
ID2203

KTH-2023

True Time

Abstractions

Paris Carbone

Distributed Systems

ADVANCED COURSE

KTH-2023

ID2203

‣ Intro to Distributed Systems

‣ Fundamental Abstractions and Failure Detectors

‣ Reliable and Causal Order Broadcast

‣ Distributed Shared Memory-CRDTs

‣ Consensus (Paxos)

‣ Replicated State Machines (OmniPaxos, Raft, Zab etc.)

‣ Time Abstractions and Interval Clocks (Spanner etc.)

‣ Consistent Snapshotting (Stream Data Management)

‣ Distributed ACID Transactions (Cloud DBs)

COURSE TOPICS

2

KTH-2023

ID2203

LET’S TALK ABOUT TIME

• Aren’t clocks always unreliable in D.S.?

• Can we reason based on time measurements?

• Any time invariants we can trust?

3

KTH-2023

ID2203

TWO PRACTICAL TIME ABSTRACTIONS

Time Leases Interval Clocks

t2

t1

+ shorter protocols

+ stronger abstractions

+ a standard for client-server comm.

- re-configuration/election slowdowns

+ linearizable operations

+ practical, conservative time estimates

+ highly in use (Spanner, CockroachDB)

- performance ~ clock quality

ID2203

KTH-2023

Time-Leases

KTH-2023

ID2203

MOTIVATION

● We implement a key-value store using RSM
● Supporting the following commands:

● Read(k), Write(k, v), CAS(k, vexp, vnew)
● CAS:
▪ writes vnew if old value is vexp; returns old value

● Needs RSM to do CAS (Shared Mem. is too weak)
● Service runs on leader-based Seq Paxos

● N=3 replicas, Πr={p1, p2, p3}
● Each acting as proposer, acceptor, learner

p2

p1

p3

KTH-2023

ID2203

MOTIVATION

● Can have any number of clients Πc={p4,...}
● Assume network is stable and p1 is leader

(has started the highest round)

p1

p8

p9

p4 p5

p6

p7p2 p3

KTH-2023

ID2203

MOTIVATION

● Client p4 that wants to execute a command sends a
request (1) to leader p1

p1

p8

p9

p4 p5

p6

p7

1

p2 p3

KTH-2023

ID2203

MOTIVATION

● p1 proposes command using Paxos, which sends
Accept msgs (2) to replicas (using previously
prepared round number)

p2

p1

p3p8

p9

p4 p5

p6

p7

1
2

2 2

KTH-2023

ID2203

MOTIVATION

● The replicas accept and respond with AcceptAck
(Accepted) messages (3)

p2

p1

p3p8

p9

p4 p5

p6

p7

1
2

2 2
33

3

KTH-2023

ID2203

MOTIVATION

● After p1 gets AcceptAck msgs from a majority, the
command order is chosen and p1 sends Decide msgs (4)

p2

p1

p3p8

p9

p4 p5

p6

p7

1
2

2 2
33

3

4 4

4

KTH-2023

ID2203

MOTIVATION

● p1 executes the command using the state of the state
machine, and sends response (4’) with result of the
operation to p4

p2

p1

p3p8

p9

p4 p5

p6

p7

1
2

2 2
33

3

4 4

4
4’

KTH-2023

ID2203

FASTER READS?

● Assume that the operation requested by p4 is a read
operation, C=Read(x)

● p1 stores the entire state, so can p1 read the state variable x
and respond immediately?

p2

p1

p3p8

p9

p4 p5

p6

p7

1
2

KTH-2023

ID2203

FASTER READS?

● A network split partitions p1 away from p2 and p3
● p2 is elected leader but p1 never hears about this

p2

p1

p3p8

p9

p4 p5

p6

p7

KTH-2023

ID2203

FASTER READS?

● Client p9 sends a Write(x,valnew) request to p2, p2
communicates with p3 and commits the write operation

p2

p1

p3p8

p9

p4 p5

p6

p7

KTH-2023

ID2203

FASTER READS?

● After this, p1 gets Read(x) request from p4
● p1 is unaware of the split and the write operation, and

responds to p4 with the old value of x
● Linearizability is violated!

p2

p1

p3p8

p9

p4 p5

p6

p7

1

2

KTH-2023

ID2203

THE PROBLEM

● The reason p1 can’t respond with its current state because
some other replica may have assumed leadership and
modified the state without p1 knowing about it

● Is there some way to avoid this?

● Strawman attempt:

● p2 must communicate with p1 before p2 can become leader
● But this can’t work since p1 may be dead

KTH-2023

ID2203

LEADER-LEASES

● We would like leaders to be disjoint in time
● Think of this as a Paxos group

● Only one leader at an given point of time t
● If q is a follower of p at time t then no other no other

process can be a leader at t

p1

q

t2t1

p2

follower of p1 follower of p2

KTH-2023

ID2203

LEADER-LEASES

● A proposer p to become leader: sends a request (prepare) to acceptors
● An acceptor gives a time-based leader lease to p , lasting for 10 seconds
● If a proposer gets leases from a majority of acceptors, then proposer

holds lease on group and becomes a leader
● In the time until the first acceptor lease expires, the proposer knows

that no other proposer can hold the lease on the group
● During this time, the leader can safely respond to reads from local

state

p
q

t2 t4=t2+10st1 t3=t1+10s

KTH-2023

ID2203

LEADER-LEASES

● Can be integrated with Paxos messages:
● As before acceptor q joins round n by sending a Promise in

response to a Prepare(n), and promises to not accept
proposals in lower rounds

● In addition, we require that if q joins round n at time t then
q promises to not join a higher round until after time t+10s

● If proposer p gets promises from a majority then p knows
that no other proposer can get a majority of promises during
next 10 seconds

KTH-2023

ID2203

ARE WE THERE YET?

● Notice that we are only talking about physical time intervals
and not about absolute clock values

● We have to take two issues into account:

● Network Asynchrony
● Clock drift

KTH-2023

ID2203

NETWORK ASYNCHRONY

● p can’t know at what exact time q sent the Promise, only that
t0≤t1≤t2

● p has to be conservative and assume that t1=t0
● p holds lease until t3=t0+10s

p

q
t0

Prepare Promise

t3=t0+10st2 t4=t1+10st1

KTH-2023

ID2203

CLOCK DRIFT

● To understand the clock drift issue, we have to describe
clocks and time more formally and in more detail

● A clock at a process pi is a monotonically increasing function
from real-time to some real value

KTH-2023

ID2203

THE CLOCK

● Each process pi has an associated clock Ci
● Ci(.) is modelled as a function from real times to clock times

● Real time is defined by some time standard, such as Coordinated
Universal Time (UTC)

● The unit of time in UTC is the SI second, whose definition
states that:
● “The second is the duration of 9 192 631 770 periods of the

radiation corresponding to the transition between the two
hyperfine levels of the ground state of the caesium 133 atom.”

KTH-2023

ID2203

CLOCK INTERNALS

● A clock is implemented as an oscillator and a counter register
that is incremented for each period of the oscillator
● The oscillator frequency is not completely stable, varying

depending on environmental conditions such as
temperature, and ageing

● The oscillator’s manufacturer specifies a nominal
frequency and an error bound

KTH-2023

ID2203

CLOCK INTERNALS

● The clock rate specifies how much the clock is increment
each second of real time.

● For example: The counter increment by nominally 1,000,000
ticks per second, with an error bounded to ±100 ticks per
second.

● From here on we normalise the clock rate such that 1.0 is the
nominal rate and the error is given by 𝜌 such that

● In our example 𝜌=100/1,000,000=100ppm

1� ⇢ =
1� ⇢2

1 + ⇢
⇡ 1

1 + ⇢
 dC

dt
 1 + ⇢

<latexit sha1_base64="9iz5C8Y+sIWWwy4ygGnt5nDfZzk=">AAACQHicbZDNS8MwGMZTP+f8mnr0EhyCII52COpBGO7icYJ1g3WONE23sLSpSSqO0n/Ni/+BN+9ePKh49WS2VpibLwSe/J735U0eN2JUKtN8MebmFxaXlgsrxdW19Y3N0tb2jeSxwMTGnHHRcpEkjIbEVlQx0ooEQYHLSNMd1Ed+854ISXl4rYYR6QSoF1KfYqQ06pZa1pEj+hyeQ8cXCCfZ9baaJtbhSKXQQVEk+MOvP2EwcpdTr54mnspR5ndLZbNijgvOCisXZZBXo1t6djyO44CECjMkZdsyI9VJkFAUM5IWnViSCOEB6pG2liEKiOwk4wRSuK+JB30u9AkVHNPJiQQFUg4DV3cGSPXltDeC/3ntWPmnnYSGUaxIiLNFfsyg4nAUJ/SoIFixoRYIC6rfCnEf6UyUDr2oQ7Cmvzwr7GrlrGJdHZdrF3kaBbAL9sABsMAJqIFL0AA2wOARvIJ38GE8GW/Gp/GVtc4Z+cwO+FPG9w+Mpq9f</latexit><latexit sha1_base64="9iz5C8Y+sIWWwy4ygGnt5nDfZzk=">AAACQHicbZDNS8MwGMZTP+f8mnr0EhyCII52COpBGO7icYJ1g3WONE23sLSpSSqO0n/Ni/+BN+9ePKh49WS2VpibLwSe/J735U0eN2JUKtN8MebmFxaXlgsrxdW19Y3N0tb2jeSxwMTGnHHRcpEkjIbEVlQx0ooEQYHLSNMd1Ed+854ISXl4rYYR6QSoF1KfYqQ06pZa1pEj+hyeQ8cXCCfZ9baaJtbhSKXQQVEk+MOvP2EwcpdTr54mnspR5ndLZbNijgvOCisXZZBXo1t6djyO44CECjMkZdsyI9VJkFAUM5IWnViSCOEB6pG2liEKiOwk4wRSuK+JB30u9AkVHNPJiQQFUg4DV3cGSPXltDeC/3ntWPmnnYSGUaxIiLNFfsyg4nAUJ/SoIFixoRYIC6rfCnEf6UyUDr2oQ7Cmvzwr7GrlrGJdHZdrF3kaBbAL9sABsMAJqIFL0AA2wOARvIJ38GE8GW/Gp/GVtc4Z+cwO+FPG9w+Mpq9f</latexit><latexit sha1_base64="9iz5C8Y+sIWWwy4ygGnt5nDfZzk=">AAACQHicbZDNS8MwGMZTP+f8mnr0EhyCII52COpBGO7icYJ1g3WONE23sLSpSSqO0n/Ni/+BN+9ePKh49WS2VpibLwSe/J735U0eN2JUKtN8MebmFxaXlgsrxdW19Y3N0tb2jeSxwMTGnHHRcpEkjIbEVlQx0ooEQYHLSNMd1Ed+854ISXl4rYYR6QSoF1KfYqQ06pZa1pEj+hyeQ8cXCCfZ9baaJtbhSKXQQVEk+MOvP2EwcpdTr54mnspR5ndLZbNijgvOCisXZZBXo1t6djyO44CECjMkZdsyI9VJkFAUM5IWnViSCOEB6pG2liEKiOwk4wRSuK+JB30u9AkVHNPJiQQFUg4DV3cGSPXltDeC/3ntWPmnnYSGUaxIiLNFfsyg4nAUJ/SoIFixoRYIC6rfCnEf6UyUDr2oQ7Cmvzwr7GrlrGJdHZdrF3kaBbAL9sABsMAJqIFL0AA2wOARvIJ38GE8GW/Gp/GVtc4Z+cwO+FPG9w+Mpq9f</latexit><latexit sha1_base64="9iz5C8Y+sIWWwy4ygGnt5nDfZzk=">AAACQHicbZDNS8MwGMZTP+f8mnr0EhyCII52COpBGO7icYJ1g3WONE23sLSpSSqO0n/Ni/+BN+9ePKh49WS2VpibLwSe/J735U0eN2JUKtN8MebmFxaXlgsrxdW19Y3N0tb2jeSxwMTGnHHRcpEkjIbEVlQx0ooEQYHLSNMd1Ed+854ISXl4rYYR6QSoF1KfYqQ06pZa1pEj+hyeQ8cXCCfZ9baaJtbhSKXQQVEk+MOvP2EwcpdTr54mnspR5ndLZbNijgvOCisXZZBXo1t6djyO44CECjMkZdsyI9VJkFAUM5IWnViSCOEB6pG2liEKiOwk4wRSuK+JB30u9AkVHNPJiQQFUg4DV3cGSPXltDeC/3ntWPmnnYSGUaxIiLNFfsyg4nAUJ/SoIFixoRYIC6rfCnEf6UyUDr2oQ7Cmvzwr7GrlrGJdHZdrF3kaBbAL9sABsMAJqIFL0AA2wOARvIJ38GE8GW/Gp/GVtc4Z+cwO+FPG9w+Mpq9f</latexit>

KTH-2023

ID2203

CLOCK DRIFT

● Clock Drift is the accumulated effect of a clock rate that
deviates from real time.

● Ideally,
dC
dt

= 1

Real time

Clock time

Accumulated clock time

KTH-2023

ID2203

PROPOSER LOGIC

● Reason about what happens if proposer uses clock time instead
of real time without any compensation?
● Clock runs faster than real time: safety cannot be violated

as proposer believes that its lease expired sooner than it
actually did

● Clock runs slower than real time: proposer believes it holds
lease even after lease has expired, and proposer may respond
to read, and violate safety

KTH-2023

ID2203

PROPOSER LOGIC

● Proposer must compensate by assuming its clock is running as

slowly as possible (), and compensate

● at most 10 seconds real time
●

dC
dt

= 1 − ρp

dt ≤ 10
dC = dt(1 − ρp) ≤ 10(1 − ρp)

KTH-2023

ID2203

ACCEPTOR LOGIC

● What happens if acceptor uses clock time instead of real time
without compensation?
● Clock runs faster than real time: acceptor believes its

promise expired too soon, and may give new lease early,
violating safety.

● Clock runs slower than real time: safety cannot be
violated if acceptor waits longer than necessary to give
new promise.

KTH-2023

ID2203

ACCEPTOR LOGIC

● Acceptor must assume its clock is running as fast as possible

(), and compensate

● for 10 seconds real time
●

dC
dt

= 1 + ρa

dt ≥ 10
dC = dt(1 + ρa) ≥ 10(1 + ρa)

KTH-2023

ID2203

ACCEPTOR LEASES

● Acceptors have new state variable
● : Clock time when last promise was given

● If acceptor gets Prepare(n) at time T and

● and
● then give promise to reject rounds lower than n, and not

give new promises within the next 10s (set)
● Otherwise respond with Nack

tprom

pj

n > nprom Cj(T) − tprom > 10(1 + ρj)

tprom = Cj(T)

KTH-2023

ID2203

PROPOSER LEASES

● Proposer has a new state variable
● Clock time before “Prepare” was broadcasted

● If gets promises from a majority, knows that no other
process can become leader until 10s after

● Therefore, can serve local state reads if:
● Prepare phase is successful (quorum-received prepare)
●

tL
tL :
pi pi

tL

pi

Ci(T) − tL < 10(1 − ρi)

KTH-2023

ID2203

TIME DIAGRAM

p1

p2

p3

t0

tL=C1(t0)

Prepare

t1

Promise

C1(t3) = tL + 10 * (1 − ρ1)

t3t2 t4

C2(t4) = tprom + 10 * (1 + ρ)

Prepare

Nack

p1 knows it has lease
between t2 and t3

p2 may grant
another promise
after t4

tprom=C2(t1)

KTH-2023

ID2203

LEASE EXTENSIONS

● As long as is alive and well it should remain the leader
● can ask for lease extension in the meantime

● i.e. a few seconds before the lease expires, records the
current clock time t and asks for an extension

● If an extension is granted by a majority of replicas then
holds the lease until 10s after t

● Each acceptor adjust its accordingly

pi
pi

pi

pi

tprom

ID2203

KTH-2023

Interval Clocks

KTH-2023

ID2203

SHARED MEMORY REFRESHER

• A set of atomic registers

• Two operations:

• Write(v): update register’s value to v

• Read(): return the register’s value

• Correctness: Linearizability

• If operation o1 returns before operation o2 is invoked, then o1 must be ordered
before o2 (the linearization point of o1 is before the linearization point of o2)

pi

pj

o1

o2

t1 t2

37

KTH-2023

ID2203

ALGORITHM IN COURSE: RIWCM

The Read-Impose Write-Consult-Majority

algorithm does 2 round-trips to a majority of
processes for both reads and writes

p1

p2

p3

Value
Ack

Value

Invoke
Read

Read
Returns

Invoke
Write

Write
Returns

Ack

Query

Update

Query

Update

38

KTH-2023

ID2203

PHASES

•A phase is one round-trip of communication
to a majority of replicas

•Refer to the first phase as the query phase
and the second phase as the update phase

39

KTH-2023

ID2203

READ OPERATION

• Process pi invokes read operation or

• In the query phase, each process responds with the highest
timestamp-value pair received

• pi picks the highest timestamp-value pair received in the

query phase, denoted (, v)

• Before returning value v, pi performs an update phase using
the pair

• This way, any operation invoked after or is completed is
guaranteed to see a timestamp greater than or equal to

ts

ts
40

KTH-2023

ID2203

OPTIMIZING READ OPERATION

• If in the query phase all processes in a majority set respond with the same
timestamp-value pair (, v), then the update phase can be skipped.

• This works since a majority of the processes already store a
timestamp-value pair with a timestamp greater than or equal to ts

• In good conditions (network is stable, low contention) this is likely to be
the case, and reads can complete in a single round-trip

ts

41

KTH-2023

ID2203

WRITE OPERATION

• Process pi invokes write operation ow

• In the query phase, each process responds with the highest

timestamp-value pair received

• After the query phase, pi picks a unique timestamp higher than

all timestamps received and pairs it with the value to write
• In the update phase, each process stores this timestamp-value

pair if the pair is greater the timestamp than the previously
stored pair’s timestamp

42

KTH-2023

ID2203

OPTIMIZING WRITE OPERATION

• If processes have access to clocks then it is possible to skip the

query phase.

• Process pi invoking a write instead picks a timestamp by reading the
current clock time and forms a timestamp ts=(Ci, i)

• Timestamps are time-pid pairs; (t, pid)

• How well clocks are synchronized will determine if the atomicity
property of the Atomic Register abstraction is satisfied.

43

ID2203

KTH-2023

Synchronized Clocks

KTH-2023

ID2203

CLOCK SYNCHRONIZATION

• Clocks Ci and Cj are δ-synchronized if,
for all times t, |Ci(t)-Cj(t)| ≤ δ

• Saying that Ci and Cj are synchronized to within 10ms
means that δ=10ms

• Perfectly synchronized clocks :if each pair of clocks
has δ = 0-synchronized

• Loosely synchronized clocks attempt to be as closely
synchronized as possible, but give no guarantees

• In practice, can be arbitrarily out of sync…(no guarantee)
45

KTH-2023

ID2203

CORRECTNESS OF WRITE OPTIMIZATION

• If clocks are perfectly synchronized then registers satisfy linearizability

• o1 is read or write, o2 is read: by the same argument as before, o1 is

ordered before o2

• o1 is write, o2 is write: as o1 is completed before o2 is invoked,

ts(o1)<ts(o2), and value written by o1 is overwritten by value of o2

• o1 is read, o2 is write: exists a write o0 that was invoked before o1

completed, ts(o0)=ts(o1)<ts(o2)

• Writes (and often reads) take one round-trip, and correctness is guaranteed

46

KTH-2023

ID2203

CORRECTNESS OF WRITE OPTIMIZATION

If clocks are loosely synchronized then registers don’t satisfy linearizability

If write o1 is complete before write o2 is invoked then the
timestamp picked by o1 may still be greater than the
timestamp picked by o2

Important to remember in practice

Cassandra DB (1.0) used loosely synchronised clocks in this

way, and could therefore not guarantee linearizability. It

later adopted a replicated log-based approach.

47

KTH-2023

ID2203

CORRECTNESS – LOGICAL CLOCKS

If clocks are logical clocks (Lamport clocks) then the shared memory
doesn’t satisfy linearizability

Instead, it can only satisfy sequential consistency

48

KTH-2023

ID2203

PROBLEM SOLVED?

Using perfectly synchronized clocks (PSCs) guarantees linearizability,
so just use PSCs and everything is good?

No, since PSCs are impossible to implement

Any measurement contains some uncertainty

Synchronizing clocks across an asynchronous network adds
more uncertainty

We can instead introduce a new practical kind of clock…

49

KTH-2023

ID2203

INTERVAL CLOCKS

• An interval clock (IC) at process pi read at time t returns a pair
Ci(t)=[lo, hi]

• Represents an interval

• The correct time t is guaranteed to be in interval

•

• Synchronisation uncertainty is exposed in width of interval

• This is the strongest guarantee that can be implemented in practice

• Too wide interval - can only hurt protocol performance

• Too small interval - can hurt correctness

[Ci(t) . lo…Ci(t) . hi]

[Ci(t) . lo ≤ t ≤ Ci(t) . hi]

50

KTH-2023

ID2203

CLOCK SYNCHRONIZATION AT GOOGLE

51

shard - 1
shard - 2
shard - 3

…

shard - 1
shard - 2
shard - 3

…

shard - 1
shard - 2
shard - 3

…

Paxos Group per shard

Spanner

Database

TrueTime

Service

clocks clocks clocks

Atomic Clock Atomic Clock Atomic Clock

2 Phase

commit

sync sync sync
periodically periodically periodically

GPS Synchronization

time

IC before sync

IC after sync t

t’

TTinterval TT.now()
writes - 2PC + locking

reads - no 2PC, locking

KTH-2023

ID2203

OVERLAPPING INTERVALS

• The interval values of a set of clocks read at the same time t are
guaranteed to overlap in the correct time

52

C1(t).hi
C2(t).hi

C3(t).hitC1(t).lo
C2(t).lo

C3(t).lo

Overlap

KTH-2023

ID2203

INTERVAL CLOCK MEASUREMENTS

53

● Ci read at t1, Cj read at t2, and t1 < t2

● Ci(t1).lo ≤ t1 ≤ Ci(t1).hi

● Cj(t2).lo ≤ t2 ≤ Cj(t2).hi

● Implies: Ci(t1).lo < Cj(t2).hi

Cj(t2).hi
t1Ci(t1).lo

Cj(t2).lo
t2

● Ci(t1).lo ≤ t1 < t2 ≤ Cj(t2).hi

KTH-2023

ID2203

BYPASSING THE QUERY PHASE

• Two changes:

• In process pi that is invoking a write operation, use timestamp ts = (Ci.hi, i)

• Before an operation o (a read or a write) executed by process can return it has to

wait/delay until

• ts(o) : timestamp associated with the value that is read or written by operation o

pi

ts(o) . t < Ci . lo

54

KTH-2023

ID2203

INTUITION BEHIND WAITING

• o1 is allowed to return when ICs guarantee that later write will pick a higher
timestamp

55

p1

p2

p3
AckWrite

Invoke
Write o1

Write o1
Returns

Invoke
Write o2

t0 t1 t2

p1 must wait until
ts(o1).t ≤ C1(t1).lo

ts(o1).t =C1(t0).hi ts(o2).t = C2(t2).hi

IC guarantee:
 If t1 < t2 then

 C1(t1).lo < C2(t2).hi

We have:
 ts(o1).t ≤ C1(t1).lo < C2(t2).hi = ts(o2).t

Hence: ts(o1) < ts(o2)

...

KTH-2023

ID2203

INTUITION BEHIND WAITING

• If o1 is completed before o2 is

invoked, then o1 must be
ordered before o2

• Case: o1 does not wait

• o1 completes before o2 is
issued: no guarantee that o1

before o2 (ts(o1).t > ts(o2).t)

56

p1

p2

p3
AckWrite

Invoke
Write o1 Write o1

Returns

Invoke
Write o2

t0 t1 t2

p1 must wait until
ts(o1).t ≤ C1(t1).lo

ts(o1).t =C1(t0).hi

ts(o2).t = C2(t2).hi

Write o2
Returns

ts(o2).t ts(o1).t

KTH-2023

ID2203

CORRECTNESS

• Updated algorithm satisfies linearizability:

• is read or write, is read: by the same argument as before, is ordered before

• is read or write, is write:

• is completed at by pi, and is invoked at t2 by pj

• < implies that

• Since , the value in o1 is overwritten by the value of

o1 o2 o1 o2

o1 o2

o1 t1 o2

t1 t2 ts(o1) . t ≤ Ci(t1) . lo < Cj(t2) . hi = ts(o2) . t
ts(o1) < ts(o2) o2

57

pi

pj

o1

o2

t1 t2

KTH-2023

ID2203

FINAL ALGORITHM

58

● On Init:
● ts := (0, 0)
● v := 0

● On ReadInvoke:
● reading := true
● readlist := [⊥]N

● send 〈Read〉 to Π
● On 〈Read〉 from pi:

● send 〈Value, ts, v〉 to pi

● On 〈Value, ts’, v’〉 from q:
● readlist[q] := (ts’, v’)
● if #(readlist) > N/2:
● (rts, rv) = max(readlist)
● if all pairs in readlist are equal:
● DoReturn()
● else:
● acks := 0
● send 〈Write, rts, rv〉 to Π

■ On WriteInvoke(v):
❑ reading := false
❑ rts := (Ci.hi, i)
❑ acks := 0
❑ send 〈Write, rts, v〉 to Π

■ On 〈Write, ts’, v’〉 from pi:
❑ if ts’ > ts:
❑ ts := ts’
❑ v := v’
❑ send 〈Ack〉 to pi

■ On 〈Ack〉:
❑ acks := acks + 1
❑ if acks > N/2:
❑ DoReturn()

■ fun DoReturn():
❑ wait until rts.t < Ci.lo
❑ if reading: trigger ReadReturn(rv)
❑ else: trigger WriteReturn

KTH-2023

ID2203

GOOGLE SPANNER - FAST READS AND MVCC

59

Server 1

Server 2

[0,x=0]

t

t

[0,x=0]

T1

[T1,x=1]

T2

[T2,x=2]

waiting interval T2

write complete

[25]

waiting interval T1

write complete

[18] externally consistent dependency

[0,x=0]
[18,x=1]
[25,x=2]

[0,y=0]
[17,y=9]
[19,y=6]

[0,z=0]
[5,z=12]
[37,z=3]

Reads Can Be consistently issued
on a time stamp (e.g., at t = 18)

MVCC (Multi-Version Concurrency Control)

… … …

