
ID2203

KTH-2023

Replicated Logs

and State Machines

Paris Carbone

Distributed Systems

ADVANCED COURSE

KTH-2023

ID2203

‣ Intro to Distributed Systems

‣ Fundamental Abstractions and Failure Detectors

‣ Reliable and Causal Order Broadcast

‣ Distributed Shared Memory-CRDTs

‣ Consensus (Paxos)

‣ Replicated State Machines (OmniPaxos, Raft, Zab etc.)

‣ Time Abstractions and Interval Clocks (Spanner etc.)

‣ Consistent Snapshotting (Stream Data Management)

‣ Distributed ACID Transactions (Cloud DBs)

COURSE TOPICS

2

KTH-2023

ID2203

MOTIVATION

• We wish to implement a Replicated State Machine (RSM).

• Processes need to agree on the sequence of commands (or
messages) to execute.

• The standard approach is to use multiple instances of Paxos
for single-value consensus (MultiPaxos).

3

KTH-2023

ID2203

STATE MACHINES

A State Machine

• Executes a sequence of
commands

• Transforms its state and may
produce some output

• Commands are deterministic

• i.e., Outputs of the state machine
are solely determined by the
initial state and by the sequence
of commands that it has executed

4

request

reply

clients

KTH-2023

ID2203

REPLICATED STATE MACHINES

• A Replicated Log ensures state machines execute same commands in same order.

• Consensus guarantees agreement on command sequence in the replicated log.

• System makes progress as long as any majority of servers are up.

5
Consensus

x←1 y←3 x←4 z←x

Consensus

x←1 y←3 x←4 z←x

Consensus

x←1 y←3 x←4 z←x

KTH-2023

ID2203

MULTIPAXOS APPROACH

• Consensus is an agreement on a single value/command

• Let us use multiple Paxos instances. (MultiPaxos)

• Single-value consensus has two events
• Request: Propose(C)
• Indication/Response: Decide(C’)

6

KTH-2023

ID2203

MULTIPAXOS APPROACH

• Consensus is agreement on a single value

• Let us use multiple instances of Paxos

• Organise the algorithm in rounds

7

KTH-2023

ID2203

MULTIPAXOS APPROACH

Initially all processes p
j
(servers) are at round 1

• ProCmds := ∅; Log := ⟨⟩; s0 (initial state); proposed := false

• A client q that wants to execute a command C,

• triggers rb-broadcast ⟨C, Pid

q

⟩

• upon delivery ⟨C, Pid
q

⟩ at p
j
, the command pair is added to ProCmds

 unless it is already in Log.

8

KTH-2023

ID2203

MULTIPAXOS APPROACH

9

• At round i, each server pj:
• Start new instance i of Paxos (single-value)

• If ProCmds ≠ ∅ ∧ not proposed:
• Choose a command ⟨C, Pid⟩ in ProCmds
• Propose ⟨C, Pid, i⟩ in instance i; proposed := true

• upon Decide(⟨Cd, Pid’,i⟩):

• remove ⟨Cd, Pid’⟩ from ProCmds; Append (Cd, Pid’, i) to Log
• Execute Cd on si-1 to get (si , resi) and return resi to Pid’
• Proposed := false;
• Move to the next round i+1

KTH-2023

ID2203

MULTIPAXOS … CAN BE A MESS

10

● The algorithms works 😊

● Approach looks parallel but reading is inherently sequential 🤭

● Commands C1 … Ci-1 are needed before Ci is executed.

● Using Paxos every round takes 4 communication steps, 2 for the
prepare phase, and 2 for the accept phase

● Not trivial to pipeline proposals

● Same proposal C might end decided in different slots
● Holes in the Log might arise

ID2203

KTH-2023

Sequence Consensus

KTH-2023

ID2203

12

WHAT IS THE PROBLEM?

• We need to agree on each command

• Handled well by Paxos
• We also need to agree on the sequence of commands

• A mismatch with the consensus specification
• We would like to agree on a growing sequence of commands

12

KTH-2023

ID2203

13

CONSENSUS MISMATCH

• Integrity property says that a process can decide at
most one value

• ”Cannot change one’s mind”
• But, we don’t want to change what’s been decided before

• Just extend it with more information
• This is allowed by Sequence Consensus

• Can decide again if old decided sequence is a prefix of
the new one

13

KTH-2023

ID2203

CONSENSUS PROPERTIES

• Validity

• Only proposed values may be decided
• Uniform Agreement

• No two processes decide different values
• Integrity

• Each process can decide at most one value
• Termination

• Every correct process eventually decides a value

14

KTH-2023

ID2203

CONSENSUS PROPERTIES

• Validity

• Only proposed values may be decided
• Uniform Agreement

• No two processes decide different values
• Integrity

• Each process can decide at most one value
• Termination

• Every correct process eventually decides a value

14

SEQUENCE CONSENSUS PROPERTIES

• Validity
• If process p decides v then v is a sequence of proposed commands (without

duplicates)
• Uniform Agreement

• If process p decides u and process q decides v then one is a prefix of the other
• Integrity

• If process p decides u and later decides v then u is a strict prefix of v

• Termination (liveness)
• If command C is proposed by a correct process then eventually every correct

process decides a sequence containing C

15

16

ID2203

KTH-2021

Sequence-Paxos

KTH-2020

ID2203

SEQUENCE CONSENSUS

• Event Interface
• propose(C)

• request event to append single command C to the
sequence of decided command

• decide(CS)
• Indication event where CS is a decided command sequence

• Abortable Sequence Consensus adds
• abort

• Indication event

16

17

ID2203

KTH-2021

Sequence-Paxos

18

KTH-2020

ID2203

ROADMAP: FROM PAXOS TO SEQUENCE-PAXOS

• Make the minimal modifications to Paxos to obtain correct
Sequence-Paxos algorithm

• Then add optimizations to make the algorithm efficient
• In Paxos each process may assume any or all of the three roles:

proposer, acceptor, and learner

18

19

KTH-2020

ID2203

INITIAL STATE FOR PAXOS

• Proposer
• np := 0 Proposer’s current round number

• vp := ⊥ Proposer’s current value

• Acceptor
• nprom := 0 Promise not to accept in lower rounds

• na := 0 Round number in which a value is accepted

• va := ⊥ Accepted value

• Learner
• vd := ⊥ Decided value

19

20

KTH-2020

ID2203

PAXOS ALGORITHM

max(S) is any element (k, v) of S s.t. k is highest proposal number

Proposer
On 〈Propose, C〉 :

np := unique higher proposal number
S := ∅, acks := 0
send 〈Prepare, np〉 to all acceptors

On 〈Promise, n, n’, v’〉 s.t. n = np:
add (n’, v’) to S (multiset union)
if |S|= ⎡(N+1)/2⎤:
 (k, v) := max(S) // adopt v
 vp := if v ≠ ⊥ then v else C
 send 〈Accept, np, vp〉 to all acceptors

On 〈Accepted, n〉 s.t. n = np:
acks := acks + 1
if acks = ⎡(N+1)/2⎤:
 send 〈Decide, vp〉 to all learners

On 〈Nack, n〉 s.t. n = np:
trigger Abort()
np := 0

Acceptor
● On 〈Prepare, n〉:

● if nprom < n:
● nprom := n
● send 〈Promise, n, na, va〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

● On 〈Accept, n, v〉:
● if nprom ≤ n:
● nprom := n
● (na, va) := (n, v)
● send 〈Accepted, n〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

Learner
■ On 〈Decide, v〉:

❑ If vd = ⊥:
❑ vd := v
❑ trigger Decide(vd)

20

21

KTH-2020

ID2203

FROM PAXOS TO SEQUENCE-PAXOS

• Values are sequences
• ⊥ is the empty sequence (⊥ = 〈〉)

• We make two changes:
• After adopting a value (seq) with highest proposal

number, the proposer is allowed to extend the
sequence with (nonduplicate) new command(s)

• Learner that receives 〈Decide, v〉 will decide v if v is
longer sequence than previously decided sequence

21

22

KTH-2020

ID2203

AGREEING ON (NON-DUPLICATE) COMMANDS

22

23

KTH-2020

ID2203

Acceptor
● On 〈Prepare, n〉:

● if nprom < n:
● nprom := n
● send 〈Promise, n, na, va〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

● On 〈Accept, n, v〉:
● if nprom ≤ n:
● nprom := n
● (na, va) := (n, v)
● send 〈Accepted, n〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

Learner
■ On 〈Decide, v〉:

❑ If |vd| < |v|:
❑ vd := v
❑ trigger Decide(vd)

SEQUENCE PAXOS ALGORITHM
Proposer

On 〈Propose, C〉 :
np := unique higher proposal number
S := ∅, acks := 0
send 〈Prepare, np〉 to all acceptors

On 〈Promise, n, n’, v’〉 s.t. n = np:
add (n’, v’) to S (multiset union)
if |S|= ⎡(N+1)/2⎤:
 (k, v) := max(S) // adopt v
 vp := if v ≠ ⊥ then v else ⟨⟩

 vp := v ⊕ ⟨C⟩
 send 〈Accept, np, vp〉 to all acceptors

On 〈Accepted, n〉 s.t. n = np:
acks := acks + 1
if acks = ⎡(N+1)/2⎤:
 send 〈Decide, vp〉 to all learners

On 〈Nack, n〉 s.t. n = np:
trigger Abort()
np := 0

24 KTH-2020

ID2203

INITIAL STATE FOR SEQUENCE PAXOS

• Proposer
• np := 0 Proposer’s current round number

• vp := ⟨⟩ Proposer’s current value (empty sequence)

• Acceptor
• nprom := 0 Promise not to accept in lower rounds

• na := 0 Round number in which a value is accepted

• va := ⟨⟩ Accepted value (empty sequence)

• Learner
• vd := ⟨⟩ Decided value (empty sequence)

23 KTH-2020

ID2203

INITIAL STATE FOR SEQUENCE PAXOS

• Proposer
• np := 0 Proposer’s current round number

• vp := ⟨⟩ Proposer’s current value (empty sequence)

• Acceptor
• nprom := 0 Promise not to accept in lower rounds

• na := 0 Round number in which a value is accepted

• va := ⟨⟩ Accepted value (empty sequence)

• Learner
• vd := ⟨⟩ Decided value (empty sequence)

23

KTH-2020

ID2203

Acceptor
● On 〈Prepare, n〉:

● if nprom < n:
● nprom := n
● send 〈Promise, n, na, va〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

● On 〈Accept, n, v〉:
● if nprom ≤ n:
● nprom := n
● (na, va) := (n, v)
● send 〈Accepted, n〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

Learner
■ On 〈Decide, v〉:

❑ If |vd| < |v|:
❑ vd := v
❑ trigger Decide(vd)

SEQUENCE PAXOS ALGORITHM
Proposer

On 〈Propose, C〉 :
np := unique higher proposal number
S := ∅, acks := 0
send 〈Prepare, np〉 to all acceptors

On 〈Promise, n, n’, v’〉 s.t. n = np:
add (n’, v’) to S (multiset union)
if |S|= ⎡(N+1)/2⎤:
 (k, v) := max(S) // adopt v
 vp := if v ≠ ⊥ then v else ⟨⟩

 vp := v ⊕ ⟨C⟩
 send 〈Accept, np, vp〉 to all acceptors

On 〈Accepted, n〉 s.t. n = np:
acks := acks + 1
if acks = ⎡(N+1)/2⎤:
 send 〈Decide, vp〉 to all learners

On 〈Nack, n〉 s.t. n = np:
trigger Abort()
np := 0

24

KTH-2020

ID2203

SEQUENCE PAXOS ALGORITHM

● S = {(n1, v1), …., (nk,vk)}
● fun max(S):

● (n,v) =: (0,⟨⟩)
● for (n’,v’) in S:

● if n < n’ or (n = n’ and ∣v∣ < ∣v’∣):
● (n,v) := (n’,v’)

● return (n,v)

 Acceptor
● On 〈Prepare, n〉:

● if nprom < n:
● nprom := n
● send 〈Promise, n, na, va〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

25

KTH-2020

ID2203

WHERE TO GO FROM HERE?

• Correctness ?
• Follow the steps of Lamport
• Correctness in modeled after the single-value Paxos correctness proof

26

KTH-2020

ID2203

WHERE TO GO FROM HERE?

• Efficiency ?
• Every proposal takes two round-trips
• Proposals are not pipelined
• Sequences are sent back and forth
• Decide carries sequences

27

ID2203

KTH-2023

Correctness of Sequence Paxos

ID2203

KTH-2023

KTH-2020

ID2203

CORRECTNESS

• How do we know that algorithm is correct?

• Build on proof structure for Paxos

30

ID2203

KTH-2023

KTH-2020

ID2203

Acceptor
● On 〈Prepare, n〉:

● if nprom < n:
● nprom := n
● send 〈Promise, n, na, va〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

● On 〈Accept, n, v〉:
● if nprom ≤ n:
● nprom := n
● (na, va) := (n, v)
● send 〈Accepted, n〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

Learner
■ On 〈Decide, v〉:

❑ If |vd| < |v|:
❑ vd := v
❑ trigger Decide(vd)

max(S) is any element (k, v) of S s.t. k is highest proposal number and v is a sequence

Accept phasePREPARE PHASE

Proposer
On 〈Propose, C〉 :

np := unique higher proposal number
S := ∅, acks := 0
send 〈Prepare, np〉 to all acceptors

On 〈Promise, n, n’, v’〉 s.t. n = np:
add (n’, v’) to S (multiset union)
if |S|= ⎡(N+1)/2⎤:
 (k, v) := max(S) // adopt v
 vp := if v ≠ ⊥ then v else C

 vp := v ⊕ ⟨C⟩
 send 〈Accept, np, vp〉 to all acceptors

On 〈Accepted, n〉 s.t. n = np:
acks := acks + 1
if acks = ⎡(N+1)/2⎤:
 send 〈Decide, vp〉 to all learners

On 〈Nack, n〉 s.t. n = np:
trigger Abort()
np := 0

31

ID2203

KTH-2023

KTH-2020

ID2203

BALLOT (ROUND) ARRAY

Replicas p1, p2 and p3

We are looking at the state of acceptors at each pi

Empty sequence accepted in round 0

Round Accepted by p1 Accepted by p2 Accepted by p3

n = 5 〈C2,C3〉 〈C2,C3〉

...
n=2 〈C2〉 〈C2〉

n=1 〈C1〉

n=0 〈〉 〈〉 〈〉

32

ID2203

KTH-2023

KTH-2020

ID2203

CHOSEN SEQUENCES

When request arrives from
proposer at round 5 the
chosen sequences are

<>,
<C2>,
<C2,C3>,
<C2,C3,C1>

34

Round Accepted by p1 Accepted by p2 Accepted by
p3

n = 5 〈C2,C3,C1,〉 〈C2,C3,C1〉

...

n = 2 〈C2〉 〈C2〉

n = 1 〈C1〉

n = 0 〈〉 〈〉 〈〉

ID2203

KTH-2023

KTH-2020

ID2203

PAXOS INVARIANTS

• P2c. For any v and n, if a proposal with value v and number n is
issued, then there is a Quorum S of acceptors such that either (a) no
acceptor in S has accepted any proposal numbered less than n, or (b) v
is the value of the highest-numbered proposal among all proposals
numbered less than n accepted by the acceptors in S

• ⇒ P2b. If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

• ⇒ P2a. If a proposal with value v is chosen, then every higher-
numbered proposal accepted by any acceptor has value v

• ⇒ P2. If a proposal with value v is chosen, then every higher-
numbered proposal that is chosen has value v

35

ID2203

KTH-2023

KTH-2020

ID2203

MULTI-PAXOS INVARIANTS

P2c. if a proposal with seq v and number n is issued, then there is a
quorum S of acceptors such that seq v is an extension of the sequence of
the highest-numbered proposal less than n accepted by any acceptor in S

Highest numbered proposal
accepted before round 4 is
<c2,c3>
It is ok to issue <c2,c3,a> at
4, or <c2,c3,b,d> at 5

Round
Accepted by

p1

Accepted by
p2

Accepted by
p3

n=5 〈C2,C3,b,d〉 〈C2,C3,b,d〉

n=4 〈C2,C3,a〉

n=3 〈C2,C3〉 〈C2,C3〉

n=2 〈C2〉 〈C2〉

n=1 〈C1〉

n=0 〈〉 〈〉 〈〉
36

SEQUENCE PAXOS INVARIANTS

ID2203

KTH-2023

KTH-2020

ID2203

Acceptor
● On 〈Prepare, n〉:

● if nprom < n:
● nprom := n
● send 〈Promise, n, na, va〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

● On 〈Accept, n, v〉:
● if nprom ≤ n:
● nprom := n
● (na, va) := (n, v)
● send 〈Accepted, n〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

Learner
■ On 〈Decide, v〉:

❑ If |vd| < |v|:
❑ vd := v
❑ trigger Decide(vd)

max(S) is any element (k, v) of S s.t. k is highest proposal number and v is a sequence

Accept phasePREPARE PHASE

Proposer
On 〈Propose, C〉 :

np := unique higher proposal number
S := ∅, acks := 0
send 〈Prepare, np〉 to all acceptors

On 〈Promise, n, n’, v’〉 s.t. n = np:
add (n’, v’) to S (multiset union)
if |S|= ⎡(N+1)/2⎤:
 (k, v) := max(S) // adopt v
 vp := if v ≠ ⊥ then v else C

 vp := v ⊕ ⟨C⟩
 send 〈Accept, np, vp〉 to all acceptors

On 〈Accepted, n〉 s.t. n = np:
acks := acks + 1
if acks = ⎡(N+1)/2⎤:
 send 〈Decide, vp〉 to all learners

On 〈Nack, n〉 s.t. n = np:
trigger Abort()
np := 0

37

ID2203

KTH-2023

KTH-2020

ID2203

IF A SEQUENCE IS CHOSEN

Replicas p1, p2 and p3

If sequence v is issued in round n then v is an
extension of all sequences chosen in rounds ≤ n

Round Accepted by p1 Accepted by p2 Accepted by p3

n = 5 〈C2,C3〉 〈C2,C3〉

...

n=2 〈C2〉 〈C2〉

n=1 〈C1〉

n=0 〈〉 〈〉 〈〉

38

ID2203

KTH-2022

KTH-2020

ID2203

PAXOS TO SEQUENCE-PAXOS INVARIANTS

P2b. If a proposal with value v is chosen, then
every higher-numbered proposal issued by
any proposer has value v

P2b. If a proposal with seq v is chosen, then
every higher-numbered proposal issued by
any proposer has v as a prefix

39

ID2203

KTH-2022

KTH-2020

ID2203

PAXOS TO SEQUENCE-PAXOS INVARIANTS

P2a. If a proposal with value v is chosen, then
every higher-numbered proposal accepted by
any acceptor has value v

P2a. If a proposal with seq v is chosen, then
every higher-numbered proposal accepted by
any acceptor has v as a prefix

40

ID2203

KTH-2022

KTH-2020

ID2203

PAXOS TO SEQUENCE-PAXOS INVARIANTS

P2. If a proposal with value v is chosen, then
every higher-numbered proposal that is
chosen has value v

P2. If a proposal with seq v is chosen, then
every higher-numbered proposal that is
chosen has v as a prefix

41

ID2203

KTH-2023

KTH-2020

ID2203

MULTI-PAXOS INVARIANTS

• Initially, the empty sequence is chosen in round n = 0
• P2c. If a proposal with seq v and number n is issued, then there is a set S

consisting of a majority of acceptors such that seq v is an extension of the
sequence of the highest-numbered proposal less than n accepted by the
acceptors in S

• ⇒ P2b. If a proposal with seq v is chosen, then every higher-numbered
proposal issued by any proposer has v as a prefix

• ⇒ P2a. If a proposal with seq v is chosen, then every higher-numbered
proposal accepted by any acceptor has v as a prefix

• ⇒ P2. If a proposal with seq v is chosen, then every higher-numbered
proposal that is chosen has v as a prefix

42

ID2203

KTH-2023

Discussion

ID2203

KTH-2023

PROBLEMS WITH EXISTING ALGORITHM?

KTH-2023

ID2203

WE CAN DO BETTER

43

• Safety properties are guaranteed but…

1. A proposer can run only one proposal until it decides before taking
the next proposal (no pipelining).

2. Multiple Proposers? -> Livelock (flp ghost)
3. 2 round-trips for each sequence chosen
4. too much IO (whole sequences are sent back and forth)
5. the sequences kept in proposers, acceptors, deciders are mostly

redudant.

ID2203

KTH-2023

Does the previous algorithm satisfy Liveness?

ID2203

KTH-2023

Name desirable properties of a leader election algorithm

ID2203

KTH-2023
When should a leader election algorithm take these transitions?

follower candidate

