
ID2203

KTH-2023

Omni-Paxos

Harald Ng

Distributed Systems

Advanced Course

KTH-2023

ID2203

COURSE TOPICS

2

‣ Intro to Distributed Systems

‣ Basic Abstractions and Failure Detectors

‣ Reliable and Causal Order Broadcast

‣ Distributed Shared Memory, CRDTs

‣ Consensus, RSMs (Omni-Paxos, Raft, etc.)

‣ Dynamic Reconfiguration

‣ Time Abstractions and Interval Clocks (Spanner etc.)

‣ Consistent Snapshotting (Stream Data Management)

‣ Distributed ACID Transactions (Cloud DBs)

KTH-2023

ID2203

RECAP

• From Paxos to naïve Sequence Paxos

• no pipelining

• too much IO

• redundancy of local state 

• Liveness

• what makes a server a “good” candidate? 

• The final assembly — Omni-Paxos:

• Sequence Paxos: log replication

• Ballot Leader Election: liveness

• Reconfiguration: parallel log migration

3

KTH-2023

ID2203

OMNI-PAXOS OVERVIEW

4

phase to the leader election along with a CheckQuorum mech-
anism [19]. These changes resolve the chained scenario but
not the deadlock scenario. The deadlock scenario in Raft is
caused by a design defect that integrates log progress into
leader election. To mitigate this would require fundamental
changes that essentially form a new protocol.

Partial connectivity affects other RSM protocols as well.
Multi-Paxos [33] and VR [27] use a failure detector on the
leader. When a server suspects the leader to have failed, the
round number is incremented to create a leader change. As in
the chained scenario, this will cause a livelock with repeated
leader changes in any scenario where a server is not directly
connected to the leader. Zab’s Fast Leader Election [30] has a
hard requirement on log progress similar to Raft. Addition-
ally, a follower in Zab and VR only votes for another leader
if it observes a majority that also suspects a leader failure.
These protocols will thus be susceptible to the deadlock sce-
nario as well. Appendix A provides a detailed analysis of the
mentioned RSM protocols and partial connectivity.
Key Observations: The chained and deadlock scenarios epit-
omize the challenges of partial connectivity for RSMs. The
chained scenario shows that leader election protocols equiv-
alent to failure detectors are not sufficient. Such protocols
cause disruptions as soon as a server is disconnected from
the leader and thus require all servers to eventually agree on
the same leader. For the purpose of RSM, it is instead enough
having a stable leader connected to a majority. Furthermore,
the deadlock scenario shows that leader election must not
have any hard requirements on servers apart from connectiv-
ity. A server should be an eligible candidate as long as it is
connected to a majority. Thus, an RSM protocol must comple-
ment this with a synchronization phase, since a newly-elected
leader might not have all the committed entries.

In the rest of this paper, we present Omni-Paxos, an RSM
system designed with these observations in mind to overcome
partial connectivity and other drawbacks of tightly-coupled
protocols. We argue for a system with a decoupled design
that separates the core RSM mechanisms of log replication,
leader election, and reconfiguration into different components.
Log replication is only responsible for maintaining a consis-
tent log. Leader election focuses on electing a leader with
adequate connectivity to make progress in log replication.
Reconfiguration provides fast and efficient migration to new
servers while maintaining safety across configurations.

3 System Overview

Omni-Paxos is a system that implements RSM functionalities
by separating the three core mechanisms of log replication
(§4), leader election (§5) and reconfiguration (§6) into three
different components, each with a clear objective. As depicted
in Figure 2, Omni-Paxos provides the view of a single con-
sistent replicated log which is accessible through a service
layer, where every server in Omni-Paxos stores its local copy

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Se
rv

ic
e Replicated Log

C0
Lo

g
R

ep
lic

at
io

n

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

C1 C2configurations

Decided

Figure 2: Architecture of Omni-Paxos.

of the replicated log. The replicated log is populated by a
single Sequence Paxos instance at a time. Sequence Paxos
is a leader-based protocol that maintains the correctness and
consistency of the replicated log. A Sequence Paxos instance
is accompanied by its own Ballot Leader Election (BLE).
BLE is responsible for electing a leader and provides liveness
in Sequence Paxos even with extreme partial connectivity
where only one server is connected to a majority. Upon a
reconfiguration, the current Sequence Paxos instance is first
stopped before the new one takes over. The service layer is
responsible for transitioning to the new configuration safely.
This includes migrating the log to new servers and starting
the new Sequence Paxos and BLE instances.
Preliminaries. We assume the fail-recovery model where
servers might fail (non-byzantine) and recover after an arbi-
trarily long time. A correct server is a server that might fail and
recover a finite number of times. State stored in non-volatile
storage is recoverable. We assume a partially synchronous
model where messages can be dropped and delayed, but there
are long enough periods of synchrony for algorithms to make
progress. Servers use bidirectional links to exchange mes-
sages. To simplify the algorithm design, we assume session-
based FIFO perfect links. In practice, we use TCP (session
drops are handled in §4.1.3). Lastly, partitions could cause a
set of links to be temporarily down as discussed in §2. During
this period, messages are systematically dropped.

4 Sequence Paxos - Log Replication

In this section, we present Sequence Paxos, the log replica-
tion protocol in Omni-Paxos. Sequence Paxos is a Sequence
Consensus algorithm that, contrary to Multi-Paxos, replicates
a log in strict sequential order without gaps. As argued by
Raft [31], this approach leads to both a more practical and
understandable protocol. To guide the design of Sequence
Paxos, we present the Sequence Consensus properties that are
inspired by Generalized Consensus [21]:
SC1. Validity: If a server decides on a log L then L only
contains proposed commands.
SC2. Uniform Agreement: For any two servers that decided
logs L and L0 respectively then one is the prefix of the other.
SC3. Integrity: If a server decides on a log L and later decides
on L0 then L is a strict prefix of L0.

3

ID2203

KTH-2023

Sequence Paxos
The final version

KTH-2023

ID2203

KTH-2020

ID2203

CONSENSUS PROPERTIES

• Validity

• Only proposed values may be decided
• Uniform Agreement

• No two processes decide different values
• Integrity

• Each process can decide at most one value
• Termination

• Every correct process eventually decides a value

14 KTH-2020

ID2203

SEQUENCE CONSENSUS PROPERTIES

• Validity
• If process p decides v then v is a sequence of proposed commands (without

duplicates)
• Uniform Agreement

• If process p decides u and process q decides v then one is a prefix of the other
• Integrity

• If process p decides u and later decides v then u is a strict prefix of v

• Termination (liveness)
• If command C is proposed by a correct process then eventually every correct

process decides a sequence containing C

15

KTH-2023

ID2203

DESIGN CONSIDERATIONS

• We want to replicate a growing log.

• Proposers should only send the new entries, rather than the

whole log every time 

• Assume there is a single proposer running for a longer period of
time as a leader.

• Will not be aborted for a while.

• If aborted, safety must still be guaranteed. 

7

KTH-2023

ID2203

ASSUMPTIONS

• FIFO perfect link 

• Ballot Leader Election abstraction:

8

Events:

Indication (out): 〈Leader | n, pi 〉

Notify that pi is elected as leader with ballot n.

Properties:

BLE1. Completeness: Eventually, every correct process elects some correct process,
if a majority of processes is correct.  
BLE2. Eventual Accuracy: Eventually, no two correct processes elect different
correct processes.  
BLE3. Monotonically Increasing Unique Ballots: If a process with ballot is
elected as leader by a process , then all previously elected leaders by have ballot
numbers , and the pair is unique.

pi n
pj pj

m < n (n, pi)

KTH-2023

ID2203

ABSTRACTIONS

9

 BLE
Sequence Paxos

FIFO
perfect

Sequence Paxos

 BLE
Sequence Paxos

FIFO
perfect

 BLE

BLE
Sequence Paxos

FIFO
perfect

Ensures correctness (safety)

Ensures termination (liveness)
(Leader ~ Proposer)

KTH-2023

ID2203

SEQUENCE PAXOS

• Each process acts in all roles as proposer, acceptor and learner

• Every process maintains a single log:

• Use decided index s.t. the decided sequence is  

• A process acts as the leader or a follower in a round

• The leader acts as the sole proposer for round

• Until aborted by another leader  

• A round has a Prepare and an Accept phase

• Log synchronization in the Prepare phase

• Replicate new entries in the Accept phase 

va
ld prefix(va, ld)

n
n

n′￼> n

10

KTH-2023

ID2203

PREPARE PHASE

• Initiated by the leader in a new round n 

• Objective: prepare once, pipeline accepts

• Leader sends ⟨Prepare⟩ to all followers.

• Followers responds with⟨Promise⟩ if not already promised .

• Also includes the log suffix that the leader is missing.

• Upon majority of promises: the leader adopts the most updated log

and synchronizes it with the promised followers.

• After the Prepare phase, any new entry extends the synchronized log

• Allows multiple outstanding ⟨Accept⟩

• Decision in a single round-trip 

n′￼> n

11

KTH-2023

ID2203

12

Leader

Accepted

Prepare

Decided

Promise

Follower

Accepted

Decided

Old

Leader

BLE

AcceptSync

Propose
A

Accept
A

Propose
B

Accept
B

Accepted

The leader and all promised
followers have identical logs

KTH-2023

ID2203

LOG SYNCHRONIZATION

• For safety, the leader must adopt all chosen entries

• Must be among at least one process in any majority

• Adopt the log with highest , or longest log if equal 

• In ⟨Prepare⟩, the leader includes:

• current round:

• accepted round:

• log length:

• decided index:  

• A follower responds with ⟨Promise⟩ only if its and includes:

• and its own

• : the log entries that the leader is missing

• If greater :

• If same and but longer log:

• Else:

na

n
na

|va |
ld

nprom < n
n na, |va | , ld
sfx

na su f f ix(va, ld,leader)
na su f f ix(va, |va |leader)

[]
13

} more updated than leader

KTH-2023

ID2203

ACCEPTSYNC

• Upon majority of ⟨Promise⟩ adopt the from the maximum
promise:

• If greater :

• If same :  

• Synchronize updated log with all promised followers using
⟨AcceptSync⟩ including:

•

• : the log entries that the follower is missing

• If greater :

• If same and but longer log:

• : the index to append at in

sfx

na va = prefix(va, ld) ⊕ sfx
na va = va ⊕ sfx

n
sfx

na suf fix(va, ld, follower)
na suf fix(va, |va |follower)

lsync sfx va

14

KTH-2023

ID2203

ACCEPT PHASE

• After the Prepare phase, the leader and all promised followers have
the same common log prefix with all chosen entries.  

• Leader replicates new command C with ⟨Accept | n, C⟩ to all
promised followers.

• Followers respond with accepted index

• When a majority has ⟨Accepted | n, idx⟩, send ⟨Decide | n, idx⟩ 

• Leader handles late ⟨Promise⟩ by synchronising that follower with
its current log using ⟨AcceptSync⟩

|va |

15

KTH-2023

ID2203

EXAMPLE

16

10

1 2 3 10 1 2 3 1011

p1
BLE

Prepare

3

AcceptSync

11

Accept Decide Decide

p3 AcceptSync DecidePrepare

BLE

1 2 3 1011

10113 4 5 6

1 2 3 1011 1 2 3 1011

1 2 3 1011

1 2 3
ld = 1

1 2 3 4 5 6
ld = 2

1 2 3 10 1 2 3 1011

p2

BLE

Promise Accepted Accepted
Promise AcceptedPropose(10)

Propose(11)

1 2 3 10111 2
ld = 2

1 2 3 1011

KTH-2023

ID2203

FULL PSEUDO CODE - STATE AND BLE

17

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

KTH-2023

ID2203

PREPARE PHASE

18

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

KTH-2023

ID2203

ACCEPT PHASE

19

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

KTH-2023

ID2203

CORRECTNESS

• We must guarantee that:

• If a proposal is chosen, then for every higher proposal

 that is chosen,  

• We have two cases:

• : only successively longer sequences can be chosen within

the same round since processes accept growing sequences.

• : the prepare phase guarantees that all chosen sequences

will be adopted in , and no new sequences can be chosen in
round after that. 

(n, v)
(n′￼, v′￼) v ≤ v′￼

n = n′￼

n < n′￼
n′￼

n

20

KTH-2023

ID2203

SUMMARY

• Assume stable leader and FIFO perfect links.

• Log synchronization in the Prepare phase  

• Single round-trip to decide a command (most of the time) ✅  

• Only new commands are being sent ✅  

• Pipeline ⟨Accept⟩ without waiting for previous to be decided ✅  

• Multiple Proposers and FLP problem

• Handled with BLE in the partially synchronous model 

(not solvable in async model) 🔜

21

ID2203

KTH-2023

Ballot Leader Election

KTH-2023

ID2203

REVISITING BLE
BLE1. Completeness: Eventually, every correct process elects some correct
process, if a majority of processes is correct.  
 
BLE2. Eventual Accuracy: Eventually, no two correct processes elect different
correct processes.  
 
BLE3. Monotonically Increasing Unique Ballots: If a process with ballot is
elected as leader by a process , then all previously elected leaders by have ballot
numbers , and the pair is unique.

pi n
pj pj

m < n (n, pi)

23

For Sequence Paxos:  
Which processes really need to elect and agree with each other?

ID2203

KTH-2023

Partial Connectivity

KTH-2023

ID2203

THE PROBLEM OF PARTIAL CONNECTIVITY

• Thus far, we have assumed network failures to be full partitions.

• In practice, network partitions can be more complex and

unpredictable. 

• Partial connectivity

• Failures at the link level.

• Caused 6+ hours outage at Cloudflare in 2020

25

A

B

C A

B

C

Full partition Partial partition

KTH-2023

ID2203

CHAINED SCENARIO

26

Conference’17, July 2017, Washington, DC, USA Anon.

A

B

C

D E

A

B

C

D E

1 1 2 2

1 1

1 11 1 2

1 1 2

b) Constrained election scenario: Despite being quorum-
connected, server A cannot become the leader.

Disconnected Channel

c) Chained scenario: Disruptions through repeated
elections with higher term.

A

B

C
A

B

C

Term:1

Term:2,4,6,..

Term:3,5,7,..

Leader Candidate

A

B

C

D E

A

B

C

D E

a) Quorum loss scenario: Server C remains the
leader despite not being quorum-connected.

A

B

C

D E

A

B

C

D E

Leader

Stale leader

Connected Channel
Disconnected Channel
Heartbeat Reply

Connected Channel Request Vote

A

B

C

D E

1 1 2 2

1 1

1 1
1 1 2

1 1 2

Stale leader

Figure 1. Disruptions and deadlock in Raft due to partial connectivity.

• We demonstrate liveness issues in existing RSM proto-
cols under partial connectivity and discuss the causes
behind them.

• We de�ne Quorum-connected Leader Election, a spec-
i�cation that guarantees progress in Paxos-based pro-
tocols even with partial connectivity.

• We present Omni-Paxos, an RSM system that provides
complete resilience against partial connectivity and
�exible recon�guration. We provide a full description
of the system along with the speci�cation and correct-
ness arguments.

• We present an experimental evaluation that includes
the following highlights compared to state-of-the-art
protocols: (1) Constant-time recovery from any partial
network partition. Omni-Paxos recovers in constant
time in scenarios where other protocols livelock or
deadlock. (2) Parallel log migration in recon�guration
to provide 8x shorter recon�guration periods and 46%
less I/O at the leader. (3) Improved performance stabil-
ity in specialized settings such as WANs.

2 The Case of Partial Connectivity
Failures in modern networks can be more complex and un-
foreseen than the ones commonly assumed in systems re-
search literature. Partial connectivity is one such type of
failure, where two servers are disconnected while both are
still reachable by a third server. An increasing set of studies
[18, 19] attribute partial network partitions to network up-
grades [8], �rewall or network miscon�gurations [9], and
�aky links between switches [13].

The resilience of RSMs relates to how leader election inter-
acts with log replication to make progress during potential
network partitions. To demonstrate how partial connectivity
challenges resilience, we �rst de�ne the di�erent require-
ments that exist in the leader election of the most widely-
used protocols. In all protocols, a server must get a major-
ity of votes to become the leader. A natural prerequisite of
an elected server is therefore to be quorum-connected (QC),
that is, being directly connected to a majority of servers

(including itself). Multi-Paxos [30] uses QC and failure de-
tection on the leader to provide progress [42]. In some pro-
tocols such as Raft [39], the elected leader must additionally
have the max log, i.e., the log with the highest term num-
ber among a majority. This allows Raft to remain correct
without a synchronization phase where followers transfer
missing log entries to a newly-elected leader. In VR [34], a
server can only vote if itself is quorum-connected. Thus, a
candidate must not only be quorum-connected, it must also
be elected by quorum-connected servers (EQC) to become
the leader. That is, a leader must receive votes from a major-
ity of quorum-connected servers. Zab [27] (using the Fast
Leader Election [37]) adopts both the max log and EQC re-
quirements. A summary of the properties for the mentioned
protocols is shown in Table 1.
We now identify three scenarios of partial connectivity

that can obstruct RSMs from making progress. The last sce-
nario has been documented in practice causing 6+ hours of
down-time for Cloud�are in 2020 [26, 33].
a) Quorum-Loss Scenario. Assume a cluster of �ve servers
that is initially fully-connected and server ⇠ is the elected
leader. A partial network partition could cause a scenario
where all servers are connected to server�, but disconnected
from the rest, as depicted in Figure 1(a). That makes � the
only server that is quorum-connected and therefore the only
quali�ed leader candidate. However, since � is still con-
nected to its leader ⇠ , it will not start a new election to
become the leader. On the other hand, the other servers will
attempt a leader change but not get enough of votes. As a
result, no leader will be elected and log replication progress
will suspend. Raft is an exception to this case, � will learn
higher term numbers from the disconnected followers and
eventually be elected. However, the randomized timers in
Raft might cause other servers to continuously disrupt with
higher terms and cause unavailability before � is elected.
In general, this scenario shows that the alive status of the
current leader is an insu�cient metric to solely trigger a
leader change. Quorum-loss could result in having a leader
that is alive but incapable of making progress.
b) Constrained Election Scenario. Consider now the same
scenario but with leader ⇠ completely partitioned from the
rest. Figure 1(b) illustrates such a scenario including the

KTH-2023

ID2203

QUORUM-LOSS SCENARIO

27

Conference’17, July 2017, Washington, DC, USA Anon.

A

B

C

D E

A

B

C

D E

1 1 2 2

1 1

1 11 1 2

1 1 2

b) Constrained election scenario: Despite being quorum-
connected, server A cannot become the leader.

Disconnected Channel

c) Chained scenario: Disruptions through repeated
elections with higher term.

A

B

C
A

B

C

Term:1

Term:2,4,6,..

Term:3,5,7,..

Leader Candidate

A

B

C

D E

A

B

C

D E

a) Quorum loss scenario: Server C remains the
leader despite not being quorum-connected.

A

B

C

D E

A

B

C

D E

Leader

Stale leader

Connected Channel
Disconnected Channel
Heartbeat Reply

Connected Channel Request Vote

A

B

C

D E

1 1 2 2

1 1

1 1
1 1 2

1 1 2

Stale leader

Figure 1. Disruptions and deadlock in Raft due to partial connectivity.

• We demonstrate liveness issues in existing RSM proto-
cols under partial connectivity and discuss the causes
behind them.

• We de�ne Quorum-connected Leader Election, a spec-
i�cation that guarantees progress in Paxos-based pro-
tocols even with partial connectivity.

• We present Omni-Paxos, an RSM system that provides
complete resilience against partial connectivity and
�exible recon�guration. We provide a full description
of the system along with the speci�cation and correct-
ness arguments.

• We present an experimental evaluation that includes
the following highlights compared to state-of-the-art
protocols: (1) Constant-time recovery from any partial
network partition. Omni-Paxos recovers in constant
time in scenarios where other protocols livelock or
deadlock. (2) Parallel log migration in recon�guration
to provide 8x shorter recon�guration periods and 46%
less I/O at the leader. (3) Improved performance stabil-
ity in specialized settings such as WANs.

2 The Case of Partial Connectivity
Failures in modern networks can be more complex and un-
foreseen than the ones commonly assumed in systems re-
search literature. Partial connectivity is one such type of
failure, where two servers are disconnected while both are
still reachable by a third server. An increasing set of studies
[18, 19] attribute partial network partitions to network up-
grades [8], �rewall or network miscon�gurations [9], and
�aky links between switches [13].

The resilience of RSMs relates to how leader election inter-
acts with log replication to make progress during potential
network partitions. To demonstrate how partial connectivity
challenges resilience, we �rst de�ne the di�erent require-
ments that exist in the leader election of the most widely-
used protocols. In all protocols, a server must get a major-
ity of votes to become the leader. A natural prerequisite of
an elected server is therefore to be quorum-connected (QC),
that is, being directly connected to a majority of servers

(including itself). Multi-Paxos [30] uses QC and failure de-
tection on the leader to provide progress [42]. In some pro-
tocols such as Raft [39], the elected leader must additionally
have the max log, i.e., the log with the highest term num-
ber among a majority. This allows Raft to remain correct
without a synchronization phase where followers transfer
missing log entries to a newly-elected leader. In VR [34], a
server can only vote if itself is quorum-connected. Thus, a
candidate must not only be quorum-connected, it must also
be elected by quorum-connected servers (EQC) to become
the leader. That is, a leader must receive votes from a major-
ity of quorum-connected servers. Zab [27] (using the Fast
Leader Election [37]) adopts both the max log and EQC re-
quirements. A summary of the properties for the mentioned
protocols is shown in Table 1.
We now identify three scenarios of partial connectivity

that can obstruct RSMs from making progress. The last sce-
nario has been documented in practice causing 6+ hours of
down-time for Cloud�are in 2020 [26, 33].
a) Quorum-Loss Scenario. Assume a cluster of �ve servers
that is initially fully-connected and server ⇠ is the elected
leader. A partial network partition could cause a scenario
where all servers are connected to server�, but disconnected
from the rest, as depicted in Figure 1(a). That makes � the
only server that is quorum-connected and therefore the only
quali�ed leader candidate. However, since � is still con-
nected to its leader ⇠ , it will not start a new election to
become the leader. On the other hand, the other servers will
attempt a leader change but not get enough of votes. As a
result, no leader will be elected and log replication progress
will suspend. Raft is an exception to this case, � will learn
higher term numbers from the disconnected followers and
eventually be elected. However, the randomized timers in
Raft might cause other servers to continuously disrupt with
higher terms and cause unavailability before � is elected.
In general, this scenario shows that the alive status of the
current leader is an insu�cient metric to solely trigger a
leader change. Quorum-loss could result in having a leader
that is alive but incapable of making progress.
b) Constrained Election Scenario. Consider now the same
scenario but with leader ⇠ completely partitioned from the
rest. Figure 1(b) illustrates such a scenario including the

KTH-2023

ID2203

CONSTRAINED ELECTION SCENARIO

28

Conference’17, July 2017, Washington, DC, USA Anon.

A

B

C

D E

A

B

C

D E

1 1 2 2

1 1

1 11 1 2

1 1 2

b) Constrained election scenario: Despite being quorum-
connected, server A cannot become the leader.

Disconnected Channel

c) Chained scenario: Disruptions through repeated
elections with higher term.

A

B

C
A

B

C

Term:1

Term:2,4,6,..

Term:3,5,7,..

Leader Candidate

A

B

C

D E

A

B

C

D E

a) Quorum loss scenario: Server C remains the
leader despite not being quorum-connected.

A

B

C

D E

A

B

C

D E

Leader

Stale leader

Connected Channel
Disconnected Channel
Heartbeat Reply

Connected Channel Request Vote

A

B

C

D E

1 1 2 2

1 1

1 1
1 1 2

1 1 2

Stale leader

Figure 1. Disruptions and deadlock in Raft due to partial connectivity.

• We demonstrate liveness issues in existing RSM proto-
cols under partial connectivity and discuss the causes
behind them.

• We de�ne Quorum-connected Leader Election, a spec-
i�cation that guarantees progress in Paxos-based pro-
tocols even with partial connectivity.

• We present Omni-Paxos, an RSM system that provides
complete resilience against partial connectivity and
�exible recon�guration. We provide a full description
of the system along with the speci�cation and correct-
ness arguments.

• We present an experimental evaluation that includes
the following highlights compared to state-of-the-art
protocols: (1) Constant-time recovery from any partial
network partition. Omni-Paxos recovers in constant
time in scenarios where other protocols livelock or
deadlock. (2) Parallel log migration in recon�guration
to provide 8x shorter recon�guration periods and 46%
less I/O at the leader. (3) Improved performance stabil-
ity in specialized settings such as WANs.

2 The Case of Partial Connectivity
Failures in modern networks can be more complex and un-
foreseen than the ones commonly assumed in systems re-
search literature. Partial connectivity is one such type of
failure, where two servers are disconnected while both are
still reachable by a third server. An increasing set of studies
[18, 19] attribute partial network partitions to network up-
grades [8], �rewall or network miscon�gurations [9], and
�aky links between switches [13].

The resilience of RSMs relates to how leader election inter-
acts with log replication to make progress during potential
network partitions. To demonstrate how partial connectivity
challenges resilience, we �rst de�ne the di�erent require-
ments that exist in the leader election of the most widely-
used protocols. In all protocols, a server must get a major-
ity of votes to become the leader. A natural prerequisite of
an elected server is therefore to be quorum-connected (QC),
that is, being directly connected to a majority of servers

(including itself). Multi-Paxos [30] uses QC and failure de-
tection on the leader to provide progress [42]. In some pro-
tocols such as Raft [39], the elected leader must additionally
have the max log, i.e., the log with the highest term num-
ber among a majority. This allows Raft to remain correct
without a synchronization phase where followers transfer
missing log entries to a newly-elected leader. In VR [34], a
server can only vote if itself is quorum-connected. Thus, a
candidate must not only be quorum-connected, it must also
be elected by quorum-connected servers (EQC) to become
the leader. That is, a leader must receive votes from a major-
ity of quorum-connected servers. Zab [27] (using the Fast
Leader Election [37]) adopts both the max log and EQC re-
quirements. A summary of the properties for the mentioned
protocols is shown in Table 1.
We now identify three scenarios of partial connectivity

that can obstruct RSMs from making progress. The last sce-
nario has been documented in practice causing 6+ hours of
down-time for Cloud�are in 2020 [26, 33].
a) Quorum-Loss Scenario. Assume a cluster of �ve servers
that is initially fully-connected and server ⇠ is the elected
leader. A partial network partition could cause a scenario
where all servers are connected to server�, but disconnected
from the rest, as depicted in Figure 1(a). That makes � the
only server that is quorum-connected and therefore the only
quali�ed leader candidate. However, since � is still con-
nected to its leader ⇠ , it will not start a new election to
become the leader. On the other hand, the other servers will
attempt a leader change but not get enough of votes. As a
result, no leader will be elected and log replication progress
will suspend. Raft is an exception to this case, � will learn
higher term numbers from the disconnected followers and
eventually be elected. However, the randomized timers in
Raft might cause other servers to continuously disrupt with
higher terms and cause unavailability before � is elected.
In general, this scenario shows that the alive status of the
current leader is an insu�cient metric to solely trigger a
leader change. Quorum-loss could result in having a leader
that is alive but incapable of making progress.
b) Constrained Election Scenario. Consider now the same
scenario but with leader ⇠ completely partitioned from the
rest. Figure 1(b) illustrates such a scenario including the

KTH-2023

ID2203

TEASER: EXISTING ALGORITHMS CANNOT HANDLE THIS!

29

Omni-Paxos:
Breaking the Barriers of Partial Connectivity Conference’17, July 2017, Washington, DC, USA

Table 1. Comparison of protocols and partial connectivity. (*Addressed in recent PV/QC [24] Raft patch)

Protocol Properties
(QC= quorum-connected, EQC=elected by quorum-connected)

Partial-Connectivity Scenarios
(3:stable progress, 7:unavailable)

Log
Sync
Phase

Candidate
Requirements

Leader Vote
Gossiping

QC Status
Heartbeats

Guaranteed Progress
Requirement
(#QC servers)

Quorum-Loss
Scenario

Constrained
Election
Scenario

Chained
Scenario

Multi-Paxos
[28, 37] 3 QC 3 � d# /2e 7 3 7

Raft [34] QC + max log 3 � d# /2e 7* 7 7*
VR [31] 3 QC + EQC 3 � d# /2e 7 7 7

Zab [25, 33] QC + EQC
+ max log 3 � d# /2e 7 7 7

Omni-Paxos 3 QC 3 � 1 3 3 3

from the disconnected followers and eventually be elected.
However, the randomized timers in Raft might cause other
servers to continuously disrupt with higher terms and cause
unavailability before � is elected. In general, this scenario
shows that the alive status of the current leader is an insu�-
cient metric to solely trigger a leader change. Quorum-loss
could result in having a leader that is alive but incapable of
making progress.
b) Constrained Election Scenario. Consider now the same
scenario but with leader ⇠ completely partitioned from the
rest. Figure 1(b) illustrates such a scenario including the
log of each server. Each log entry carries the term id it was
replicated with. Again, we notice that � is the only quorum-
connected server. Contrary to the previous scenario, � now
observes that ⇠ is unreachable and attempts a leader elec-
tion. Despite having the capability to be elected and make
progress, � would not get elected in state-of-the-art proto-
cols such as Raft, Zab, and VR. This is due to the constraints
that these protocols impose on candidates in addition to
quorum-connectivity. For example, having the max log is an
extra requirement in Raft and Zab. In the example, �’s last
entry has a lower term than ⌫ and ⇡ , and it will therefore
not get voted by them. However, ⌫ and ⇡ do not qualify
either since they are not quorum-connected. VR and Zab fur-
ther constrain the set of possible candidates to servers that
can be elected by other quorum-connected servers (EQC). In
this case, no other server apart from � is quorum-connected
which implies that no server can be EQC. Both of these cases
lead to progress violations due to the constraints added on
top of quorum-connectivity in leader election.
c) Chained scenario. Figure 1(c) illustrates a scenario where
a link has broken down in an RSM cluster of 3 servers, such
that the servers are connected in a chain. Server ⌫ is the
leader before the link between ⌫ and⇠ is disconnected. As⇠
does not receive any messages from ⌫, it suspects that ⌫ has
failed and increments its term number (to become the leader).
If ⌫ then observes via � that the leadership has changed, the
described scenario will re-occur in the reversed direction; ⌫
will suspect that ⇠ has failed and become the leader with a

higher term. As such, a chained scenario will cause a livelock
where the leader repeatedly changes due to a higher term
number getting gossiped. This form of gossiping the current
leader term occurs at di�erent stages in di�erent protocols.
In Multi-Paxos and Raft,� would �rst elect the server with a
higher term, and when the other server tries to replicate new
entries, � will reject it and reply with the new term number.
In Zab, once a server elects a new leader, this information
is forwarded to all its peers. Whereas in VR, a server that
suspects the leader has failed or gets noti�ed about it, will
propose a leader change that in turn gets forwarded by all
other peers. Chained scenarios could be resolved in some of
the existing protocols if a fully-connected server (e.g. � in
this case) manages to get elected, e.g. due to some additional
constraints such as the log progress in Raft or pre-determined
leader ordering in VR. However, in scenarios where there
is no fully-connected server (e.g. chained scenario with 5
servers), the cluster will be in a livelock with repeated leader
changes due to the terms being gossiped.
Key Observations: The described scenarios epitomize the
challenges of partial connectivity for RSMs. The quorum-
loss scenario shows that leader election protocols equiva-
lent to failure detectors are not su�cient. Partial connectiv-
ity could result in situations where the leader is alive but
not quorum-connected anymore and thus unable to make
progress. The constrained election scenario shows that leader
election must not have any strict requirements on servers
apart from quorum-connectivity. A server should be an eligi-
ble candidate as long as it is connected to a majority. An RSM
protocol must therefore complement this with a synchro-
nization phase since a newly-elected leader might not have
all the committed entries. Furthermore, the chained scenario
shows that gossiping the identity of the current leader could
cause liveness issues due to repeated elections originating
in servers having inconsistent views on which servers are
alive. The properties and capability with partial connectivity
of the described protocols are summarized in Table 1.
To modify the existing protocols to handle partial con-

nectivity is not trivial due to their monolithic designs. The

KTH-2023

ID2203

QUORUM-CONNECTED LEADER ELECTION

• Observe: In Sequence Paxos, only the leader must be connected to a
majority for liveness.

• Followers don’t talk to each other! 

• Quorum-connected server: a quorum-connected server is a server that is
correct and has a direct link to at least a majority of correct servers
(including itself).

30

QLE1. Quorum-Connected Completeness: Eventually, every quorum-connected
server elects some quorum-connected server, if a quorum-connected server exists. 
 
QLE2. Quorum-Connected Eventual Accuracy: Eventually, there is a majority of
servers S where no two quorum-connected servers in S elect differently.  
 
QLE3. Monotonically Increasing Unique Ballots: Unchanged.

KTH-2023

ID2203

BALLOT LEADER ELECTION

• A server has a ballot number b and a quorum-connected flag qc

• Periodically, all servers exchange heartbeats.

• Broadcast ⟨HBRequest | r⟩

• Reply ⟨HBReply | r, qc, b⟩ 

• Servers can determine two things with the heartbeats:

1. Am I quorum-connected?

2. Which of my peers are alive and quorum-connected ? 

• Upon timeout:

• If received a majority of ⟨HBReply⟩:

• Check if leader is still alive and quorum-connected. If not, increment b.

• Elect the server with highest b and qc = true

• Else: set qc = false 

31

KTH-2023

ID2203

BLE PSEUDO CODE

32

KTH-2023

ID2203

CORRECTNESS

• Assuming we learn a time out s.t. no late ⟨HBReply⟩ is received.

• A late heartbeat is ignored and does not affect correctness.

• QLE1. Quorum-connected Completeness

• A server can only elect if it got a majority of ⟨HBReply⟩i.e. is

quorum-connected. The elected server must have qc = true. 

• QLE3. Monotonically Increasing Unique Ballots

• Each ballot is unique due to is unique. Servers only

elect new leaders with higher ballot than previous leaders.
(b, pid) pid

33

KTH-2023

ID2203

CORRECTNESS CONTINUED

• QLE2. Quorum-Connected Eventual Accuracy: Eventually, there is a majority of servers S
where no two quorum-connected servers in S elect differently.  

• Consider every possible case of connectivity between quorum-connected servers:

1. Only one QC server in the cluster.

2. Multiple QC servers:

A. That are connected to each other.

B. That are disconnected to each other.

• 1. That QC server will be the only one receiving a majority of ⟨HBReply⟩ and its own ballot
will be the only with qc = true.

• 2A. All QC servers get each others ⟨HBReply⟩. They all elect the same leader with the
highest ballot.

• 2B. As they are QC but disconnected, each of them is connected to a majority of servers. And
any majority overlaps on at least one server.

• That server is not QC: will not elect in BLE, but will follow (i.e. promise) the leader
with the highest ballot in Sequence Paxos.

• That server is QC: will elect the one with highest ballot (as in 2A)

34

KTH-2023

ID2203

OMNI-PAXOS: CHAINED SCENARIO

35

Conference’17, July 2017, Washington, DC, USA Harald Ng, Seif Haridi, and Paris Carbone

A

B

C

D E

1 1 2 2

1 1

1 11 1 2

1 1 2

Disconnected Channel

c) Chained scenario:
Server A adopts C as the leader.

Leader

A

B

C

D E

A

B

C

D E

Leader

Stale leader

Connected Channel
Disconnected Channel
Heartbeat Reply

Connected Channel Prepare in Sequence PaxosStale leader

A

B

C
A

B

C

A

B

C

D E

A

B

C

D E

b) Constrained Election scenario:
Server A successfully becomes the leader.

a) Quorum-loss scenario:
Server A becomes the leader when C loses quorum-connectivity.

b : ⟨0, D, true⟩
: ⟨1, C, true⟩

b : ⟨0, A, true⟩
: ⟨1, C, true⟩

b : ⟨0, B, true⟩
: ⟨1, C, true⟩

b : ⟨1, C, true⟩
: ⟨1, C, true⟩

b : ⟨0, E, true⟩
: ⟨1, C, true⟩

A

B

C

D E

A

B

C

D E

b : ⟨0, D, true⟩
: ⟨1, C, true⟩

b : ⟨0, A, true⟩
: ⟨1, C, true⟩

b : ⟨0, B, true⟩
: ⟨1, C, true⟩

b : ⟨1, C, true⟩
: ⟨1, C, true⟩

b : ⟨0, E, true⟩
: ⟨1, C, true⟩

b : ⟨1, B, true⟩
: ⟨1, B, true⟩

b : ⟨0, A, true⟩
: ⟨1, B, true⟩

b : ⟨0, C, true⟩
: ⟨1, B, true⟩

b : ⟨1, B, true⟩
: ⟨1, B, true⟩

b : ⟨0, A, true⟩
: ⟨2, C, true⟩

b : ⟨2, C, true⟩
: ⟨2, C, true⟩

b : ⟨0, B, false⟩
: -

b : ⟨2, A, true⟩
: ⟨2, A, true⟩

b : ⟨1, C, false⟩
: -

b : ⟨0, B, false⟩
: -

b : ⟨0, D, false⟩
: -

b : ⟨0, E, false⟩
: -

b : ⟨0, D, false⟩
: -

b : ⟨0, E, false⟩
: -

b : ⟨2, A, true⟩
: ⟨2, A, true⟩

b : ⟨1, C, false⟩
: -

Figure 5. Resilience to partial connectivity in Omni-Paxos.

multiple quorum-connected servers that are either connected
or disconnected from each other.
i) Single QC server. The only QC server eventually re-

ceives a majority of heartbeats, and its own will be the only
one with the quorum-connected �ag true. As a result, it elects
itself and LE2 is trivially satis�ed. ⇤
An example of this is the constrained election scenario shown
in Figure 5(b). Server� is the only QC server and increments
its ballot when it disconnects from ⇠ . As in the quorum-loss
scenario, {⌫,⇡, ⇢} will not elect� in BLE as they cannot per-
form checkLeader. Instead, they will promise� in Sequence
Paxos. This is an example of only requiring the candidate
to be quorum-connected (QC) rather than to be elected by
other quorum-connected servers (EQC). Another important
observation from this scenario is that the log progress is not
a strict requirement in BLE. Even if � has an outdated log, it
can get elected and then catch up the missing entries during
the Prepare phase of Sequence Paxos.
ii) Multiple connected QC servers. The QC servers

will eventually receive the ballots of each other since they
are connected. As the ballots are totally-ordered (LE3), they
all elect the same server with the highest ballot number in
checkLeader. ⇤

iii)Multiple disconnectedQC servers. If the QC servers
are disconnected, then each of them is connected to a major-
ity with at least one overlapping server that is not quorum-
connected. In each of these di�erent majorities, either case i
or case ii applies and LE2 is thus satis�ed. ⇤
Figure 5(c) shows such an example: All servers are quorum-
connected, but ⌫ and ⇠ are disconnected from each other.
After disconnection, ⇠ will timeout waiting for ⌫’s heart-
beats and increment its ballot. Both� and⇠ will elect⇠ with
the higher ballot in BLE. After� has promised⇠ in Sequence
Paxos, it will not replicate entries from ⌫ due to ⌫’s lower
round number. However, the ballot of � remains unchanged
and there is no additional information in the ballots regard-
ing who the current leader is. ⌫ will therefore not cause any
leader changes and the cluster can progress with {�,⇠}.
LE3. As seen in checkLeader, the ballots are monotonically
increasing since a server only elects a server with a higher

ballot than the previous leader. Every ballot 1 = (B, ?83) is
unique as ?83 is the unique identi�er of each server 1 . ⇤
With the decoupled design of Omni-Paxos, BLE can be

customized to improve performance. The ballot can be ex-
tended with a custom �eld 2 such that 1 = (B, 2, ?83). Leader
candidates can thus be assigned priorities according to the
use case. Note that such extension is only used for breaking
ties between ballots and does not a�ect liveness. An elected
candidate must still be quorum-connected.

6 Recon�guration
We now describe the recon�guration in Omni-Paxos. Omni-
Paxos can complete recon�guration fast even when newly
added servers are disconnected from the old leader. The main
di�erentiation compared to other protocols lies in having a
service layer with a cross-con�guration scope which allows
log migration to execute in a decentralized fashion.

A con�guration 28 represents the �xed set of servers run-
ning an instance of Sequence Paxos and BLE. To recon�gure,
e.g. from 28 = {�,⌫,⇠} to 28+1 = {⇠,⇡, ⇢}, the current con-
�guration must �rst be stopped via a stop-sign ((() entry in
the log. The ((contains the set of servers in 28+1 and gets
decided following the normal Sequence Paxos protocol in 28 ,
with the exception that once ((is chosen, no further entries
can be decided in 28 . Recall from §3 that the replicated log is
stored in the service layer of a server. When ((is decided in
28 , the service layer is responsible for starting 28+1 safely. If a
server B is part of both con�gurations, then it is safe for the
service layer of B to directly start its BLE and Sequence Paxos
components of 28+1, as it has already replicated all log entries
from 28 . The service layer of B should also notify new servers
of 28+1, since they did not participate in 28 and thus did not
observe the ((. For safety, the service layer of these servers
only starts their BLE and Sequence Paxos components of 28+1
when the complete log has been fetched from other servers.
Note that this log migration only involves decided entries
and is performed in the service layer, completely isolated
from the underlying log replication.

KTH-2023

ID2203

OMNI-PAXOS: QUORUM-LOSS SCENARIO

36

Conference’17, July 2017, Washington, DC, USA Harald Ng, Seif Haridi, and Paris Carbone

A

B

C

D E

1 1 2 2

1 1

1 11 1 2

1 1 2

Disconnected Channel

c) Chained scenario:
Server A adopts C as the leader.

Leader

A

B

C

D E

A

B

C

D E

Leader

Stale leader

Connected Channel
Disconnected Channel
Heartbeat Reply

Connected Channel Prepare in Sequence PaxosStale leader

A

B

C
A

B

C

A

B

C

D E

A

B

C

D E

b) Constrained Election scenario:
Server A successfully becomes the leader.

a) Quorum-loss scenario:
Server A becomes the leader when C loses quorum-connectivity.

b : ⟨0, D, true⟩
: ⟨1, C, true⟩

b : ⟨0, A, true⟩
: ⟨1, C, true⟩

b : ⟨0, B, true⟩
: ⟨1, C, true⟩

b : ⟨1, C, true⟩
: ⟨1, C, true⟩

b : ⟨0, E, true⟩
: ⟨1, C, true⟩

A

B

C

D E

A

B

C

D E

b : ⟨0, D, true⟩
: ⟨1, C, true⟩

b : ⟨0, A, true⟩
: ⟨1, C, true⟩

b : ⟨0, B, true⟩
: ⟨1, C, true⟩

b : ⟨1, C, true⟩
: ⟨1, C, true⟩

b : ⟨0, E, true⟩
: ⟨1, C, true⟩

b : ⟨1, B, true⟩
: ⟨1, B, true⟩

b : ⟨0, A, true⟩
: ⟨1, B, true⟩

b : ⟨0, C, true⟩
: ⟨1, B, true⟩

b : ⟨1, B, true⟩
: ⟨1, B, true⟩

b : ⟨0, A, true⟩
: ⟨2, C, true⟩

b : ⟨2, C, true⟩
: ⟨2, C, true⟩

b : ⟨0, B, false⟩
: -

b : ⟨2, A, true⟩
: ⟨2, A, true⟩

b : ⟨1, C, false⟩
: -

b : ⟨0, B, false⟩
: -

b : ⟨0, D, false⟩
: -

b : ⟨0, E, false⟩
: -

b : ⟨0, D, false⟩
: -

b : ⟨0, E, false⟩
: -

b : ⟨2, A, true⟩
: ⟨2, A, true⟩

b : ⟨1, C, false⟩
: -

Figure 5. Resilience to partial connectivity in Omni-Paxos.

multiple quorum-connected servers that are either connected
or disconnected from each other.
i) Single QC server. The only QC server eventually re-

ceives a majority of heartbeats, and its own will be the only
one with the quorum-connected �ag true. As a result, it elects
itself and LE2 is trivially satis�ed. ⇤
An example of this is the constrained election scenario shown
in Figure 5(b). Server� is the only QC server and increments
its ballot when it disconnects from ⇠ . As in the quorum-loss
scenario, {⌫,⇡, ⇢} will not elect� in BLE as they cannot per-
form checkLeader. Instead, they will promise� in Sequence
Paxos. This is an example of only requiring the candidate
to be quorum-connected (QC) rather than to be elected by
other quorum-connected servers (EQC). Another important
observation from this scenario is that the log progress is not
a strict requirement in BLE. Even if � has an outdated log, it
can get elected and then catch up the missing entries during
the Prepare phase of Sequence Paxos.
ii) Multiple connected QC servers. The QC servers

will eventually receive the ballots of each other since they
are connected. As the ballots are totally-ordered (LE3), they
all elect the same server with the highest ballot number in
checkLeader. ⇤

iii)Multiple disconnectedQC servers. If the QC servers
are disconnected, then each of them is connected to a major-
ity with at least one overlapping server that is not quorum-
connected. In each of these di�erent majorities, either case i
or case ii applies and LE2 is thus satis�ed. ⇤
Figure 5(c) shows such an example: All servers are quorum-
connected, but ⌫ and ⇠ are disconnected from each other.
After disconnection, ⇠ will timeout waiting for ⌫’s heart-
beats and increment its ballot. Both� and⇠ will elect⇠ with
the higher ballot in BLE. After� has promised⇠ in Sequence
Paxos, it will not replicate entries from ⌫ due to ⌫’s lower
round number. However, the ballot of � remains unchanged
and there is no additional information in the ballots regard-
ing who the current leader is. ⌫ will therefore not cause any
leader changes and the cluster can progress with {�,⇠}.
LE3. As seen in checkLeader, the ballots are monotonically
increasing since a server only elects a server with a higher

ballot than the previous leader. Every ballot 1 = (B, ?83) is
unique as ?83 is the unique identi�er of each server 1 . ⇤
With the decoupled design of Omni-Paxos, BLE can be

customized to improve performance. The ballot can be ex-
tended with a custom �eld 2 such that 1 = (B, 2, ?83). Leader
candidates can thus be assigned priorities according to the
use case. Note that such extension is only used for breaking
ties between ballots and does not a�ect liveness. An elected
candidate must still be quorum-connected.

6 Recon�guration
We now describe the recon�guration in Omni-Paxos. Omni-
Paxos can complete recon�guration fast even when newly
added servers are disconnected from the old leader. The main
di�erentiation compared to other protocols lies in having a
service layer with a cross-con�guration scope which allows
log migration to execute in a decentralized fashion.

A con�guration 28 represents the �xed set of servers run-
ning an instance of Sequence Paxos and BLE. To recon�gure,
e.g. from 28 = {�,⌫,⇠} to 28+1 = {⇠,⇡, ⇢}, the current con-
�guration must �rst be stopped via a stop-sign ((() entry in
the log. The ((contains the set of servers in 28+1 and gets
decided following the normal Sequence Paxos protocol in 28 ,
with the exception that once ((is chosen, no further entries
can be decided in 28 . Recall from §3 that the replicated log is
stored in the service layer of a server. When ((is decided in
28 , the service layer is responsible for starting 28+1 safely. If a
server B is part of both con�gurations, then it is safe for the
service layer of B to directly start its BLE and Sequence Paxos
components of 28+1, as it has already replicated all log entries
from 28 . The service layer of B should also notify new servers
of 28+1, since they did not participate in 28 and thus did not
observe the ((. For safety, the service layer of these servers
only starts their BLE and Sequence Paxos components of 28+1
when the complete log has been fetched from other servers.
Note that this log migration only involves decided entries
and is performed in the service layer, completely isolated
from the underlying log replication.

KTH-2023

ID2203

CONSTRAINED ELECTION SCENARIO

37

Conference’17, July 2017, Washington, DC, USA Harald Ng, Seif Haridi, and Paris Carbone

A

B

C

D E

1 1 2 2

1 1

1 11 1 2

1 1 2

Disconnected Channel

c) Chained scenario:
Server A adopts C as the leader.

Leader

A

B

C

D E

A

B

C

D E

Leader

Stale leader

Connected Channel
Disconnected Channel
Heartbeat Reply

Connected Channel Prepare in Sequence PaxosStale leader

A

B

C
A

B

C

A

B

C

D E

A

B

C

D E

b) Constrained Election scenario:
Server A successfully becomes the leader.

a) Quorum-loss scenario:
Server A becomes the leader when C loses quorum-connectivity.

b : ⟨0, D, true⟩
: ⟨1, C, true⟩

b : ⟨0, A, true⟩
: ⟨1, C, true⟩

b : ⟨0, B, true⟩
: ⟨1, C, true⟩

b : ⟨1, C, true⟩
: ⟨1, C, true⟩

b : ⟨0, E, true⟩
: ⟨1, C, true⟩

A

B

C

D E

A

B

C

D E

b : ⟨0, D, true⟩
: ⟨1, C, true⟩

b : ⟨0, A, true⟩
: ⟨1, C, true⟩

b : ⟨0, B, true⟩
: ⟨1, C, true⟩

b : ⟨1, C, true⟩
: ⟨1, C, true⟩

b : ⟨0, E, true⟩
: ⟨1, C, true⟩

b : ⟨1, B, true⟩
: ⟨1, B, true⟩

b : ⟨0, A, true⟩
: ⟨1, B, true⟩

b : ⟨0, C, true⟩
: ⟨1, B, true⟩

b : ⟨1, B, true⟩
: ⟨1, B, true⟩

b : ⟨0, A, true⟩
: ⟨2, C, true⟩

b : ⟨2, C, true⟩
: ⟨2, C, true⟩

b : ⟨0, B, false⟩
: -

b : ⟨2, A, true⟩
: ⟨2, A, true⟩

b : ⟨1, C, false⟩
: -

b : ⟨0, B, false⟩
: -

b : ⟨0, D, false⟩
: -

b : ⟨0, E, false⟩
: -

b : ⟨0, D, false⟩
: -

b : ⟨0, E, false⟩
: -

b : ⟨2, A, true⟩
: ⟨2, A, true⟩

b : ⟨1, C, false⟩
: -

Figure 5. Resilience to partial connectivity in Omni-Paxos.

multiple quorum-connected servers that are either connected
or disconnected from each other.
i) Single QC server. The only QC server eventually re-

ceives a majority of heartbeats, and its own will be the only
one with the quorum-connected �ag true. As a result, it elects
itself and LE2 is trivially satis�ed. ⇤
An example of this is the constrained election scenario shown
in Figure 5(b). Server� is the only QC server and increments
its ballot when it disconnects from ⇠ . As in the quorum-loss
scenario, {⌫,⇡, ⇢} will not elect� in BLE as they cannot per-
form checkLeader. Instead, they will promise� in Sequence
Paxos. This is an example of only requiring the candidate
to be quorum-connected (QC) rather than to be elected by
other quorum-connected servers (EQC). Another important
observation from this scenario is that the log progress is not
a strict requirement in BLE. Even if � has an outdated log, it
can get elected and then catch up the missing entries during
the Prepare phase of Sequence Paxos.
ii) Multiple connected QC servers. The QC servers

will eventually receive the ballots of each other since they
are connected. As the ballots are totally-ordered (LE3), they
all elect the same server with the highest ballot number in
checkLeader. ⇤

iii)Multiple disconnectedQC servers. If the QC servers
are disconnected, then each of them is connected to a major-
ity with at least one overlapping server that is not quorum-
connected. In each of these di�erent majorities, either case i
or case ii applies and LE2 is thus satis�ed. ⇤
Figure 5(c) shows such an example: All servers are quorum-
connected, but ⌫ and ⇠ are disconnected from each other.
After disconnection, ⇠ will timeout waiting for ⌫’s heart-
beats and increment its ballot. Both� and⇠ will elect⇠ with
the higher ballot in BLE. After� has promised⇠ in Sequence
Paxos, it will not replicate entries from ⌫ due to ⌫’s lower
round number. However, the ballot of � remains unchanged
and there is no additional information in the ballots regard-
ing who the current leader is. ⌫ will therefore not cause any
leader changes and the cluster can progress with {�,⇠}.
LE3. As seen in checkLeader, the ballots are monotonically
increasing since a server only elects a server with a higher

ballot than the previous leader. Every ballot 1 = (B, ?83) is
unique as ?83 is the unique identi�er of each server 1 . ⇤
With the decoupled design of Omni-Paxos, BLE can be

customized to improve performance. The ballot can be ex-
tended with a custom �eld 2 such that 1 = (B, 2, ?83). Leader
candidates can thus be assigned priorities according to the
use case. Note that such extension is only used for breaking
ties between ballots and does not a�ect liveness. An elected
candidate must still be quorum-connected.

6 Recon�guration
We now describe the recon�guration in Omni-Paxos. Omni-
Paxos can complete recon�guration fast even when newly
added servers are disconnected from the old leader. The main
di�erentiation compared to other protocols lies in having a
service layer with a cross-con�guration scope which allows
log migration to execute in a decentralized fashion.

A con�guration 28 represents the �xed set of servers run-
ning an instance of Sequence Paxos and BLE. To recon�gure,
e.g. from 28 = {�,⌫,⇠} to 28+1 = {⇠,⇡, ⇢}, the current con-
�guration must �rst be stopped via a stop-sign ((() entry in
the log. The ((contains the set of servers in 28+1 and gets
decided following the normal Sequence Paxos protocol in 28 ,
with the exception that once ((is chosen, no further entries
can be decided in 28 . Recall from §3 that the replicated log is
stored in the service layer of a server. When ((is decided in
28 , the service layer is responsible for starting 28+1 safely. If a
server B is part of both con�gurations, then it is safe for the
service layer of B to directly start its BLE and Sequence Paxos
components of 28+1, as it has already replicated all log entries
from 28 . The service layer of B should also notify new servers
of 28+1, since they did not participate in 28 and thus did not
observe the ((. For safety, the service layer of these servers
only starts their BLE and Sequence Paxos components of 28+1
when the complete log has been fetched from other servers.
Note that this log migration only involves decided entries
and is performed in the service layer, completely isolated
from the underlying log replication.

KTH-2023

ID2203

OBSERVATIONS

• Omni-Paxos guarantees liveness as long as one quorum-connected
server exists. 

• BLE and its quorum-connected properties are weaker than a usual
leader election. But it is sufficient for Sequence Paxos 

• Non QC servers do not elect (QLE1)

• But if they are connected to the leader, they will get the
⟨Prepare⟩ to participate in Sequence Paxos anyway. 

• Different QC servers might elect different leaders (QLE2)

• One of them will have the highest ballot. That leader will

also be the only one making progress in Sequence Paxos.

38

ID2203

KTH-2023

Failure Recovery

KTH-2023

ID2203

OUTLINE

• At this point, we have an efficient and resilient algorithm. 

• Fail recovery model

• Recover from crashes. 

• FIFO perfect link assumption is impractical.

• Session-based FIFO perfect links

• Handle session drops

40

KTH-2023

ID2203

FAIL RECOVERY

• A process is correct if it crashes and recovers a finite number of
times.

• By crashing and restarting, a process loses any arbitrary suffix of
most recent messages in each FIFO perfect link. 

• A recovered process must get its log synchronized to be up-to-date
before doing anything further.

41

KTH-2023

ID2203

RECOVERY

• Each process must store the following variables in persistent storage

• : the log.

• : the decided index.

• : the promised round.

• : the latest round entries were accepted in. 

• Upon recovery, restore these variables.

• Load into BLE

• Set own state into (FOLLOWER, RECOVER)

• Send ⟨PrepareReq⟩ to all peers

• If a receiving process is the leader, it replies with ⟨Prepare⟩

va
ld
nprom
na

nprom

42

KTH-2023

ID2203

RECOVER STATE

• In (FOLLOWER, RECOVER), a process can only handle:

• ⟨Leader⟩ : got elected as the leader, will get synchronized by

performing the prepare phase.

• ⟨Prepare⟩ : leader will help us get synchronized.

43

Leader

Prepare

Promise

Follower

BLE

AcceptSync

Leader

Prepare

Promise

Follower

BLE

AcceptSync

PrepareReq

Prepare

KTH-2023

ID2203

SESSION-BASED FIFO PERFECT LINKS

• Assume FIFO perfect links once a session has been established.

• e.g. TCP sessions

• Need to handle session-drops. 

• If disconnected to a peer… do nothing 

• When reconnecting to a peer p:

• Send ⟨PrepareReq⟩ to p because p might have become the new

leader during our down-time.

• If p is the leader we last promised:

• Go into recover mode to avoid handling anything before
being synchronized.

44

KTH-2023

ID2203

PSEUDO CODE

45

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

KTH-2023

ID2203

SUMMARY

• From naïve Sequence Paxos to Sequence Paxos

• Log Synchronization in Prepare phase

• Pipeline ⟨Accept⟩ in Accept phase. 

• Liveness with Ballot Leader Election

• Quorum-connected leader election properties

• Resilient: guaranteed progress with a single quorum-connected

node. 

• Handling Failures:

• Session-based FIFO perfect link

• Always get synchronized first when recovering.

46

KTH-2023

ID2203

UP NEXT

• Reconfiguration: how to safely add/remove processes.

• Parallel log migration 

• Other replicated state machines

• Raft and ZooKeeper (Zab)

• Partial connectivity

47

