
ID2203

KTH-2023

Reconfigurable
RSMs

Harald Ng

Distributed Systems

Advanced Course

KTH-2023

ID2203

COURSE TOPICS

2

‣ Intro to Distributed Systems

‣ Basic Abstractions and Failure Detectors

‣ Reliable and Causal Order Broadcast

‣ Distributed Shared Memory

‣ Consensus, RSMs (Omni-Paxos, Raft, etc.)

‣ Dynamic Reconfiguration

‣ Time Abstractions and Interval Clocks (Spanner etc.)

‣ Consistent Snapshotting (Stream Data Management)

‣ Distributed ACID Transactions (Cloud DBs)

KTH-2023

ID2203

RECAP

• From naïve Sequence Paxos to Sequence Paxos 

• Ballot Leader Election and partial connectivity:

• Quorum-connected Leader Election 

• Handling crashes and session-drops

• Get synchronized before handling anything new. 

• Today: Reconfiguration

• How to add/remove processes correctly and efficiently. 

• Raft and ZooKeeper

3

ID2203

KTH-2023

Reconfiguration

KTH-2023

ID2203

MOTIVATION

• A Replicated State Machine (RSM) is running on a set of N processes
(typically 3 or 5)

• Can tolerate up to failures.

• Impossible to know if a process is faulty or just slow in
Asynchronous model.

• Need a way to replace any process.

• Scaling up (more powerful hardware) or out (more processes)

⌊N/2⌋

5

KTH-2023

ID2203

POLICY (WHEN) VS MECHANISM (HOW)

• External agent decides when to reconfigure (autonomous or
human)

• The agent chooses the new configuration

• E.g. and

• In general, can be a completely new set of processes.

• Only concerned with the mechanism

• Policy depends on application, deployment settings etc.

cold = {p1, p2, p3} cnew = {p1, p2, p4}
cnew

6

KTH-2023

ID2203

CONFIGURATIONS

• Each configuration is conceptually an instance of Sequence Paxos,
each with its own BLE instance.

• Sequence Paxos and BLE instances of different configurations do
not communicate! 

• A process p that is part of has a replica instance

• A process may have multiple replica instances in different

configurations

ci

ci ri,p

7

S. Haridi, KTHx ID2203.2x

Configurations
■ Each configuration is conceptually an instance of

Sequence-Paxos

■ Replicas in configuration c0 = {r01,r02,r03}
■ A process p1 may act as multiple replicas

❑ In different configurations, for example {r01,r11,r21}

4

r01

r02 r03

r11

r12

r21

r22 r23

c0

r14

r13

c1 c2

Process p1

KTH-2023

ID2203

STOP-SIGN

• Must safely stop the current configuration before starting

• A special stop-sign (SS) is proposed. Once it is chosen, the

sequence in cannot be extended and is stopped. The sequence
with SS as last command is the final sequence in

ci ci+1

ci ci
c0

8

S. Haridi, KTHx ID2203.2x

Final Sequence in c0

● Replicas r0,1, r0,2 and r0,3 in configuration c0

● SS0 is the stop-sign command in c0

● The final sequence in c0 is σ0 = 〈C2, SS0〉

● Any Sequence in rounds n > 3 will be σ0

Round Accepted by r0,1 Accepted by r0,2 Accepted by r0,3

... 〈C2, SS0〉 〈C2, SS0〉 〈C2, SS0〉

n=3 〈C2, SS0〉 〈C2, SS0〉 〈C2, SS0〉

n=2 〈C2〉 〈C2〉

n=1 〈C1〉

n=0 〈〉 〈〉 〈〉

• The final sequence in is . Any sequence in round will be c0 σ0 = ⟨C2, SS0⟩ n > 3 σ0

KTH-2023

ID2203

OMNI-PAXOS

• Omni-Paxos executes in one configuration until a reconfiguration occurs,
then moves to new configuration. 

• Processes transition to the new configuration asynchronously. 

• A configuration is active once a majority of processes have started in the
new configuration.

• For safety, there can at most be one running configuration at all times.

9

phase to the leader election along with a CheckQuorum mech-
anism [19]. These changes resolve the chained scenario but
not the deadlock scenario. The deadlock scenario in Raft is
caused by a design defect that integrates log progress into
leader election. To mitigate this would require fundamental
changes that essentially form a new protocol.

Partial connectivity affects other RSM protocols as well.
Multi-Paxos [33] and VR [27] use a failure detector on the
leader. When a server suspects the leader to have failed, the
round number is incremented to create a leader change. As in
the chained scenario, this will cause a livelock with repeated
leader changes in any scenario where a server is not directly
connected to the leader. Zab’s Fast Leader Election [30] has a
hard requirement on log progress similar to Raft. Addition-
ally, a follower in Zab and VR only votes for another leader
if it observes a majority that also suspects a leader failure.
These protocols will thus be susceptible to the deadlock sce-
nario as well. Appendix A provides a detailed analysis of the
mentioned RSM protocols and partial connectivity.
Key Observations: The chained and deadlock scenarios epit-
omize the challenges of partial connectivity for RSMs. The
chained scenario shows that leader election protocols equiv-
alent to failure detectors are not sufficient. Such protocols
cause disruptions as soon as a server is disconnected from
the leader and thus require all servers to eventually agree on
the same leader. For the purpose of RSM, it is instead enough
having a stable leader connected to a majority. Furthermore,
the deadlock scenario shows that leader election must not
have any hard requirements on servers apart from connectiv-
ity. A server should be an eligible candidate as long as it is
connected to a majority. Thus, an RSM protocol must comple-
ment this with a synchronization phase, since a newly-elected
leader might not have all the committed entries.

In the rest of this paper, we present Omni-Paxos, an RSM
system designed with these observations in mind to overcome
partial connectivity and other drawbacks of tightly-coupled
protocols. We argue for a system with a decoupled design
that separates the core RSM mechanisms of log replication,
leader election, and reconfiguration into different components.
Log replication is only responsible for maintaining a consis-
tent log. Leader election focuses on electing a leader with
adequate connectivity to make progress in log replication.
Reconfiguration provides fast and efficient migration to new
servers while maintaining safety across configurations.

3 System Overview

Omni-Paxos is a system that implements RSM functionalities
by separating the three core mechanisms of log replication
(§4), leader election (§5) and reconfiguration (§6) into three
different components, each with a clear objective. As depicted
in Figure 2, Omni-Paxos provides the view of a single con-
sistent replicated log which is accessible through a service
layer, where every server in Omni-Paxos stores its local copy

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Se
rv

ic
e Replicated Log

C0

Lo
g

R
ep

lic
at

io
n

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

C1 C2configurations

Decided

Figure 2: Architecture of Omni-Paxos.

of the replicated log. The replicated log is populated by a
single Sequence Paxos instance at a time. Sequence Paxos
is a leader-based protocol that maintains the correctness and
consistency of the replicated log. A Sequence Paxos instance
is accompanied by its own Ballot Leader Election (BLE).
BLE is responsible for electing a leader and provides liveness
in Sequence Paxos even with extreme partial connectivity
where only one server is connected to a majority. Upon a
reconfiguration, the current Sequence Paxos instance is first
stopped before the new one takes over. The service layer is
responsible for transitioning to the new configuration safely.
This includes migrating the log to new servers and starting
the new Sequence Paxos and BLE instances.
Preliminaries. We assume the fail-recovery model where
servers might fail (non-byzantine) and recover after an arbi-
trarily long time. A correct server is a server that might fail and
recover a finite number of times. State stored in non-volatile
storage is recoverable. We assume a partially synchronous
model where messages can be dropped and delayed, but there
are long enough periods of synchrony for algorithms to make
progress. Servers use bidirectional links to exchange mes-
sages. To simplify the algorithm design, we assume session-
based FIFO perfect links. In practice, we use TCP (session
drops are handled in §4.1.3). Lastly, partitions could cause a
set of links to be temporarily down as discussed in §2. During
this period, messages are systematically dropped.

4 Sequence Paxos - Log Replication

In this section, we present Sequence Paxos, the log replica-
tion protocol in Omni-Paxos. Sequence Paxos is a Sequence
Consensus algorithm that, contrary to Multi-Paxos, replicates
a log in strict sequential order without gaps. As argued by
Raft [31], this approach leads to both a more practical and
understandable protocol. To guide the design of Sequence
Paxos, we present the Sequence Consensus properties that are
inspired by Generalized Consensus [21]:
SC1. Validity: If a server decides on a log L then L only
contains proposed commands.
SC2. Uniform Agreement: For any two servers that decided
logs L and L0 respectively then one is the prefix of the other.
SC3. Integrity: If a server decides on a log L and later decides
on L0 then L is a strict prefix of L0.

3

KTH-2023

ID2203

CONFIGURATIONS

• Processes operate at different rates and the leader could fail before
everybody have reached the stop-sign.

• Thus, a process cannot just shut down its replica instance in
once it has seen the decided stop-sign.

• As a result, a process p can have multiple replica instances at the
same time, each with different state.

• e.g. p is stopped in , running in and not-started in

ci

c1 c2 c3

10

S. Haridi, KTHx ID2203.2x

Configurations
■ Each configuration is conceptually an instance of

Sequence-Paxos

■ A process p may act as multiple replicas
❑ in different configurations, for example {r11,r21,r31}
❑ p is stopped in c1 , running in c2 , not-started in c3

20

r11

r12 r13

r21

r22

r31

r32 r33

c1

r24

r23

c2 c3

KTH-2023

ID2203

STARTING A NEW CONFIGURATION

• Once is decided, the new configuration can start. 

• contains complete information about :

• The set of processes in

• The new configuration number: cid

• The identifier for each replica instance in  

• A process that is not part of but added in must get notified
about the reconfiguration.

• Log migration: to have the correct state, it must catch up the
final sequence before starting its replica instance in  

• A process p that is part of both and will eventually see that
is decided in and start its replica instance in

SSi ci+1

SSi ci+1
ci+1

ci+1

ci ci+1

σi ci+1

ci ci+1 SSi
ci ci+1

11

KTH-2023

ID2203

SERVICE LAYER

• The notification of reconfiguration and log migration to new processes are
performed in the service layer.

• On top of log replication. 

• Advantages of having a separated service layer

• Parallel log migration

• Flexible transmission scheme

• Can pull log entries from processes that have not even reached yet! SSi

12

phase to the leader election along with a CheckQuorum mech-
anism [19]. These changes resolve the chained scenario but
not the deadlock scenario. The deadlock scenario in Raft is
caused by a design defect that integrates log progress into
leader election. To mitigate this would require fundamental
changes that essentially form a new protocol.

Partial connectivity affects other RSM protocols as well.
Multi-Paxos [33] and VR [27] use a failure detector on the
leader. When a server suspects the leader to have failed, the
round number is incremented to create a leader change. As in
the chained scenario, this will cause a livelock with repeated
leader changes in any scenario where a server is not directly
connected to the leader. Zab’s Fast Leader Election [30] has a
hard requirement on log progress similar to Raft. Addition-
ally, a follower in Zab and VR only votes for another leader
if it observes a majority that also suspects a leader failure.
These protocols will thus be susceptible to the deadlock sce-
nario as well. Appendix A provides a detailed analysis of the
mentioned RSM protocols and partial connectivity.
Key Observations: The chained and deadlock scenarios epit-
omize the challenges of partial connectivity for RSMs. The
chained scenario shows that leader election protocols equiv-
alent to failure detectors are not sufficient. Such protocols
cause disruptions as soon as a server is disconnected from
the leader and thus require all servers to eventually agree on
the same leader. For the purpose of RSM, it is instead enough
having a stable leader connected to a majority. Furthermore,
the deadlock scenario shows that leader election must not
have any hard requirements on servers apart from connectiv-
ity. A server should be an eligible candidate as long as it is
connected to a majority. Thus, an RSM protocol must comple-
ment this with a synchronization phase, since a newly-elected
leader might not have all the committed entries.

In the rest of this paper, we present Omni-Paxos, an RSM
system designed with these observations in mind to overcome
partial connectivity and other drawbacks of tightly-coupled
protocols. We argue for a system with a decoupled design
that separates the core RSM mechanisms of log replication,
leader election, and reconfiguration into different components.
Log replication is only responsible for maintaining a consis-
tent log. Leader election focuses on electing a leader with
adequate connectivity to make progress in log replication.
Reconfiguration provides fast and efficient migration to new
servers while maintaining safety across configurations.

3 System Overview

Omni-Paxos is a system that implements RSM functionalities
by separating the three core mechanisms of log replication
(§4), leader election (§5) and reconfiguration (§6) into three
different components, each with a clear objective. As depicted
in Figure 2, Omni-Paxos provides the view of a single con-
sistent replicated log which is accessible through a service
layer, where every server in Omni-Paxos stores its local copy

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Se
rv

ic
e Replicated Log

C0

Lo
g

R
ep

lic
at

io
n

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

C1 C2configurations

Decided

Figure 2: Architecture of Omni-Paxos.

of the replicated log. The replicated log is populated by a
single Sequence Paxos instance at a time. Sequence Paxos
is a leader-based protocol that maintains the correctness and
consistency of the replicated log. A Sequence Paxos instance
is accompanied by its own Ballot Leader Election (BLE).
BLE is responsible for electing a leader and provides liveness
in Sequence Paxos even with extreme partial connectivity
where only one server is connected to a majority. Upon a
reconfiguration, the current Sequence Paxos instance is first
stopped before the new one takes over. The service layer is
responsible for transitioning to the new configuration safely.
This includes migrating the log to new servers and starting
the new Sequence Paxos and BLE instances.
Preliminaries. We assume the fail-recovery model where
servers might fail (non-byzantine) and recover after an arbi-
trarily long time. A correct server is a server that might fail and
recover a finite number of times. State stored in non-volatile
storage is recoverable. We assume a partially synchronous
model where messages can be dropped and delayed, but there
are long enough periods of synchrony for algorithms to make
progress. Servers use bidirectional links to exchange mes-
sages. To simplify the algorithm design, we assume session-
based FIFO perfect links. In practice, we use TCP (session
drops are handled in §4.1.3). Lastly, partitions could cause a
set of links to be temporarily down as discussed in §2. During
this period, messages are systematically dropped.

4 Sequence Paxos - Log Replication

In this section, we present Sequence Paxos, the log replica-
tion protocol in Omni-Paxos. Sequence Paxos is a Sequence
Consensus algorithm that, contrary to Multi-Paxos, replicates
a log in strict sequential order without gaps. As argued by
Raft [31], this approach leads to both a more practical and
understandable protocol. To guide the design of Sequence
Paxos, we present the Sequence Consensus properties that are
inspired by Generalized Consensus [21]:
SC1. Validity: If a server decides on a log L then L only
contains proposed commands.
SC2. Uniform Agreement: For any two servers that decided
logs L and L0 respectively then one is the prefix of the other.
SC3. Integrity: If a server decides on a log L and later decides
on L0 then L is a strict prefix of L0.

3

KTH-2023

ID2203

EFFICIENT HAND-OVER

13

A

B

C

ballot: ⟨1, B, true⟩
leader: ⟨1, B, true⟩

ballot: ⟨0, A, true⟩
leader: ⟨1, B, true⟩

ballot: ⟨0, C, true⟩
leader: ⟨1, B, true⟩

ballot: ⟨1, B, true⟩
leader: ⟨1, B, true⟩

ballot: ⟨0, A, true⟩
leader: ⟨2, C, true⟩

ballot:⟨2, C, true⟩
leader: ⟨2, C, true⟩

A

B

C

Leader

Stale leader

Connected Channel
Disconnected Channel
Heartbeat Reply

a) Chained scenario: Server A adopts C as the leader.

A

B

C

D E

ballot: ⟨0, A, true⟩
leader: ⟨1, C, true⟩

ballot: ⟨0, D, true⟩
leader: ⟨1, C, true⟩

ballot: ⟨0, B, true⟩
leader:⟨1, C, true⟩

ballot: ⟨0, E, true⟩
leader:⟨1, C, true⟩

ballot: ⟨1, C, true⟩
leader:⟨1, C, true⟩

A

B

C

D E

1 2 3 41 2

1 21 2 3

1 2 3

ballot: ⟨2, A, true⟩
leader:⟨2, A, true⟩

ballot: ⟨0, D, false⟩
leader: ⟨1, C, true⟩

ballot: ⟨0, E, false⟩
leader: ⟨1, C, true⟩

ballot: ⟨1, C, false⟩
leader: ⟨1, C, true⟩

ballot: ⟨0, B, false⟩
leader: ⟨1, C, true⟩

b) Deadlock scenario: Server A successfully becomes the leader.

Figure 7: Resilience to partial connectivity in Omni-Paxos.

A
C0 C1

0 100 200

B

E
B:

B:

B:

D

C A
0 100 200

B

E

D

C
A:

B:

B:

B:

A:

A:

a) Leader-Based Log Migration b) Parallel Log Migration

New
Servers

in C1

New
Servers

in C1

: stop-sign

Figure 8: Example of log migration variants.

sketch in Appendix C). Note that this log migration only
involves decided entries and is performed in the service layer,
completely isolated from the underlying log replication.

6.1 Benefits of The Service Layer
The following benefits are introduced by the service layer:
Parallel Log Migration. Having a service layer separated
from log replication allows for faster and more flexible re-
configuration where more servers other than the leader can
contribute to log migration. This approach can effectively re-
duce wait-time when a new server joins, alleviating heavy data
transfer duties imposed on the leader and mitigating possible
down-time. Figure 8 depicts log migration (a) restricted to the
leader within the same log replication instance, vs (b) when it
is performed in the service layer outside log replication. As
shown by the example in Figure 8(a), if the leader is solely
responsible for log migration, it has to transfer the complete
log to every new server {C,D,E}. With parallel migration in
Figure 8(b), the new servers can instead fetch different log
segments in parallel from any server. Since decided entries
cannot be possibly retracted, these can even be fetched from
servers that have not reached the SS in ci yet such as the first
100 log entries migrated from A in this example. Custom mi-
gration schemes can be applied at the service layer to further
optimize for specific use cases, such as to reduce cross-data
center transmission costs similar to MongoDB [37].
Partial Connectivity. Parallel migration also provides bet-
ter resilience to partial connectivity during reconfiguration.
Protocols that perform reconfiguration within the same log
replication instance rely on the leader to migrate the log to
new servers. For example in Figure 8(a), if either C, D or E

get disconnected from leader B they cannot catch up the log
and start in C1. Thus, if a majority in C1 are new servers and
they all get disconnected from B, the reconfiguration cannot
complete. Whereas, in Omni-Paxos, as long as some server in
C1 manages to collect all log entries from reachable servers in
C0, it can then migrate them to its peers via the service layer.
Isolated Configurations. Essentially, the replicated log con-
sists of multiple segments that end with an SS entry. Each
segment is implemented by an underlying configuration in
which BLE and Sequence Paxos components can only com-
municate with others in the same configuration. Reconfigu-
ration can therefore be used for software upgrade to deploy
new versions of the underlying protocols between different
segments without compatibility issues. This design also sup-
ports segmented virtualization where different segments of
the log can reside in different storage units as in Delos [15].
This differentiates from Raft’s “joint consensus” approach
that imposes additional logic at the leader (even when it is not
part of the next configuration) [31].

7 Evaluation

The goal of Omni-Paxos is to provide resilience against any
network partition and fast reconfiguration without regular per-
formance implications. We compare Omni-Paxos to Raft in
each of these three aspects through experiments with regu-
lar execution (§7.1), full and partial network partitions (§7.2,
§7.3) and reconfiguration (§7.4). Finally, we investigate how a
customizable leader election can improve performance (§7.5).
Experimental Setup: We implemented Omni-Paxos as a li-
brary in Rust2 and compared it to the Raft implementation by
TiKV [12]. Both implementations stored the log in memory
and were used on top of the actor framework Kompact [9] us-
ing TCP. Raft’s additional PreVote and CheckQuorum mech-
anisms were activated. When compared to vanilla Raft (§7.2,
§7.3), it is referred to as “Raft PV+CQ” instead. The experi-
ments were performed on Google Cloud Compute in the us-
central1 region using e2-standard-8 instances with 8 vCPUs
and 32 GB memory. Each server ran on a separate instance.
The performance was measured in a separate client instance
that proposed no-op commands of 8 bytes to the cluster. The

2https://github.com/anonsub0/omnipaxos

8

• Since we stop and start configurations, there could be periods of
down-time e.g. when new servers are still catching up the log and a
majority in the new configuration cannot start yet. 

• Important with an efficient hand-over procedure.

• Flexible and parallel log migration

• Snapshots

KTH-2023

ID2203

CORRECTNESS

• Must maintain Sequence Consensus invariant across different
configurations: If a proposal with sequence v is chosen, then every
higher-numbered proposal that is chosen has v as a prefix.  

• What we have done:

• Safely stop current configuration before starting

• Decide stop-sign as any command using Sequence Paxos. Once

chosen, cannot be extended.

• Require all processes to have the final sequence before starting

in (log migration) 

• Conceptually, we have just extended the round number from to
 where is the configuration number. We made the round

number totally-ordered across configurations.

ci ci+1

ci
σi

ci+1

n
(cid, n) cid

14

KTH-2023

ID2203

ORDERING ROUNDS TOTALLY

15

KTH-2023

ID2203

SUMMARY

• Reconfiguring an RSM is relatively straight forward.

• Must avoid “split-brain” problem by first safely stopping the

current configuration.

• Round numbers are totally-ordered across configurations. 

• Service layer allows for efficient hand-over with flexible and parallel
log migration 

• The Omni-Paxos stack is now completed:

• Service layer for efficient reconfiguration.

• Sequence Paxos for safely replicating a log.

• Ballot Leader Election for liveness even in partial connectivity.

16

ID2203

KTH-2023

Raft
In Search of an Understandable Consensus Algorithm  
Ongaro et al.

KTH-2023

ID2203

TERMINOLOGY

18

S. Haridi, KTHx ID2203.2x

● Sequence Paxos
● va The accepted sequence

● The Decided sequence
● Round/ballot number
● Process
● nprom , nL
● Element in a sequence

15

● Raft
● The Log
● The committed prefix of Log
● Term
● Server
● Highest Term
● Entry

KTH-2023

ID2203

RAFT DECOMPOSITION

• Leader Election

• Elect one server as the leader. Detect crashes and choose new

leader

• Only servers with up-to-date logs can become the leader

• The leader election and sequence consensus are fused in one
protocol.

• Incorporates the prepare phase in the leader election
algorithm. 

• Log replication

• Leader replicates its log to other servers, overwrites

inconsistencies to keep logs consistent

• Consistent replication is done differently from Sequence Paxos

using a log reconciliation mechanism.
19

KTH-2023

ID2203

SERVER STATES

20

Election Safety: at most one leader can be elected in a

given term. §5.2

Leader Append-Only: a leader never overwrites or deletes

entries in its log; it only appends new entries. §5.3

Log Matching: if two logs contain an entry with the same

index and term, then the logs are identical in all entries

up through the given index. §5.3

Leader Completeness: if a log entry is committed in a

given term, then that entry will be present in the logs

of the leaders for all higher-numbered terms. §5.4

State Machine Safety: if a server has applied a log entry

at a given index to its state machine, no other server

will ever apply a different log entry for the same index.

§5.4.3

Figure 3: Raft guarantees that each of these properties is true

at all times. The section numbers indicate where each prop-

erty is discussed.

from clients and replicate them across the cluster,
forcing the other logs to agree with its own (Sec-
tion 5.3).

• Safety: the key safety property for Raft is the State
Machine Safety Property in Figure 3: if any server
has applied a particular log entry to its state machine,
then no other server may apply a different command
for the same log index. Section 5.4 describes how
Raft ensures this property; the solution involves an
additional restriction on the election mechanism de-
scribed in Section 5.2.

After presenting the consensus algorithm, this section dis-
cusses the issue of availability and the role of timing in the
system.

5.1 Raft basics

A Raft cluster contains several servers; five is a typical
number, which allows the system to tolerate two failures.
At any given time each server is in one of three states:
leader, follower, or candidate. In normal operation there
is exactly one leader and all of the other servers are fol-
lowers. Followers are passive: they issue no requests on
their own but simply respond to requests from leaders
and candidates. The leader handles all client requests (if
a client contacts a follower, the follower redirects it to the
leader). The third state, candidate, is used to elect a new
leader as described in Section 5.2. Figure 4 shows the
states and their transitions; the transitions are discussed
below.

Raft divides time into terms of arbitrary length, as
shown in Figure 5. Terms are numbered with consecutive
integers. Each term begins with an election, in which one
or more candidates attempt to become leader as described
in Section 5.2. If a candidate wins the election, then it
serves as leader for the rest of the term. In some situations
an election will result in a split vote. In this case the term
will end with no leader; a new term (with a new election)

Figure 4: Server states. Followers only respond to requests

from other servers. If a follower receives no communication,

it becomes a candidate and initiates an election. A candidate

that receives votes from a majority of the full cluster becomes

the new leader. Leaders typically operate until they fail.

Figure 5: Time is divided into terms, and each term begins

with an election. After a successful election, a single leader

manages the cluster until the end of the term. Some elections

fail, in which case the term ends without choosing a leader.

The transitions between terms may be observed at different

times on different servers.

will begin shortly. Raft ensures that there is at most one
leader in a given term.

Different servers may observe the transitions between
terms at different times, and in some situations a server
may not observe an election or even entire terms. Terms
act as a logical clock [14] in Raft, and they allow servers
to detect obsolete information such as stale leaders. Each
server stores a current term number, which increases
monotonically over time. Current terms are exchanged
whenever servers communicate; if one server’s current
term is smaller than the other’s, then it updates its current
term to the larger value. If a candidate or leader discovers
that its term is out of date, it immediately reverts to fol-
lower state. If a server receives a request with a stale term
number, it rejects the request.

Raft servers communicate using remote procedure calls
(RPCs), and the basic consensus algorithm requires only
two types of RPCs. RequestVote RPCs are initiated by
candidates during elections (Section 5.2), and Append-
Entries RPCs are initiated by leaders to replicate log en-
tries and to provide a form of heartbeat (Section 5.3). Sec-
tion 7 adds a third RPC for transferring snapshots between
servers. Servers retry RPCs if they do not receive a re-
sponse in a timely manner, and they issue RPCs in parallel
for best performance.

5.2 Leader election

Raft uses a heartbeat mechanism to trigger leader elec-
tion. When servers start up, they begin as followers. A
server remains in follower state as long as it receives valid

5

Increment term

KTH-2023

ID2203

LEADER ELECTION

• The servers use remote procedure call (RPC) for communication.

• RequestVoteRPC 

• Each server gives only one vote per term (round)

• Server p votes for server q if the latest log entry of q has higher

term or same term but higher index. In this case, the log of q is
more up-to-date than p. 

• Majority of votes required to win. 

• Terms are not unique => could be split votes with no winner

• Retry RequestVoteRPC with higher term after some random

time.

21

KTH-2023

ID2203

EXECUTION

22

Election Safety: at most one leader can be elected in a

given term. §5.2

Leader Append-Only: a leader never overwrites or deletes

entries in its log; it only appends new entries. §5.3

Log Matching: if two logs contain an entry with the same

index and term, then the logs are identical in all entries

up through the given index. §5.3

Leader Completeness: if a log entry is committed in a

given term, then that entry will be present in the logs

of the leaders for all higher-numbered terms. §5.4

State Machine Safety: if a server has applied a log entry

at a given index to its state machine, no other server

will ever apply a different log entry for the same index.

§5.4.3

Figure 3: Raft guarantees that each of these properties is true

at all times. The section numbers indicate where each prop-

erty is discussed.

from clients and replicate them across the cluster,
forcing the other logs to agree with its own (Sec-
tion 5.3).

• Safety: the key safety property for Raft is the State
Machine Safety Property in Figure 3: if any server
has applied a particular log entry to its state machine,
then no other server may apply a different command
for the same log index. Section 5.4 describes how
Raft ensures this property; the solution involves an
additional restriction on the election mechanism de-
scribed in Section 5.2.

After presenting the consensus algorithm, this section dis-
cusses the issue of availability and the role of timing in the
system.

5.1 Raft basics

A Raft cluster contains several servers; five is a typical
number, which allows the system to tolerate two failures.
At any given time each server is in one of three states:
leader, follower, or candidate. In normal operation there
is exactly one leader and all of the other servers are fol-
lowers. Followers are passive: they issue no requests on
their own but simply respond to requests from leaders
and candidates. The leader handles all client requests (if
a client contacts a follower, the follower redirects it to the
leader). The third state, candidate, is used to elect a new
leader as described in Section 5.2. Figure 4 shows the
states and their transitions; the transitions are discussed
below.

Raft divides time into terms of arbitrary length, as
shown in Figure 5. Terms are numbered with consecutive
integers. Each term begins with an election, in which one
or more candidates attempt to become leader as described
in Section 5.2. If a candidate wins the election, then it
serves as leader for the rest of the term. In some situations
an election will result in a split vote. In this case the term
will end with no leader; a new term (with a new election)

Figure 4: Server states. Followers only respond to requests

from other servers. If a follower receives no communication,

it becomes a candidate and initiates an election. A candidate

that receives votes from a majority of the full cluster becomes

the new leader. Leaders typically operate until they fail.

Figure 5: Time is divided into terms, and each term begins

with an election. After a successful election, a single leader

manages the cluster until the end of the term. Some elections

fail, in which case the term ends without choosing a leader.

The transitions between terms may be observed at different

times on different servers.

will begin shortly. Raft ensures that there is at most one
leader in a given term.

Different servers may observe the transitions between
terms at different times, and in some situations a server
may not observe an election or even entire terms. Terms
act as a logical clock [14] in Raft, and they allow servers
to detect obsolete information such as stale leaders. Each
server stores a current term number, which increases
monotonically over time. Current terms are exchanged
whenever servers communicate; if one server’s current
term is smaller than the other’s, then it updates its current
term to the larger value. If a candidate or leader discovers
that its term is out of date, it immediately reverts to fol-
lower state. If a server receives a request with a stale term
number, it rejects the request.

Raft servers communicate using remote procedure calls
(RPCs), and the basic consensus algorithm requires only
two types of RPCs. RequestVote RPCs are initiated by
candidates during elections (Section 5.2), and Append-
Entries RPCs are initiated by leaders to replicate log en-
tries and to provide a form of heartbeat (Section 5.3). Sec-
tion 7 adds a third RPC for transferring snapshots between
servers. Servers retry RPCs if they do not receive a re-
sponse in a timely manner, and they issue RPCs in parallel
for best performance.

5.2 Leader election

Raft uses a heartbeat mechanism to trigger leader elec-
tion. When servers start up, they begin as followers. A
server remains in follower state as long as it receives valid

5

KTH-2023

ID2203

LOG REPLICATION

• Client sends commands to leader who appends them to its log. 

• Leader sends AppendEntriesRPC to all followers (similar to
⟨Accept⟩ in Sequence Paxos) 

• Entry is committed if AppendEntriesRPC successfully returns from
a majority.  

• Notify followers of committed index in the next AppendEntriesRPC
(similar to ⟨Decide⟩)

23

KTH-2023

ID2203

LOG STRUCTURE

24

S. Haridi, KTHx ID2203.2x 25

KTH-2023

ID2203

INCONSISTENCIES

Crashes and network partitions may result in inconsistent logs.

25

S. Haridi, KTHx ID2203.2x

● Crashes and network partitions my results in inconsistent logs

26

KTH-2023

ID2203

LOG RECONCILIATION

• Correctness invariant: Log entries on different servers with same index and
term must store the same command, and the logs are identical in all
preceding entries.

• If a given entry is committed, all preceding entries are also committed. 

• AppendEntriesRPC include of entry directly preceding new
one(s).

• Follower must have matching preceding entry; otherwise reject the
AppendEntriesRPC and leader retries with lower index.

⟨index, term⟩

26 S. Haridi, KTHx ID2203.2x

Log reconciliation
● AppendEntries RPCs include <index, term> of entry preceding new

one(s)
● Follower must contain matching entry; otherwise it rejects request

● Leader retries with lower log index

28

KTH-2023

ID2203

RAFT AND SEQUENCE PAXOS

• Raft and Sequence Paxos are both sequence consensus algorithms.

• Replicate a growing log.

• Leader must have highest round or term number.

• Raft differs from Sequence Paxos on:

• Leader Election: unique ballot numbers in BLE vs. Split votes

and randomised retries in Raft.

• Raft incorporates the prepare phase as part of electing a leader

• A server must have the most up-to-date log to win election.

• In Sequence Paxos, any server can become the leader. Will

get synchronized in the Prepare phase.

• Log Reconciliation

27

KTH-2023

ID2203

CHAINED SCENARIO

28

Conference’17, July 2017, Washington, DC, USA Anon.

A

B

C

D E

A

B

C

D E

1 1 2 2

1 1

1 11 1 2

1 1 2

b) Constrained election scenario: Despite being quorum-
connected, server A cannot become the leader.

Disconnected Channel

c) Chained scenario: Disruptions through repeated
elections with higher term.

A

B

C
A

B

C

Term:1

Term:2,4,6,..

Term:3,5,7,..

Leader Candidate

A

B

C

D E

A

B

C

D E

a) Quorum loss scenario: Server C remains the
leader despite not being quorum-connected.

A

B

C

D E

A

B

C

D E

Leader

Stale leader

Connected Channel
Disconnected Channel
Heartbeat Reply

Connected Channel Request Vote

A

B

C

D E

1 1 2 2

1 1

1 1
1 1 2

1 1 2

Stale leader

Figure 1. Disruptions and deadlock in Raft due to partial connectivity.

• We demonstrate liveness issues in existing RSM proto-
cols under partial connectivity and discuss the causes
behind them.

• We de�ne Quorum-connected Leader Election, a spec-
i�cation that guarantees progress in Paxos-based pro-
tocols even with partial connectivity.

• We present Omni-Paxos, an RSM system that provides
complete resilience against partial connectivity and
�exible recon�guration. We provide a full description
of the system along with the speci�cation and correct-
ness arguments.

• We present an experimental evaluation that includes
the following highlights compared to state-of-the-art
protocols: (1) Constant-time recovery from any partial
network partition. Omni-Paxos recovers in constant
time in scenarios where other protocols livelock or
deadlock. (2) Parallel log migration in recon�guration
to provide 8x shorter recon�guration periods and 46%
less I/O at the leader. (3) Improved performance stabil-
ity in specialized settings such as WANs.

2 The Case of Partial Connectivity
Failures in modern networks can be more complex and un-
foreseen than the ones commonly assumed in systems re-
search literature. Partial connectivity is one such type of
failure, where two servers are disconnected while both are
still reachable by a third server. An increasing set of studies
[18, 19] attribute partial network partitions to network up-
grades [8], �rewall or network miscon�gurations [9], and
�aky links between switches [13].

The resilience of RSMs relates to how leader election inter-
acts with log replication to make progress during potential
network partitions. To demonstrate how partial connectivity
challenges resilience, we �rst de�ne the di�erent require-
ments that exist in the leader election of the most widely-
used protocols. In all protocols, a server must get a major-
ity of votes to become the leader. A natural prerequisite of
an elected server is therefore to be quorum-connected (QC),
that is, being directly connected to a majority of servers

(including itself). Multi-Paxos [30] uses QC and failure de-
tection on the leader to provide progress [42]. In some pro-
tocols such as Raft [39], the elected leader must additionally
have the max log, i.e., the log with the highest term num-
ber among a majority. This allows Raft to remain correct
without a synchronization phase where followers transfer
missing log entries to a newly-elected leader. In VR [34], a
server can only vote if itself is quorum-connected. Thus, a
candidate must not only be quorum-connected, it must also
be elected by quorum-connected servers (EQC) to become
the leader. That is, a leader must receive votes from a major-
ity of quorum-connected servers. Zab [27] (using the Fast
Leader Election [37]) adopts both the max log and EQC re-
quirements. A summary of the properties for the mentioned
protocols is shown in Table 1.
We now identify three scenarios of partial connectivity

that can obstruct RSMs from making progress. The last sce-
nario has been documented in practice causing 6+ hours of
down-time for Cloud�are in 2020 [26, 33].
a) Quorum-Loss Scenario. Assume a cluster of �ve servers
that is initially fully-connected and server ⇠ is the elected
leader. A partial network partition could cause a scenario
where all servers are connected to server�, but disconnected
from the rest, as depicted in Figure 1(a). That makes � the
only server that is quorum-connected and therefore the only
quali�ed leader candidate. However, since � is still con-
nected to its leader ⇠ , it will not start a new election to
become the leader. On the other hand, the other servers will
attempt a leader change but not get enough of votes. As a
result, no leader will be elected and log replication progress
will suspend. Raft is an exception to this case, � will learn
higher term numbers from the disconnected followers and
eventually be elected. However, the randomized timers in
Raft might cause other servers to continuously disrupt with
higher terms and cause unavailability before � is elected.
In general, this scenario shows that the alive status of the
current leader is an insu�cient metric to solely trigger a
leader change. Quorum-loss could result in having a leader
that is alive but incapable of making progress.
b) Constrained Election Scenario. Consider now the same
scenario but with leader ⇠ completely partitioned from the
rest. Figure 1(b) illustrates such a scenario including the

KTH-2023

ID2203

QUORUM-LOSS SCENARIO

29

Conference’17, July 2017, Washington, DC, USA Anon.

A

B

C

D E

A

B

C

D E

1 1 2 2

1 1

1 11 1 2

1 1 2

b) Constrained election scenario: Despite being quorum-
connected, server A cannot become the leader.

Disconnected Channel

c) Chained scenario: Disruptions through repeated
elections with higher term.

A

B

C
A

B

C

Term:1

Term:2,4,6,..

Term:3,5,7,..

Leader Candidate

A

B

C

D E

A

B

C

D E

a) Quorum loss scenario: Server C remains the
leader despite not being quorum-connected.

A

B

C

D E

A

B

C

D E

Leader

Stale leader

Connected Channel
Disconnected Channel
Heartbeat Reply

Connected Channel Request Vote

A

B

C

D E

1 1 2 2

1 1

1 1
1 1 2

1 1 2

Stale leader

Figure 1. Disruptions and deadlock in Raft due to partial connectivity.

• We demonstrate liveness issues in existing RSM proto-
cols under partial connectivity and discuss the causes
behind them.

• We de�ne Quorum-connected Leader Election, a spec-
i�cation that guarantees progress in Paxos-based pro-
tocols even with partial connectivity.

• We present Omni-Paxos, an RSM system that provides
complete resilience against partial connectivity and
�exible recon�guration. We provide a full description
of the system along with the speci�cation and correct-
ness arguments.

• We present an experimental evaluation that includes
the following highlights compared to state-of-the-art
protocols: (1) Constant-time recovery from any partial
network partition. Omni-Paxos recovers in constant
time in scenarios where other protocols livelock or
deadlock. (2) Parallel log migration in recon�guration
to provide 8x shorter recon�guration periods and 46%
less I/O at the leader. (3) Improved performance stabil-
ity in specialized settings such as WANs.

2 The Case of Partial Connectivity
Failures in modern networks can be more complex and un-
foreseen than the ones commonly assumed in systems re-
search literature. Partial connectivity is one such type of
failure, where two servers are disconnected while both are
still reachable by a third server. An increasing set of studies
[18, 19] attribute partial network partitions to network up-
grades [8], �rewall or network miscon�gurations [9], and
�aky links between switches [13].

The resilience of RSMs relates to how leader election inter-
acts with log replication to make progress during potential
network partitions. To demonstrate how partial connectivity
challenges resilience, we �rst de�ne the di�erent require-
ments that exist in the leader election of the most widely-
used protocols. In all protocols, a server must get a major-
ity of votes to become the leader. A natural prerequisite of
an elected server is therefore to be quorum-connected (QC),
that is, being directly connected to a majority of servers

(including itself). Multi-Paxos [30] uses QC and failure de-
tection on the leader to provide progress [42]. In some pro-
tocols such as Raft [39], the elected leader must additionally
have the max log, i.e., the log with the highest term num-
ber among a majority. This allows Raft to remain correct
without a synchronization phase where followers transfer
missing log entries to a newly-elected leader. In VR [34], a
server can only vote if itself is quorum-connected. Thus, a
candidate must not only be quorum-connected, it must also
be elected by quorum-connected servers (EQC) to become
the leader. That is, a leader must receive votes from a major-
ity of quorum-connected servers. Zab [27] (using the Fast
Leader Election [37]) adopts both the max log and EQC re-
quirements. A summary of the properties for the mentioned
protocols is shown in Table 1.
We now identify three scenarios of partial connectivity

that can obstruct RSMs from making progress. The last sce-
nario has been documented in practice causing 6+ hours of
down-time for Cloud�are in 2020 [26, 33].
a) Quorum-Loss Scenario. Assume a cluster of �ve servers
that is initially fully-connected and server ⇠ is the elected
leader. A partial network partition could cause a scenario
where all servers are connected to server�, but disconnected
from the rest, as depicted in Figure 1(a). That makes � the
only server that is quorum-connected and therefore the only
quali�ed leader candidate. However, since � is still con-
nected to its leader ⇠ , it will not start a new election to
become the leader. On the other hand, the other servers will
attempt a leader change but not get enough of votes. As a
result, no leader will be elected and log replication progress
will suspend. Raft is an exception to this case, � will learn
higher term numbers from the disconnected followers and
eventually be elected. However, the randomized timers in
Raft might cause other servers to continuously disrupt with
higher terms and cause unavailability before � is elected.
In general, this scenario shows that the alive status of the
current leader is an insu�cient metric to solely trigger a
leader change. Quorum-loss could result in having a leader
that is alive but incapable of making progress.
b) Constrained Election Scenario. Consider now the same
scenario but with leader ⇠ completely partitioned from the
rest. Figure 1(b) illustrates such a scenario including the

KTH-2023

ID2203

CONSTRAINED ELECTION SCENARIO

30

Conference’17, July 2017, Washington, DC, USA Anon.

A

B

C

D E

A

B

C

D E

1 1 2 2

1 1

1 11 1 2

1 1 2

b) Constrained election scenario: Despite being quorum-
connected, server A cannot become the leader.

Disconnected Channel

c) Chained scenario: Disruptions through repeated
elections with higher term.

A

B

C
A

B

C

Term:1

Term:2,4,6,..

Term:3,5,7,..

Leader Candidate

A

B

C

D E

A

B

C

D E

a) Quorum loss scenario: Server C remains the
leader despite not being quorum-connected.

A

B

C

D E

A

B

C

D E

Leader

Stale leader

Connected Channel
Disconnected Channel
Heartbeat Reply

Connected Channel Request Vote

A

B

C

D E

1 1 2 2

1 1

1 1
1 1 2

1 1 2

Stale leader

Figure 1. Disruptions and deadlock in Raft due to partial connectivity.

• We demonstrate liveness issues in existing RSM proto-
cols under partial connectivity and discuss the causes
behind them.

• We de�ne Quorum-connected Leader Election, a spec-
i�cation that guarantees progress in Paxos-based pro-
tocols even with partial connectivity.

• We present Omni-Paxos, an RSM system that provides
complete resilience against partial connectivity and
�exible recon�guration. We provide a full description
of the system along with the speci�cation and correct-
ness arguments.

• We present an experimental evaluation that includes
the following highlights compared to state-of-the-art
protocols: (1) Constant-time recovery from any partial
network partition. Omni-Paxos recovers in constant
time in scenarios where other protocols livelock or
deadlock. (2) Parallel log migration in recon�guration
to provide 8x shorter recon�guration periods and 46%
less I/O at the leader. (3) Improved performance stabil-
ity in specialized settings such as WANs.

2 The Case of Partial Connectivity
Failures in modern networks can be more complex and un-
foreseen than the ones commonly assumed in systems re-
search literature. Partial connectivity is one such type of
failure, where two servers are disconnected while both are
still reachable by a third server. An increasing set of studies
[18, 19] attribute partial network partitions to network up-
grades [8], �rewall or network miscon�gurations [9], and
�aky links between switches [13].

The resilience of RSMs relates to how leader election inter-
acts with log replication to make progress during potential
network partitions. To demonstrate how partial connectivity
challenges resilience, we �rst de�ne the di�erent require-
ments that exist in the leader election of the most widely-
used protocols. In all protocols, a server must get a major-
ity of votes to become the leader. A natural prerequisite of
an elected server is therefore to be quorum-connected (QC),
that is, being directly connected to a majority of servers

(including itself). Multi-Paxos [30] uses QC and failure de-
tection on the leader to provide progress [42]. In some pro-
tocols such as Raft [39], the elected leader must additionally
have the max log, i.e., the log with the highest term num-
ber among a majority. This allows Raft to remain correct
without a synchronization phase where followers transfer
missing log entries to a newly-elected leader. In VR [34], a
server can only vote if itself is quorum-connected. Thus, a
candidate must not only be quorum-connected, it must also
be elected by quorum-connected servers (EQC) to become
the leader. That is, a leader must receive votes from a major-
ity of quorum-connected servers. Zab [27] (using the Fast
Leader Election [37]) adopts both the max log and EQC re-
quirements. A summary of the properties for the mentioned
protocols is shown in Table 1.
We now identify three scenarios of partial connectivity

that can obstruct RSMs from making progress. The last sce-
nario has been documented in practice causing 6+ hours of
down-time for Cloud�are in 2020 [26, 33].
a) Quorum-Loss Scenario. Assume a cluster of �ve servers
that is initially fully-connected and server ⇠ is the elected
leader. A partial network partition could cause a scenario
where all servers are connected to server�, but disconnected
from the rest, as depicted in Figure 1(a). That makes � the
only server that is quorum-connected and therefore the only
quali�ed leader candidate. However, since � is still con-
nected to its leader ⇠ , it will not start a new election to
become the leader. On the other hand, the other servers will
attempt a leader change but not get enough of votes. As a
result, no leader will be elected and log replication progress
will suspend. Raft is an exception to this case, � will learn
higher term numbers from the disconnected followers and
eventually be elected. However, the randomized timers in
Raft might cause other servers to continuously disrupt with
higher terms and cause unavailability before � is elected.
In general, this scenario shows that the alive status of the
current leader is an insu�cient metric to solely trigger a
leader change. Quorum-loss could result in having a leader
that is alive but incapable of making progress.
b) Constrained Election Scenario. Consider now the same
scenario but with leader ⇠ completely partitioned from the
rest. Figure 1(b) illustrates such a scenario including the

KTH-2023

ID2203

LEADER ELECTION EXPERIMENTS

31

• No existing protocol can tolerate all partial connectivity scenarios
except for Omni-Paxos. 

• Omni-Paxos recovers in constant number of election timeoutsConference’17, July 2017, Washington, DC, USA Harald Ng, Seif Haridi, and Paris Carbone

Election timeout: 50ms Election timeout: 500ms Election timeout: 5000ms

D
ow

n-
tim

e
(m

s)

Deadlock Deadlock Deadlock

Raft VR Raft VROmni  
Paxos

Raft 
PV+QC

Multi 
Paxos

Omni  
Paxos

Raft 
PV+QC

Multi 
Paxos

Omni  
Paxos Raft Raft 

PV+QC VR Multi 
Paxos

(a) Quorum-loss scenario.

Raft VR Raft VROmni  
Paxos

Raft 
PV+QC

Multi 
Paxos

Omni  
Paxos

Raft 
PV+QC

Multi 
Paxos

Omni  
Paxos Raft Raft 

PV+QC VR Multi 
Paxos

Deadlock Deadlock Deadlock

Election timeout: 50ms Election timeout: 500ms Election timeout: 5000ms

D
ow

n-
tim

e
(m

s)

(b) Constrained election scenario.

Partition Duration: 1 2 4 (min)

VR

Raft
Raft PV+QC

Multi-Paxos

Omni-Paxos
Election timeout:

50 ms

500 ms

5000 ms

Raft

VR

Omni  
Paxos

Raft 
PV+QC

Multi 
Paxos

(c) Chained scenario.

Figure 7. Partial connectivity experiments. The protocols that reach the “deadlock” line in a) and b) have a down-time
corresponding to the partition duration. The error bars show the 95% CI using the C-distribution.

LAN WAN

Figure 8. Regular execution with 3 and 5 servers. The error
bars show the 95% CI using the C-distribution.

7.1 General Performance
Experiment Description. A cluster of 3 and 5 servers is
evaluated in three di�erent workloads ⇠% = {500, 5k, 50k}.
The cluster was deployed in a LAN setting with RTT=0.2ms
and a WAN setting where the RTT from leader to the follow-
ers were 105ms (eu-west1) and 145ms (asia-northeast1).
What is the regular performance of Omni-Paxos? Does
Ballot Leader Election incur any performance over-
head? As seen in Figure 8, the throughput is similar between
Omni-Paxos, Raft, and Multi-Paxos during normal execution.
All protocols require a single round trip from the leader to a
majority of followers to decide a value, e.g., the Accept and
Accepted in Omni-Paxos. Furthermore, Omni-Paxos’ ability
to pipeline entries in the Accept phase is shown to perform
similarly to Raft and Multi-Paxos. Raft also pipeline entries,
while Multi-Paxos decide entries in parallel. However, as the
log entries must be contiguous before replying to the client,

the performance is similar regardless of whether entries are
decided in parallel or through pipelining. Additionally, the
overhead of exchanging heartbeats in BLE did not a�ect
Omni-Paxos’ performance. From the recorded IO, it could
be seen that the BLE overhead is negligible, contributing at
most 0.02% of the total IO.

7.2 Resilience to Partial Connectivity
ExperimentDescription. The client continuously proposes
to a cluster that is initially fully connected. After the 1minute
warmup, the partial partitions from §2 are introduced respec-
tively. To ensure that the only quorum-connected server has
an outdated log in the constrained election scenario, it is
disconnected from the leader earlier. Election timeouts of
{50, 500, 50k} ms were tested and the cluster becomes fully
connected again after 1, 2, or 4 minutes.
How does Omni-Paxos deal with the quorum-loss sce-
nario? Figure 7a depicts the average down-time, i.e., the
duration for when the client received no decided replies. In
the quorum-loss scenario, VR and Multi-Paxos do not man-
age to elect a new leader. VR’s requirement of getting elected
by a majority of QC servers (EQC) cannot be ful�lled since
there is only one QC server (e.g., � in Figure 5a). In Multi-
Paxos, all servers except the QC server will increment its
ballot number and attempt to take over leadership. However,
as they are not QC, they are not able to get a majority of
votes (p1b messages) and subsequently decide new entries.
The QC server is the only server that has the potential to
gather enough votes but since it still receives heartbeats from
the stale leader, it does not suspect any leader failure and

KTH-2023

ID2203

RAFT RECONFIGURATION

• Omni-Paxos: stop current configuration, then start new one.

• Log migration to new servers in service layer. 

• Raft uses a “joint-consensus” approach.

• Intermediate configuration with both old and new

configuration:

• In commands can continued to be decided, but must get

majority from both and

• Leader can be any server in or

• New servers catch up the log following the normal log

replication protocol. When majority in both and has
caught up, only use

cold → cold,new → cnew
cold,new

cold cnew
cold cnew

cold cnew
cnew

32

KTH-2023

ID2203

RECONFIGURATION EXPERIMENTS

33

(a) Replace single server with CP = 500. (b) Replace single server with CP = 50k. (c) Replace majority with CP = 50k.

Figure 11: Reconfiguration experiments. The shaded areas show the 95% CI using the t-distribution.

analysis of Raft; it is deadlocked and cannot make progress
until the network recovers. Raft PV+CQ has a downtime that
corresponds to the full duration of the partition. Whereas,
Omni-Paxos is unavailable only for the constant duration of
two timeout periods: one election timeout for the quorum-
connected server to detect the leader’s missing heartbeat and
another one necessary to elect itself as the new leader. This to-
tals to 2⇥5s = 10s of downtime (from 0:20 to 0:30 in Figure
9c) in Omni-Paxos regardless of the partition’s duration.

7.4 Reconfiguration Speed
Experiment Description. The client proposes 20mil propos-
als with CP = {500, 5k, 50k} to a cluster of 5 servers. To
simulate that the cluster has been running for a period of time,
the servers are initialized with a log containing 5mil entries.
The client runs normally for the first 10mil proposals and then
proposes a reconfiguration to replace either one server or a
majority of servers. Using 8 bytes entries, a new node thus
needs to catch up (5+10)⇤8 = 120MB of data.
How does Omni-Paxos’ design improve reconfiguration?
The parallel log migration in the service layer of Omni-Paxos
prevents the leader from becoming a bottleneck. For the sin-
gle reconfiguration experiment, rather than having the leader
transfer 120MB to the new server, the leader and the three
continued followers split up the work and transfer 30MB each
in parallel. As seen in Figure 11a and 11b, this results in a sig-
nificantly smaller drop in throughput with a shorter duration
in comparison to Raft. In both workloads, Raft recorded up
to 90% lower throughput during reconfiguration, compared
to Omni-Paxos with drops of 20% at maximum. The duration
of low throughput lasted up to 15s for Omni-Paxos compared
to 55s for Raft. The case of excessive overloading at the Raft
leader can also be inferred by the outgoing traffic volume.
The peak IO for the leader over a 5s-window during recon-
figuration was 109MB compared to 30MB in Omni-Paxos.
From Figure 11b, we also observe no clear drop in throughput
for Omni-Paxos with 50k concurrent proposals. With a larger
pipeline of proposals, more proposals can be buffered and
instantly be proposed in a large batch when the new configu-
ration starts. The down-time from switching configurations is
thus masked behind the net throughput over 5s-windows.

As seen in Figure 11c, replacing a majority of servers had
a larger impact on both protocols. Since the continued servers
from ci cannot form a majority, the cluster must wait for
at least one of the new servers to receive the complete log
before ci+1 can start. Furthermore, since only two servers
remained in ci+1, the parallel log migration was less efficient
for Omni-Paxos in this case compared to the single recon-
figuration experiment. The remained servers had to transfer
60MB to every new server, and we recorded a peak of 180MB
of outgoing data for one server in a 5s-window. As a result,
Omni-Paxos showed 80% lower throughput for a period of
15s. However, Omni-Paxos still performed significantly better
than Raft. Raft recorded up to 40s of complete down-time,
while taking up to 120s to recover the performance levels be-
fore reconfiguration. The leader bottleneck became even more
prominent in this experiment with a peak of 336MB of outgo-
ing data over a 5s-window was recorded. Furthermore, Raft
also suffered from unexpected leader changes that required
multiple attempts to complete the reconfiguration. In some
runs, it was not the leader who initiated the reconfiguration
that committed it (Appendix D). The recorded outgoing data
indicates that both leaders performed log migration to the
new servers in ci+1, with the initial leader doing most of the
work. This suggests that the initial leader got too overloaded,
leading to another server getting elected. The new leader was
then able to complete the reconfiguration as large parts of the
log had already been transferred by the previous leader.

7.5 Customizable Leader Election
Experiment Description. The client proposes 5mil propos-
als with CP = {500, 5k, 50k} to a cluster of 3 servers with
one straggler. Two settings denoted as CPU and WAN were used.
In CPU, the straggler is a weaker e2-medium instance with
2 vCPUs and 4GB memory. In WAN, the straggler is located
in Belgium while the rest were in Iowa. The stragglers were
given the lowest priority in the BLE of Omni-Paxos (§5.2).
What are the advantages of a customizable leader elec-
tion strategy? As Figure 12 shows, Omni-Paxos was more
consistent than Raft. The high variance of Raft is due to its
probabilistic leader election. As all Raft servers start with
an empty log, the leader election is random. The undesired

10

• Raft leader gets overloaded: must migrate log to all new servers.

• Down-time if leader is replaced. 

• Omni-Paxos: parallel log migration in service layer reduces down-time.

KTH-2023

ID2203

SUMMARY

• Raft is designed to be understandable. 

• Incorporates leader election, log replication and reconfiguration all
into a single protocol. 

• Log requirement in leader election causes problems with partial
connectivity. 

• Performing log migration in log replication results in leader-
bottleneck.

34

ID2203

KTH-2023

ZooKeeper

KTH-2023

ID2203

ZOOKEEPER

• A distributed coordination service.

• A complete and general-purpose system.

• File system API: hierarchical structure of nodes

• Lock service, group membership, leader election, etc. 

• Widely used: Apache Hadoop, Kafka, Flink, Spark etc.

• Based on ZooKeeper Atomic Broadcast (Zab)

• Original was similar to Sequence Paxos but later became closer

to Raft

36

KTH-2023

ID2203

CONSISTENCY

37

• Totally-ordered writes.

• Do not support linearizable reads due to performance.

• This would require reading via the leader or a majority.

• Instead, we allow any replica to serve read from its local state. 

• FIFO client order:

• “read-your-writes”: read might stall until preceding write is

complete.

• Read after read: must guarantee that the second read is at least

as updated as the first. But different replicas could serve these
requests and thus might also stall. 

• Can use sync operation to perform a linearizable read that is decided
in the log.

KTH-2023

ID2203

COMMON USE CASES AND PATTERNS

38

/use_cases

/config

/group_membership

/lock

p1 p2 p3

watch

/m1 /m2 /m3 /…

p4 p5 p6
ephemeral

/lock1 /…

p7 p8
ephemeral, sequential

/lock2

watch

(lock holder)

watch

KTH-2023

ID2203

SUMMARY

• Omni-Paxos first stops the current configuration by deciding stop-
sign, before starting the new configuration.

• Parallel log migration in the service layer, decoupled from log
replication. 

• Raft: designed for understandability

• Monolithic: log replication, leader election and reconfiguration

all in a single protocol

• Cannot handle partial connectivity and leader-bottleneck

during reconfiguration.

• ZooKeeper: a general-purpose distributed coordination service

• File system API: group membership, lock service, etc.

• Weaker consistencies for performance.

39

