cast s lecmss

e

Sy

.........

>ID2203

KTH-2023

38

DISTRIBUTED CUTS

» A snapshot implements a cut C of an execution (prefix) and

returns the system’s corresponding states/configuration.

Snapshot of C

{s1,53,53}

{m'}

>1D2203

CONSISTENT CUTS

» We are interested in consistent cuts - those that preserve causality

P1 P1
m
P2 P2
.
pP3 Ps
C, C2
Inconsistent : Message m’ was C: is Consistent

received but never sent in C1

>ID2203
o,

FKTHY

39 KTH-2023

CONSISTENT SNAPSHOTTING SPECIFICATION

Sp: state of p

Events My mosssg
Request: (snapshot)

Indication: (record | p, [Sp,Mp])

Properties:
S1: Termination, S2: Validity

CONSISTENT SNAPSHOTTING SPECIFICATION

S1: Termination: Eventually every process
records its state.

S2: Validity: All recorded states correspond to
a consistent cut of the execution.

THE CHANDY LAMPORT ALGORITHM

Assumptions:
e FIFO Reliable Channels
e Single Initiating Process pi

e Strong Connectivity: There is a (channel) path from pito
every other process in the system (always satisfied in
strongly connected process graphs)

THE CHANDY LAMPORT ALGORITHM

Design Goal:

* Obstruction-freedom: The global-state-detection algorithm
Is to be superimposed on the underlying computation: it
must run concurrently with, but not alter, this underlying
computation. - Lamport, Chandy

Idea Intuition:

- Disseminate a special message © to mark events before
and after the consistent cut.

44

THE ALGORITHM

Chandy-Lamport Consistent Snapshots

B W N e

Implements: csnap, Requires: fiforc (I, O;)
: (I,0,) « configured_channels;

Sp — 2

: Recorded « 0;
s 0 My 0;

> volatile local state
> channels under logging
> state in snapshot

: Upon (rcvd, m) on cqp & Recorded, m # ©

| sp & process(m,s,, Op);

: Upon (rcvd, m) on cqp € Recorded, m # ©

M, «— M, U{m};
| sp «process(m,sp, 0p) ;

: Upon (revd, ®) on cqp € I,

if s, = empty then
| startRecording();
Recorded = Recorded —{c};
if Recorded = () then
| csnap — (record|self,s;,, M,);

: Upon (snapshot) on csnap

startRecording();
if Recorded = () then
| csnap — (record|self, s, 0);

: Fun startRecording()

s;, — Sp;
foreach out € O, do
| out — (send, ®);

. Recorded ¢ I,

> regular process logic

> record in-transit message

> record local state

>ID2203

KTH-2023

EXAMPLE EXECUTION

DA

init RN

Q» 1,5

‘

Snapshot

Bl bcfore marker
B after marker

>1D2203

45 KTH-2023

EXAMPLE EXECUTION

marker

O

‘I---........

I“‘

Snapshot

Bl bcfore marker
B after marker

>1D2203

46 KTH-2023

EXAMPLE EXECUTION

Snapshot

Bl bcfore marker
B after marker

>1D2203

47

EXAMPLE EXECUTION

Snapshot

s1, s2

Bl bcfore marker A

B after marker

>ID2203

48 KTH-2023

EXAMPLE EXECUTION

Snapshot

s1, s2, s3

DA DA

Bl bcfore marker
DA

B after marker

>ID2203

aip

49 KTH-2023

EXAMPLE EXECUTION

Snapshot

s1, s2, s3

DA DA

Bl bcfore marker
DA

B after marker

>ID2203

aip

50 KTH-2023

EXAMPLE EXECUTION

Snapshot

s1, s2, s3
Bl bcfore marker A DA

B after marker

PROOF SKETCH
e Validity

e Marker sent between pi and pj separates pre- and post-
snapshot events (through FIFO channel delivery)

e Validity applies to the transitive closure of reachable
processes (through induction)

e Termination is satisfied if initiator can reach all tasks.

>ID2203

OO

KTH-2023

GENERALIZATION

e Termination is still satisfied if the protocol is initiated by a set of
processes that can reach all tasks. (No modifications)

>1D2203

KTH-2023

Epoch Snapshotting

DATA PROCESSING SNAPSHOTS

e Snapshotting protocols can be used to make production-grade data
processing systems reliable.

e Examples: Google Dataflow, Flink, Tensorflow, Spark, IBM Streams,
Storm, Apex etc.

e Use Case: The Apache Flink data processing system

>ID2203

k>

55 KTH-2023

STREAM PROCESSING

o o

Deterministic Input Streams

tasks channels

System : {]:[7 4:}

System Execution : ... — {II,, M} — {II_, M'} — ...

56

Output Streams

dID2203

KTH-2023

STREAM PROCESSING

o o

Deterministic Input Streams

tasks channels

System : { H] 4: } Task Actions

System Execution : .. .{H*, M}{H;, M/}. ..

57

Output Streams

dID2203

KTH-2023

STREAM PROCESSING

N —"—o-oo—o—"—
—000—000 L A
Deterministic Input Streams Output Streams
tasks channels
~N
System : I I] 4 '\, System Configurations (states, messages in-transit)

System Execution : . .. —>[{H*, MB — ﬁH;, M’B — ...

58

dID2203

KTH-2023

FAULT TOLERANCE

FAULT TOLERANCE

61

FAULT TOLERANCE

DA Mk

\ recover A<
W

- Has m been fully processed?
- Have mk and m; been delivered?

NE

77

C 1D2203

KTH-2023

62

RELIABLE STREAM PROCESSING

« Past approaches* typically adopt a fail recovery model to amend individual task

execution and reproduce computations that were possibly lost
« Complex Workarounds (e.g., duplicate elimination, input logging, acks)
. Strong Assumptions (idempotent operations, key vs task level causal order)

« External State Management (transactional external commits per action)

*MillWheel: Fault- tolerant stream processing at internet scale,” in VLDB, 2013.

Integrating scale out and fault tolerance in stream processing using operator state management. in SIGMOD 2013
Fault-tolerance and high availability in data stream management systems. in Encyclopedia of Database Systems 2009
Fault-tolerance in the Borealis distributed stream processing system, in SIGMOD 2005

KTH-2023

FAULT TOLERANCE IS NOT ENOUGH

- Are output and states always correct?
 Can we reconfigure the system without losing computation?
« Can applications migrate without loss?

- Is external state access isolation possible?

We need a system-wide coarse-grained commit mechanism.

>ID2203

63 KTH-2023

64

CONTINUOUS 2PC FOR DATA STREAMING

deterministic
input streams

stream
processing Q__‘%
system success: commit system configuration
failure: abort and start from previous epoch
esystem
configuration

(states) after
completing an
epoch

divide computation
into epochs

ch ~ Distributed ACID Transaction cbzae
epoch ~ e, ¥

11700000000 l.l‘llllll“P LA
1

—| KTH-2023

65

TRANSACTIONAL STREAM EXECUTION

Logged Input

Committed

System
States

Storage

dID2203

KTH-2023

SYNCHRONOUS 2PC

{ Coordinator] [Tasks]J 3 computation
- = N e idl
. Prepare ep1 €P1 =
e

H
epl prepared || —e-o-o—

Commit epq

Stable
Storage

dID2203

®
©
N
©
q
®
o
o
q
®
o
1
|
]
(1

I KTH-2023

67

SYNCHRONOUS 2PC

o Suitable for short-lived, stateless task execution

e Problem: Unnecessary high latency in long-running task execution

e Cause: Blocking synchronisation (idle time) - coordination & epoch scheduling.

>ID2203

KTH-2023

68

ASYNCHRONOUS 2PC

[Coordi

nator] [Tasks <

W;

Prepare ep2

ep1 prepared
ep2 prepared

How? Using Snapshots

KTH-2023

69

EPOCH SNAPSHOTTING

e Assumptions:

e DAG of tasks

« Epoch change events triggered on each source task ({ep1),{ep2),...)

- Issued by master or generated periodically

« We want to snapshot stream process graphs after the complete

computation of an epoch.

>ID2203

KTH-2023

VALIDITY IS NOT ENOUGH

*1{20-0oee-

chandy-lamport snapshot

P1

D2

P3

P4

P1

D2

P3

P4

71

TRANSACTIONAL EPOCH CUTS

'—.}w
Epoch Cuts

A epoch-complete consistent cut

that includes events that

1. precede epoch change

2. are produced by events in cut

R

3. do not causally succeed
epoch change

C 1D2203

KTH-2023

EPOCH SNAPSHOTTING PROPERTIES

Termination (liveness):
A full system configuration is eventually captured per epoch

Validity (safety):
Obtain a valid system configuration (consistent cut)

Epoch-Completeness (safety):
Obtain an epoch-complete system configuration

>ID2203
atp

FKTHY

KTH-2023

THE ALGORITHM

epoch change markers

A/ epoch alignment
A N
ejeceo o o o c
oo fes eeo M

Snapshot B C) o epoch-complete
Sgre H&F&‘ﬂ]4—” snapshot

>ID2203

KTH-2023

THE EPOCH SNAPSHOTTING ALGORITHM

Epoch-Based Snapshots (Sources)

Epoch-Based Snapshots (Regular Tasks)

Implements: Epoch-Based Snapshotting (esnap)
Requires: FIFO Reliable Channel (I,,,0),)
Algorithm:

1: @, « configured_channels;

2: Sp — <,

3: /* Source Task Logic
4: Upon (rcvd, m)
| (sp) « process(sp, m,0y);

wv

Upon (ep[n)
esnap — (record|self,n,s;);
foreach out € O, do
| out — (send, ®n);

O 0 N O

74 Carbone, Ewen 2015

Implements: Epoch-Based Snapshotting (esnap)
Requires: FIFO Reliable Channel (I,,0,)
Algorithm:

: (Ip,0p) « configured_channels;
: Enabled I ;
1 Sp — O

: /* Common Task Logic
: Upon (rcvd, m) on c € Enabled

| sp < process(sp,m,Qyp);

: Upon (rcvd, ®n) on ¢ € Enabled

esnap — (record|self,n,s,);
Enabled « Enabled/{c};
if Enabled = () then
foreach out € O, do
| out — (send, On);

Enabled « [;

dID2203

KTH-2023

PERFORMANCE INSIGHTS

Managed States [J\\g' """ offset | T S s, 1. | Snapshot
L oart — [S
foutteore e 8 """ ' @ @ @ ; § i consistent Réméowa
: i i snapshots 1100

. 3 K 5 sum max J Fl .
Kafka (async) £ o | PROC R
T N = e8s felw -
Game B gop | T SR
Player .) § 8 ;
keyby: Query Dynamic Kafka g 600 foeeenes L - L
userID A processor Window Output Sink [Results] & 4oo b .0
- socregair ol -
AN Kafka broadcast keyby: keyby: topic g o R
| [Queries] Query Source (query, aggregate) 50 70
Data Parallelism
Analyst

Carbone, Paris, et al. "State management in Apache Flink®: consistent stateful distributed stream processing." Proceedings of the VLDB Endowment 10.12 (2017)

DID2203

KTH-2023

>ID2203

The 2-Phase Commit Protocol

repare (epoch change) FTd to Fnd
Pre-Commit (snapshot) Snapshot Coordinator =gl el
@Prepared/Aborted in Flink
Commit
%Mark Committed Output Logs
€p3 €p3 epP2 €P1
- : 72\ - — - — = - —
X oK External
—-——---o—oo WOI@] state -—»-—0—0—0—
Backend
800000 N\ e—o-00——o9
Input Logs (J pre-committed | —
(already committed) : committed
pen ding
snapshot R
i e

- A) 2
External - >
File System ::i; {H ep 3] [H ep2] H ep 1] J

76

77

BEYOND 1D2203

e The Continuous Deep Analytics Team

e https://cda-group.github.io/

« We will contact you soon for topics and internships (RISE, KTH) in
o Distributed Algorithms
o Distributed Data Management (Graphs, ML, Relational)

o Data Storage Optimisation for Data Analytics

>ID2203
atp

FKTHY

KTH-2023

https://cda-group.github.io/

