Advanced Course

Distributed Systems

Omni-Paxos

Harald Ng

COURSE TOPICS

> Intro to Distributed Systems

> Basic Abstractions and Failure Detectors
> Reliable and Causal Order Broadcast

> Distributed Shared Memory, CRDTs

> Consensus, RSMs (Omni-Paxos, Raft, etc.)
> Dynamic Reconfiguration

> Time Abstractions and Interval Clocks (Spanner etc.)

> Consistent Snapshotting (Stream Data Management)
> Distributed ACID Transactions (Cloud DBs)

KTH-2023

RECAP

e From Paxos to naive Sequence Paxos
e no pipelining
e too much IO
e redundancy of local state

e Liveness
e what makes a server a “good” candidate?

e The final assembly — Omni-Paxos:
e Sequence Paxos: log replication
e Ballot Leader Election: liveness

e Reconfiguration: parallel log migration

KTH-2023

OMNI-PAXOS OVERVIEW

Service

Log Replication

% Replicated Log

C
Pt

Sequence Paxos Sequence Paxos | Sequence Paxos

S W Ballot ql Ballot 1l Ballot

Leader Election Leader Election Leader Election

DID2203

KTH-2023

ID2203

Sequence Paxos

The final version

SEQUENCE CONSENSUS PROPERTIES

Validity
« If process p decides v then v is a sequence of proposed commands (without
duplicates)

Uniform Agreement

o If process p decides u and process q decides v then one is a prefix of the other

Integrity

« If process p decides u and later decides v then u is a strict prefix of v

Termination (liveness)

« If command C is proposed by a correct process then eventually every correct

process decides a sequence containing C -

Lo KTH-2020

DESIGN CONSIDERATIONS

e We want to replicate a growing log.

e Proposers should only send the new entries, rather than the
whole log every time

e Assume there is a single proposer running for a longer period of
time as a leader.

e Will not be aborted for a while.
e If aborted, safety must still be guaranteed.

>ID2203

KTH-2023

ASSUMPTIONS

e FIFO perfect link

e Ballot Leader Election abstraction:

Events:
Indication (out): (Leader|n,p,)
Notify that p. is elected as leader with ballot n.

Properties:
BLE1l. Completeness: Eventually, every correct process elects some correct process,
if a majority of processes is correct.
BLE2. Eventual Accuracy: Eventually, no two correct processes elect different
correct processes.
BLE3. Monotonically Increasing Unique Ballots: If a process p; with ballot n is
elected as leader by a process p;, then all previously elected leaders by p; have ballot

numbers m < n, and the pair (n, p;) is unique. Ooip2203

KTH-2023

ABSTRACTIONS

Sequence Paxos Sequence Paxos Sequence Paxos

Ensures correctness (safety)

BLE Ensures termination (liveness)
(Leader ~ Proposer) Coupzas

KTH-2023

SEQUENCE PAXOS

e Each process acts in all roles as proposer, acceptor and learner
e Every process maintains a single log: v,
e Use decided index /;s.t. the decided sequence is prefix(v,, [;)

e A process acts as the leader or a follower in a round n
e The leader acts as the sole proposer for round n
e Until aborted by another leader n’ > n

e Around has a Prepare and an Accept phase
e Log synchronization in the Prepare phase
e Replicate new entries in the Accept phase

KTH-2023

PREPARE PHASE

e Initiated by the leader in a new round n

e Objective: prepare once, pipeline accepts
e Leader sends (Prepare) to all followers.
e Followers responds with (Promise) if not already promised n’ > n.
e Also includes the log suffix that the leader is missing.

» Upon majority of promises: the leader adopts the most updated log
and synchronizes it with the promised followers.

o After the Prepare phase, any new entry extends the synchronized log
e Allows multiple outstanding (Accept)
e Decision in a single round-trip

KTH-2023

My

>
:/I
D

Leader

1
The leader and all promised

followers have identical logs

Accepted

i
1
1
1
1
1
1
1
1
Propose

Accepted

Accepted

Decided

LN =
KTH-2023

L.LOG SYNCHRONIZATION

e For safety, the leader must adopt all chosen entries
e Must be among at least one process in any majority
e Adopt the log with highestn,, or longest log if equal

e In (Prepare), the leader includes:
e current round: n
e accepted round: n,
e loglength: |v, |
e decided index: [,

o Afollower responds with (Promise) only ifitsn,,,, < nandincludes:

rom
e nanditsownn,, |v,|,;
e sfx: the log entries that the leader is missing
o If greater n,: suffix(vy, Ly oqder) } more updated than leader
o If same n, and butlonger log: suffix(v,, [v,|,,,4.,)
e Else: []

>ID2203

KTH-2023

ACCEPTSYNC

e Upon majority of (Promise) adopt the sfx from the maximum
promise:

o If greatern,: v, = prefix(v,1;) & sfx
o Ifsamen;: v, =v, ® sfx

e Synchronize updated log with all promised followers using
(AcceptSync) including:

e n
e sfx:the log entries that the follower is missing

Y If greater I’lal Suffl—x(vaa ld,fOllOW€7’)

o If samen, and butlonger log: suffix(v,, | v, |followe,,)

o L, theindex to append sfx atinv,

>ID2203

KTH-2023

ACCEPT PHASE

o After the Prepare phase, the leader and all promised followers have
the same common log prefix with all chosen entries.

e Leader replicates new command C with (Accept | n, C) to all
promised followers.

o Followers respond with accepted index | v, |
e When a majority has (Accepted | », idx), send (Decide | n, idx)

e Leader handles late (Promise) by synchronising that follower with
its current log using (AcceptSync)

>ID2203

KTH-2023

EXAMPLE

AcceptSync Accept Decide Decide

Promise Accepted

Promise Propose(11) Accepted Accepted

Prepare AcceptSync Decide

>ID2203
iy

KTH-2023

FULL PSEUDO CODE - STATE AND BLE

Q) State and Functions

logll

promisedRnd

acceptedRnd

decidedldx

log with entries (0-indexed)

the round a server has promised to not accept
entries from any lower round

the latest round a server has accepted entries in

the log index that a server has decided up to

Volatile state on all servers:

the role and phase a server is in. Initially

state
(FOLLOWER, PREPARE)
Volatile state of leader:
currentRnd the round that this server is leading in
promises{} set of received promises
maxProm the highest promise received during the prepare
phase
accepted[] th'e. agcepted index per server.
Initialized to O for all servers
chosenldx the highest index accepted by a majority. Initially
setto 0
buffer[] buffer for client requests received during the
prepare phase
Functions:
stopped () true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}
suffix (idx) if idx > |log| then [] else the entries in the log with

index {idx..|log|-1}

Fields:
s the elected server
n the round s got elected in

Leader implementation (if s = self AND n > promisedRnd):

1.

2.

4.

reset all volatile state of leader

state + (LEADER, PREPARE),

currentRnd « n, promisedRnd « n,

insert own promise to promises:

(acceptedRnd, |log|, self, decidedldx, suf fix(decidedldx))

send Prepare(currentRnd, acceptedRnd, |log|, decidedldx)
to all peers

Follower implementation: (if s = self):

1.

state.role ~ FOLLOWER

!
KTH-2023

PREPARE PHASE

omise) from follower f

n promised round

accRnd the acceptedRnd of f

logldx the log length of f

decldx the decidedldx of f

sfx suffix of entries the leader might be missing
Receiver impl tation:

1. return if n # currentRnd
2. insert (accRnd, logldx, f, decldx, sfx) to promises
If state = (LEADER, PREPARE) then:

P1. return if [promises| < majority

P2 maxProm ¢« the value with highest accRnd in promises
" (and highest logldx if equal)

P3 if maxProm.accRnd # acceptedRnd then
" log « prefix(decidedldx)

P4. append maxProm.sfx to the log
P5. if stopped () then clear buffer else append buffer to the log

P6 acceptedRnd « currentRnd,
" accepted[self] « [log|, state + (LEADER, ACCEPT)

foreach p in promises:
let syncldx « if p.accRnd = maxProm.accRnd then
P7. p.logldx else p.decldx,
send (AcceptSync, currentRnd, suf £ix(syncldx), syncldx)
top.f

If state = (LEADER, ACCEPT) then:

A1 let syncldx « if accRnd = maxProm.accRnd then
* maxProm.logldx else decldx

A2 send (AcceptSync, currentRnd, suffix(syncldx), syncldx)
" tof

let idx + max(chosenldx, decidedldx),

A3. if idx > decldx then send (Decide, currentRnd, idx) to f

©) repare) from leader /

Fiel

n round of leader /

accRnd the acceptedRnd of /

logldx the length of the leader's log
decldx the decidedIdx of /
Receiver implementation:

1. return if promisedRnd > n
2. state « (FOLLOWER, PREPARE)
3. promisedRnd < n

let sfx « if acceptedRnd > accRnd then
4. suffix(decldx) else if acceptedRnd =
accRnd then suf £ix(logldx) else []
5, send (Promise, n, acceptedRnd, |log],
decidedldx, sfx) to /

® (AcceptSync) from leader [

Fields:

n round of leader /

sfx entries to be appended to the log
syncldx the position in the log where sfx

should be appended at

if promisedRnd = n AND

1. state = (FOLLOWER, PREPARE)

2 acceptedRnd « n,
" state «~ (FOLLOWER, ACCEPT)

log + prefix(syncldx),
append sfx to the log

4. send (Accepted, n, |log]) to /

>ID2203
ax

KTH-2023

ACCEPT PHASE

® Proposal C from client

Receiver implementation:

1. return if stopped ()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1. append C to the log, set accepted|self] « |log|

A2. send (Accept, currentRnd, C) to all promised followers

©) (Accepted) from follower f

Fields:

n promised round

logldx the position in the log f has accepted up to

Receiver implementation:
1. return if currentRnd # n OR state # (LEADER, ACCEPT)
2. accepted|[f] < logldx

if logldx > chosenldx AND a majority has accepted logldx
3. then chosenldx « logldx, decidedldx « logldx,

send (Decide, currentRnd, chosenldx) to all promised

followers

@) (Accept) from leader /

Fields:
n round of leader /
C client request

Receiver implementation:

1 return if promisedRnd # n OR
" state # (FOLLOWER, ACCEPT)

append C to the log,
send (Accepted, n, |log|) to /

©) (Decide) from leader I

Fields:

n round of leader /

decldx position in the log that has been
decided

Receiver impl tation:

if promisedRnd = n AND
1. state = (FOLLOWER, ACCEPT) then
decidedldx + decldx

>ID2203

KTH-2023

20

CORRECTNESS

e We must guarantee that:

e If a proposal (n, v) is chosen, then for every higher proposal
(n’,v’) thatis chosen,v <V’

e We have two cases:

e n = n": only successively longer sequences can be chosen within
the same round since processes accept growing sequences.

e n < n': the prepare phase guarantees that all chosen sequences
will be adopted in n', and no new sequences can be chosen in
round 7 after that.

>ID2203

KTH-2023

21

SUMMARY

Assume stable leader and FIFO perfect links.
e Log synchronization in the Prepare phase

Single round-trip to decide a command (most of the time)
Only new commands are being sent

Pipeline (Accept) without waiting for previous to be decided

Multiple Proposers and FLP problem
e Handled with BLE in the partially synchronous model
(not solvable in async model) o

>ID2203

KTH-2023

Ballot Leader Election

REVISITING BLE

BLE1l. Completeness: Eventually, every correct process elects some correct
process, if a majority of processes is correct.

BLE2. Eventual Accuracy: Eventually, no two correct processes elect different
correct processes.

BLE3. Monotonically Increasing Unique Ballots: If a process p; with ballot n is
elected as leader by a process p;, then all previously elected leaders by p; have ballot

numbers m < n, and the pair (n, p,) is unique.

For Sequence Paxos:
Which processes really need to elect and agree with each other?

>ID2203

23 KTH-2023

ID2203

KTH-2023

Partial Connectivity

25

THE PROBLEM OF PARTIAL CONNECTIVITY

LLLLLLLLLL The Cloudflare Blog

e Thus far, we have assumed network failures to™—

A Byzantine failure in the real
world

e In practice, network partitions can be mor:
unpredictable.

e Partial connectivity
e Failures at the link level.
e Caused 6+ hours outage at Cloudflare in 2020

S
® © 0, c

Full partition Partial partition

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

>ID2203

KTH-2023

26

CHAINED SCENARIO

Term:3,5, ,..

G e Term:2,4,6,..

-

>ID2203

KTH-2023

QUORUM-LOSS SCENARIO

CONSTRAINED ELECTION SCENARIO

TEASER: EXISTING ALGORITHMS CANNOT HANDLE THIS!

Protocol Properties
(QC= quorum-connected, EQC=elected by quorum-connected)

Partial-Connectivity Scenarios
(v':stable progress, X:unavailable)

Log Candidate Leader Vote | QC Status Guarante'e d Progress Quorum-Loss Constre'nned Chained
Syne Requirements | Gossipin Heartbeats ltiu Scenario st Scenario
Phase 4 ping (#QC servers) Scenario
Multi-Paxos
[28, 37] v QC 4 > [N/2] X v X
Raft [34] QC + max log v > [N/2] X" X X*
VR [31] v QC + EQC v > [N/2] X X X
Zab [25, 33] ?il;xEl%gC v > [N/2] X X X
Omni-Paxos v QC v >1 v v v

e
KTH-2023

30

QUORUM-CONNECTED LEADER ELECTION

e Observe: In Sequence Paxos, only the leader must be connected to a
majority for liveness.

e Followers don’t talk to each other!

e Quorum-connected server: a quorum-connected server is a server that is

correct and has a direct link to at least a majority of correct servers
(including itself).

QLE1. Quorum-Connected Completeness: Eventually, every quorum-connected
server elects some quorum-connected server, if a quorum-connected server exists.

QLE2. Quorum-Connected Eventual Accuracy: Eventually, there is a majority of
servers S where no two quorum-connected servers in S elect differently.

>ID2203

QLE3. Monotonically Increasing Unique Ballots: Unchanged.

KTH-2023

31

BALLOT LEADER ELECTION

A server has a ballot number b and a quorum-connected flag gc
Periodically, all servers exchange heartbeats.

e Broadcast (HBRequest | 7)

e Reply (HBReply |7, g¢, b)

Servers can determine two things with the heartbeats:
1. Am I quorum-connected?
2. Which of my peers are alive and quorum-connected ?

Upon timeout:
o If received a majority of (HBReply):
e Checkifleader is still alive and quorum-connected. If not, increment b.
e Elect the server with highest b and gc = true
o Else: set qc = false

>ID2203

KTH-2023

32

©) State and Functions @) Upon timeout of startTimer

BLE PSEUDO CODE

Persistent state on all servers:

ballot number of the current leader

Volatile state on all servers:

r
b

qc
delay

ballots{}

Functions:

startTimer (d)

increment (b)

max (ballots)

checkLeader ()

current heartbeat round. Initially set to 0
ballot number. Initially set to (0, pid)
quorum-connected flag. Initially set to true

the duration a server waits for heartbeat
replies within a single round

set of ballots received in the current round

schedules a timeout event in d timeunits.
When starting: send (HBRequest, r) to all
peers and startTimer(delay)

increment the sequence number of ballot b

pick the maximum ballot based on
lexicographic order

1 let candidates + the values in ballots
" with quorumConnected = true

2. let max «max(candidates)

if max <|then increment(b) s.t. b> |,
quorumConnected « true

else if max > | then | « max,
trigger {Leader, max.pid, max)

Receiver implementation:

1. insert (b, qc) into ballots

2. if |ballots| > majority then checkLeader ()
else qc « false
clear ballots, r « r + 1

send (HBRequest, r) to all peers,
startTimer(delay)

»

(©) (HBRequest) from server s
Fields:
rnd the round of this request

Receiver implementation:
1. Send (HBReply, rnd, b, qc) to s

@ (HBReply) from server s

Fields:

rnd the round this reply was sent in
ballot ballot number of s

q qcofs

Receiver implementation:

1. if rnd = r then insert (ballot, g) into ballots
) Upon Recovery

Receiver implementation:

1. reload | from persistent storage

2. startTimer(delay)

ot)

£KTHE
& verensar

¥ och konsT 32

KTH-2023

33

CORRECTNESS

e Assuming we learn a time out s.t. no late (HBReply) is received.
e Alate heartbeatisignored and does not affect correctness.

e QLEI. Quorum-connected Completeness

e A server can only elect if it got a majority of (HBReply)i.e. is
quorum-connected. The elected server must have gc = true.

e QLE3. Monotonically Increasing Unique Ballots

e Each ballot (b, pid) is unique due to pid is unique. Servers only
elect new leaders with higher ballot than previous leaders.

>ID2203

KTH-2023

34

CORRECTNESS CONTINUED

e QLE2. Quorum-Connected Eventual Accuracy: Eventua_llty, there is a majority of servers S
where no two quorum-connected servers in S elect differently.

e Consider every possible case of connectivity between quorum-connected servers:
1. Only one QC server in the cluster.
2. Multiple QC servers:
A. That are connected to each other.
B. That are disconnected to each other.

e 1. That QC server will be the only one receiving a majority of (HBReply) and its own ballot
will be the only with gc = true.

e 2A. All QC servers get each others (HBReply). They all elect the same leader with the
highest ballot.

e 2B. As they are QC but disconnected, each of them is connected to a majority of servers. And
any majority overlaps on at least one server.

e That server is not QC: will not elect in BLE, but will follow (i.e. promise) the leader
with the highest ballot in Sequence Paxos.

e That server is QC: will elect the one with highest ballot (as in 2A)

>ID2203

KTH-2023

35

OMNI-PAXO0OS: CHAINED SCENARIO

W : U, B, true)
b : {1, B, true)

W : (1, B, true)
b : {, B, true)

W : U, B, true)
b:

e W : (2, C, true)
<0, A, true)

b : <0, A, true)

(1, B, true) W : <2, C, true)
<0, C, true) b: <2, C, true)

W .
b:

>ID2203
3

KTH-2023

36

OMNI-PAXOS: QUORUM-LOSS SCENARIO

W : (I, C, true) W: -

b : <0, B, true) b : {0, B, false)
W : U, C, true) .
b: <1, G true) vy . (2, 4, true) ,;°)

W : d, C true)
b : <0, A, true)

W : (1, G, true) W : <, C, true) W -
b : <0, D, true) b: <0; Ez true) b:

>ID2203
3

KTH-2023

37

CONSTRAINED ELECTION SCENARIO

W : U, C, true) W -

b : (0, B, true) b : <0, B, false)
¥ : , C, true) -
C, truey W : (2, A, true) K
[b: (2, A, true)/\] |

W : (U, C, true)
b : <0, A, true)

W . 1, C, true) W : U, C, true)
b : <0, D, true) b : <0, E, true)

>ID2203
B

KTH-2023

38

OBSERVATIONS

e Omni-Paxos guarantees liveness as long as one quorum-connected
server exists.

e BLE and its quorum-connected properties are weaker than a usual
leader election. But it is sufficient for Sequence Paxos

e Non QC servers do not elect (QLE1)

e Butif they are connected to the leader, they will get the
(Prepare) to participate in Sequence Paxos anyway.

e Different QC servers might elect different leaders (QLE2)

e One of them will have the highest ballot. That leader will
also be the only one making progress in Sequence Paxos.

>ID2203

KTH-2023

ID2203

KTH-2023

Failure Recovery

40

OUTLINE

e At this point, we have an efficient and resilient algorithm.

e Fail recovery model
e Recover from crashes.

e FIFO perfect link assumption is impractical.
e Session-based FIFO perfect links
e Handle session drops

KTH-2023

41

FAIL,L RECOVERY

e A process is correctif it crashes and recovers a finite number of
times.

e By crashing and restarting, a process loses any arbitrary suffix of
most recent messages in each FIFO perfect link.

e Arecovered process must get its log synchronized to be up-to-date
before doing anything further.

KTH-2023

RECOVERY

e Each process must store the following variables in persistent storage
v, :thelog.
l;: the decided index.

Nyrom * the promised round.

e n,:the latest round entries were accepted in.

e Upon recovery, restore these variables.
e Loadn,, intoBLE

prom

e Set own state into (FOLLOWER, RECOVER)
e Send (PrepareReq) to all peers
e If a receiving process is the leader, it replies with (Prepare)

KTH-2023

RECOVER STATE

e In (FOLLOWER, RECOVER), a process can only handle:
e (Leader) : got elected as the leader, will get synchronized by

performing the prepare phase.
e (Prepare) : leader will help us get synchronized.

MM VM
o) ™)

1 1

X : @)

1 ' e A
w 1 1

= o
1

KTH-2023

44

SESSION-BASED FIFO PERFECT LINKS

e Assume FIFO perfect links once a session has been established.
e e.g. TCP sessions
e Need to handle session-drops.

o If disconnected to a peer... do nothing

e When reconnecting to a peer p:

e Send (PrepareReq) to p because p might have become the new
leader during our down-time.

o If pistheleader we last promised:

e Go into recover mode to avoid handling anything before
being synchronized.

KTH-2023

45

Upon Recovery

Receiver implementation:

PSEUDO CODE

4, ‘reload: log, promiseRnd, acceptedRnd and decidedldx

from persistent storage

o, state « (FOLLOWER, RECOVER),
send (PrepareReq) to all peers

) (PrepareReq) from follower f

Receiver implementation:
1. return if state # (LEADER, _)

2. send Prepare(currentRnd, acceptedRnd, |log|, decidedldx) to f

@ (Reconnected) to server s

Receiver implementation:

1. if sis the current leader then state «~ (FOLLOWER, RECOVER)

2. send (PrepareReq) to s

£,

FKTHE
&G verenscar £

% ock konsT 9%

el

KTH-2023

46

SUMMARY

e From naive Sequence Paxos to Sequence Paxos
e Log Synchronization in Prepare phase
e Pipeline (Accept) in Accept phase.

e Liveness with Ballot Leader Election
e Quorum-connected leader election properties

e Resilient: guaranteed progress with a single quorum-connected
node.

e Handling Failures:
e Session-based FIFO perfect link
e Always get synchronized first when recovering.

KTH-2023

47

UP NEXT

e Reconfiguration: how to safely add/remove processes.
e Parallel log migration

e Other replicated state machines
e Raft and ZooKeeper (Zab)
e Partial connectivity

KTH-2023

