
ID2203

KTH-2023

Consensus

“The Paxos Protocol”

Paris Carbone

Distributed Systems

ADVANCED COURSE

KTH-2023

ID2203

‣ Intro to Distributed Systems

‣ Fundamental Abstractions and Failure Detectors

‣ Reliable and Causal Order Broadcast

‣ Distributed Shared Memory-CRDTs

‣ Consensus (Paxos)

‣ Replicated State Machines (OmniPaxos, Raft, Zab etc.)

‣ Time Abstractions and Interval Clocks (Spanner etc.)

‣ Consistent Snapshotting (Stream Data Management)

‣ Distributed ACID Transactions (Cloud DBs)

COURSE TOPICS

2

KTH-2023

ID2203

CONSENSUS

• In consensus, the processes propose values

• they all have to agree on one of these values

• Solving consensus is key to solving many problems in distributed computing

• Total order broadcast (aka Atomic broadcast)

• Terminating reliable broadcast

• Dynamic group membership

• Stronger shared store models

3

KTH-2023

ID2203

CONSENSUS INTERFACE

Events

 Request: 〈c Propose | v〉

 Indication: 〈c Decide | v〉

Properties:

C1, C2, C3, C4

4

KTH-2023

ID2203

SINGLE VALUE CONSENSUS PROPERTIES

C1. Validity

Any value decided is a value proposed

C2. Agreement

No two correct processes decide differently

C3. Termination

Every correct process eventually decides

C4. Integrity

A process decides at most once

5

KTH-2023

ID2203

SAMPLE EXECUTION

p1

p2

p3

propose(0)

decide(1)propose(1)

propose(0) decide(0)

crash

decide(0)

Does it satisfy consensus? yes

6

KTH-2023

ID2203

FAIL-STOP MODEL ALGORITHM

7

• Hierarchical Consensus

• Rely on P + BEB

• Round per process p1, …pn. Pi is leader of round i.

• Each leader broadcasts and decides value

• First correct process commits the decided value.

• Each future leader adopts that value.

KTH-2023

ID2203

SINGLE VALUE UNIFORM CONSENSUS

• Validity

• Only proposed values may be decided

• Uniform Agreement

• No two processes decide different values

• Integrity

• Each processes can decide a value at most once

• Termination

• Every process eventually decides a value

8

KTH-2023

ID2203

SAMPLE EXECUTION

propose(0)
p1

p2

p3

decide(1)propose(1)

propose(0) decide(0)

crash

decide(0)

Does it satisfy uniform consensus? no

9

KTH-2023

ID2203

SINGLE VALUE UNIFORM CONSENSUS

• Solvable in Fail-Stop model (decide on last round) with strong FD

• Not solvable in the Fail-Silent model 😔 (asynchronous system model)

• Given a fixed set of deterministic processes there is no algorithm that
solves consensus in the asynchronous model if one process may crash
and stop

• There are some infinite executions that where processes are not able to
decide on a single value

• Fischer, Lynch and Patterson FLP result

10

KTH-2023

ID2203

ASSUMPTIONS

•Partially synchronous system

•Fail-noisy model

•Message duplication, loss, re-ordering

11

KTH-2023

ID2203

IMPORTANCE

• Paxos is arguably the most important
algorithm in distributed computing

• This presentation follows the paper

“Paxos Made Simple”  

(Lamport, 2001)

12

KTH-2023

ID2203

HIGH LEVEL VIEW OF PAXOS

• Elect a single proposer using Ω

• Proposer imposes its proposal to everyone

• Everyone decides

• Problem with Ω

• Several processes might initially be proposers

(contention)

13

KTH-2023

ID2203

HIGH LEVEL VIEW OF PAXOS

• Abortable Consensus (Paxos) saves the day

• Processes attempt to impose their proposals

• Might abort if there is contention (safety)
(multiple proposers)

• Ω ensures eventually 1 proposer succeeds
(liveness)

14

KTH-2023

ID2203

TYPICAL USAGE

15

 Ω
Paxos

beb

Paxos

 Ω
Paxos

beb

 Ω

 Ω
Paxos

beb

Ensures correctness (safety)

Ensures termination (liveness)

(Leader ~ Paxos Proposer)

ID2203

KTH-2023

The Paxos Algorithm

KTH-2023

ID2203

TERMINOLOGY

• Proposers

• Will attempt imposing their proposal to set of acceptors

• Acceptors

• May accept values issued by proposers

• Learners

• Will decide depending on acceptors acceptances

• Acceptors cannot communicate with each other.

• Proposers cannot communicate with each other either.

• Each process plays all 3 roles in classic setting
17

KTH-2023

ID2203

STRAWMAN SOLUTION

• Centralized solution

• Proposer sends value to a central acceptor

• Acceptor decides first value it gets

• Problem

• Acceptor is a single-point of failure

18

KTH-2023

ID2203

ABORTABLE CONSENSUS

• Decentralises acceptors, i.e. proposers talks to set of acceptors

• Tolerate failures, i.e. acceptors might fail (needs only a
majority of acceptors surviving)

• Proposers might fail to impose their proposals (aborts)

19

KTH-2023

ID2203

DECENTRALIZATION & FAULT-TOLERANCE

• Quorum approach

• Each proposer tries to impose its value v on the

set of acceptors

• If majority of acceptors accept v, then v is chosen

• Learners try to decide the chosen value

20

KTH-2023

ID2203

BALLOT (ROUND) ARRAY (TABLE)

• Describes the state of the acceptors at various rounds

• Each row describes one round

• Each acceptor’s state of ai initially ⊥

Round a1 a2 a3

n = 5
...
n=2
n=1
n=0 ⊥ ⊥ ⊥

21

…
…

Learners

can query/read acceptor states at any round

KTH-2023

ID2203

WHEN TO ACCEPT

• Ideally, there will be a single proposer

• Should at least provide obstruction-free progress

• Obstruction-free = if a single proposer executes
without interference (contention) it makes progress

• Suggested invariant

• P1. An acceptor accepts first proposal it receives

22

KTH-2023

ID2203

ATTEMPT

• P1. An acceptor accepts first proposal it receives

• Problem

• Impossible to later tell what was chosen

• Forced to allow restarting! Let acceptors change their minds!

23

p1
prop(red)

p2

p3

p4

p5 prop(blue)

accept (blue)

accept (red)

accept (red)

accept (red)

accept(blue)

Red: p1, p2,

Blue: p4, p5

Any value chosen?

KTH-2023

ID2203

BALLOT (ROUND) ARRAY (TABLE)

Two proposers p1 and p2 that propose red and blue

But a3 crashes

Round a1 a2
 a3
 a4 a5

n = 5
...
n=2
n=1 red red red blue blue
n=0 ⊥ ⊥ ⊥

24

KTH-2023

ID2203

BALLOT (ROUND) ARRAY (TABLE)

Two proposers p1 and p2 that propose red and blue

But a3 crashes

Round a1 a2
 a3
 a4 a5

n = 5
...
n=2
n=1 red red red blue blue
n=0 ⊥ ⊥ ⊥ ⊥ ⊥

25

KTH-2023

ID2203

ENABLING RESTARTING

• Proposer can try to propose again

• Distinguish proposals with unique sequence number

• Often called ballot number

• Monotonically increasing

• Implementation with n nodes

• process 1 uses seq: 1, n+1, 2n+1, 3n+1, …

• process 2 uses seq: 2, n+2, 2n+2, 3n+2, …

• process 3 uses seq: 3, n+3, 2n+3, 3n+3, …

• or…

• Pair of values: (local clock or logical clock, local identifier)

• Lexicographic order: if clock collides, choose highest pid

26

KTH-2023

ID2203

PROBLEM WITH RESTART

27

p1

prop(1,red)

p2

p3

p4

p5 prop(3,blue)

accept (1,red)

accept (1,red)

accept (1,red)

accept (3,blue)

accept (3,blue)

accept (3,blue)

Learners might decide red Learners might decide blue

KTH-2023

ID2203

BALLOT (ROUND) ARRAY (TABLE)
p1 proposes (1,red) and p2 proposes (3, blue)

But a1 and a2 crashed

Round a1 a2
 a3
 a4 a5

n = 5
n = 4
n = 3 blue blue blue
n = 2 red red red ⊥ ⊥

n = 1 red red red ⊥ ⊥

n = 0 ⊥ ⊥ ⊥
28

?

KTH-2023

ID2203

ENSURING AGREEMENT

• Problem (previous slide):

• If restarting allowed,

• Majority may first accept red

• Majority may later accept blue

• Solve it by enforcing:

• P2. If proposal (n,v) is chosen, every higher
numbered proposal chosen has value v

29

KTH-2023

ID2203

BIRDS-EYE VIEW

• Abortable Consensus in a nutshell

• P1. An acceptor accepts first proposal it receives

• P2. If v is chosen, every higher proposal chosen has value v

• Handwaving

• P1 ensures obstruction-free progress and validity

• P2 ensures agreement

• Integrity trivial to implement

• Remember if chosen before, at most choose once

30

KTH-2023

ID2203

ATTEMPT

P2. If v is chosen, every higher proposal chosen has value v

How to implement it?

P2a. If v is chosen, every higher proposal accepted has value v

Lemma

P2a => P2

31

KTH-2023

ID2203

PROBLEM
Recall

P1. An acceptor accepts first proposal it receives

P2a. If v is chosen, every higher proposal accepted has value v

Problem: we cannot prevent an acceptor from accepting higher value proposal

32

propose(1,red)
accept(1,red)

p1

p2

p3

p4

p5 propose(3,blue)

accept(3,blue)

accept(1,red)

accept(1,red)

red chosen

accept(3,blue)

KTH-2023

ID2203

SOLUTION

Strengthen P2a

P2b. If v is chosen, every higher proposal issued has value v

If obeyed, solves problem

33

Not allowed anymore.

p1
propose(1,red)

p2

p3

p4

p5 propose(5,blue)

accept(5,blue)

accept(1,red)

accept(1,red)

accept(1,red)
red chosen

accept(5,blue)

KTH-2023

ID2203

BALLOT (ROUND) ARRAY (TABLE)

p1 proposes (1,red) and p2 proposes (3, blue)

But a1 and a2 crashed before p2 proposes (3, blue)

Round a1 a2
 a3
 a4 a5

n = 5
n = 4
n = 3 red ⊥ ⊥

n=2 red red red ⊥ ⊥

n=1 red red red ⊥ ⊥

n=0 ⊥ ⊥ ⊥
34

KTH-2023

ID2203

BALLOT (ROUND) ARRAY (TABLE)

p1 proposes (1,red) and p2 proposes (3, blue)

At round 3 p2 has to issue (3,red)

Round a1 a2
 a3
 a4 a5

n = 5
n = 4
n = 3 red red red
n=2 red red red ⊥ ⊥

n=1 red red red ⊥ ⊥

n=0 ⊥ ⊥ ⊥

35

KTH-2023

ID2203

P2 PRESERVED

• P2. If v is chosen, every higher proposal chosen has value v

• P2a. If v is chosen, every higher proposal accepted has value v

• P2b. If v is chosen, every higher proposal issued has value v

• Lemma

• P2b => P2a

• Recall P2a => P2.

• Thus P2b => P2

36

KTH-2023

ID2203

MAIN LEMMA

• P2c. If any proposal (n,v) is issued, there is a majority set S
of acceptors such that either

• (a) no one in S has accepted any proposal numbered less than n

• (b) v is the value of the highest proposal among all proposals less

than n accepted by acceptors in S

• Lemma: P2c => P2b

37

KTH-2023

ID2203

CASE A

(a) no one in S has accepted any proposal number < 3

p2 issues (3, blue) at round 3

Round a1 a2
 a3
 a4 a5

n = 5
n = 4
n = 3 red red blue blue blue
n=2 red red ⊥ ⊥ ⊥

n=1 red red ⊥ ⊥ ⊥

n=0 ⊥ ⊥ ⊥ ⊥ ⊥
38

KTH-2023

ID2203

CASE B
• (b) v is the value of the highest proposal among all proposals less than n accepted

by acceptors in S

• red is chosen at round 3, no proposer at round 4

• Proposer at round 5 will always get red querying any majority

Round a1 a2
 a3
 a4 a5

n = 5
n = 4
n = 3 red red red ? ?
n=2 red red ? ? ?
n=1 red red ⊥ ⊥ ⊥

n=0 ⊥ ⊥ ⊥ ⊥ ⊥

39

KTH-2023

ID2203

CASE B

Round a1 a2
 a3
 a4 a5

n = 5 red red red
n = 4
n = 3 red red red ? ?
n=2 red red ? ? ?
n=1 red red ⊥ ⊥ ⊥

n=0 ⊥ ⊥ ⊥ ⊥ ⊥
40

• (b) v is the value of the highest proposal among all proposals less than n accepted
by acceptors in S

• red is chosen at round 3, no proposer at round 4

• Proposer at round 5 will always get red querying any majority

KTH-2023

ID2203

HOW TO IMPLEMENT P2C

• A proposer at round n needs a query phase to get

1. the value of highest round number

2. a promise that the state of S does not change until round n

41

Round a1 a2
 a3
 a4 a5

n = 5
n = 4
n = 3 red red red ? ?
n=2 red red ? ? ?
n=1 red red ⊥ ⊥ ⊥

n=0 ⊥ ⊥ ⊥ ⊥ ⊥

KTH-2023

ID2203

PREPARE PHASE

• A proposer issues prop(n, v)

• Guarantee (P2c)?

• v is the value of the highest proposal among all proposals
less than n accepted by acceptors in S

• Need a prepare(n) phase before issuing prop(n, v)

• Extract a promise from a majority of acceptors not to

accept a proposal less than n

• Acceptor sends back its highest numbered accepted value

42

KTH-2023

ID2203

ABORTABLE CONSENSUS IN PAXOS

Proposer

Pick unique sequence n, send prepare(n) to all
acceptors

3) Proposer upon majority S of promises:

Pick value v of highest proposal number
in S, or if none available pick v freely

Issue accept(n,v) to all acceptors

5) Proposer upon majority S of responses:

If got majority of acks

	 decide(v) and broadcast decide(v);

Otherwise abort

Acceptors

2) Upon prepare(n):

● Promise not accepting proposals

numbered less than n

● Send highest numbered proposal accepted

with number less than n (promise)

5) Upon accept(n,v):

● If not responded to prepare m>n, accept

proposal (ack); otherwise reject (nack)

43

abortable consensus satisfies:

P2c. If (n,v) is issued, there is a majority of acceptors S such that:

a) no one in S has accepted any proposal numbered “<“ n, OR

b) v is value of highest proposal among all proposals “<“ n accepted by acceptors in S

ID2203

KTH-2023

 Getting Familiar with Paxos

KTH-2023

ID2203

MESSAGE LOSS AND FAILURES

• Many sources of abort

• Contention (multiple proposals competing)

• Message loss (e.g. not getting an ack)

• Process failure (e.g. proposer dies)

• So Proposers try Abortable Consensus again…

• Prepare(5), Accept(5,v), Prepare(15), …

• Eventually the Paxos should terminate (FLP85?)

45

KTH-2023

ID2203

FLP GHOST

proposers a and b forever racing…

Eventual leader election (Ω) ensures liveness

Eventually only one proposer => termination

46

p3
a.prep(1):ok b.prep(3):ok

p2
a.prep(1):ok b.prep(3):ok

p1
a.prep(1):ok b.prep(3):ok

a.acpt(1,v):fail

a.acpt(1,v):fail

a.acpt(1,v):fail

a.prep(4):ok

a.prep(4):ok

a.prep(4):ok

b.acpt(3,v):fail

b.acpt(3,v):fail

b.acpt(3,v):fail

KTH-2023

ID2203

p1

FAMILIARIZING WITH PAXOS (1/4)
Different processes accept different values , same
process accepts different values

Assume 4 proposers {a,b,c,d}, 7 acceptors {p1,...,p7}

47

p3

a.prep(1):ok

p4

p5

a.prep(1):ok

p6

p2

a.prep(1):ok

p7

a.acpt(1,red):oka.prep(1):ok

KTH-2023

ID2203

p1

FAMILIARIZING WITH PAXOS (2/4)

48

p3
a.prep(1):ok

p4

p5

a.prep(1):ok

p6

p2

a.prep(1):ok

p7

a.acpt(1,red):oka.prep(1):ok

b.prep(2):ok

b.prep(2):ok

b.prep(2):ok

b.acpt(2,blue):okb.prep(2):ok

Different processes accept different values , same
process accepts different values

Assume 4 proposers {a,b,c,d}, 7 acceptors {p1,...,p7}

KTH-2023

ID2203

p1

FAMILIARIZING WITH PAXOS (3/4)

49

p3
a.prep(1):ok

p4

p5

a.prep(1):ok

p6

p2

a.prep(1):ok

p7

a.acpt(1,red):oka.prep(1):ok

b.prep(2):ok

b.prep(2):ok

b.prep(2):ok

b.acpt(2,blue):okb.prep(2):ok

c.prep(3):ok

c.prep(3):ok

c.prep(3):ok

c.acpt(3,green):okc.prep(3):ok

Different processes accept different values , same
process accepts different values

Assume 4 proposers {a,b,c,d}, 7 acceptors {p1,...,p7}

KTH-2023

ID2203

p1

FAMILIARIZING WITH PAXOS (4/4)

50

p3

a.prep(1):ok

p4

p5

a.prep(1):ok

p6

p2

a.prep(1):ok

p7

a.acpt(1,red):oka.prep(1):ok

b.prep(2):ok

b.prep(2):ok

b.prep(2):ok

b.acpt(2,blue):okb.prep(2):ok

c.prep(3):ok

c.prep(3):ok

c.prep(3):ok

c.acpt(3,green):okc.prep(3):ok

d.prep(4):ok

d.prep(4):ok

d.prep(4):ok

d.prep(4):ok

d.acpt(4,yellow):ok

d.acpt(4,yellow):ok

d.acpt(4,yellow):ok

d.acpt(4,yellow):ok

Different processes accept different values , same
process accepts different values

Assume 4 proposers {a,b,c,d}, 7 acceptors {p1,...,p7}

ID2203

KTH-2023

 Optimizations

KTH-2023

ID2203

PAXOS (AC) IN A NUTSHELL

• Necessary

• Reject accept(n,v) if answered prepare(m) : m>n

• i.e. prepare extracts promise to reject lower accept

52

KTH-2023

ID2203

POSSIBLE SCENARIO #1
Caveat

• Proposers {a,b,c}, acceptors {p1,p2,p3}

• accept(10) will be rejected, why answer prepare(10)?

• No point answering prepare(n) if accept(n,v) will be rejected

53

p1

a.prep(80):ok

p2

b.accept(10,red):faila.prep(80):ok

b.prep(10):ok

b.prep(10):ok

b.accept(10,red):fail

p3

b.accept(10,red):faila.prep(80):ok b.prep(10):ok

KTH-2023

ID2203

SUMMARY OF OPTIMIZATIONS

• Necessary

• Reject accept(n,v) if answered prepare(m) : m>n

• i.e. prepare extracts promise to reject lower accept

• Optimizations

• a) Reject prepare(n) if answered prepare(m) : m>n

• i.e. prepare extracts promise to reject lower prepare

54

KTH-2023

ID2203

POSSIBLE SCENARIO #2

Caveat

55

p3
a.prep(80):ok

p4

p5

b.acpt(90,red):ok

a.prep(80):ok

b.prep(90):ok

b.prep(90):ok b.acpt(90,red:):ok a.acpt(80,blue):fail

a.acpt(80,blue):ok

p6
b.acpt(90,red):ok a.acpt(80,blue):ok

p2
a.prep(80):ok b.prep(90):ok

p7

b.acpt(90,red):ok a.acpt(80,blue):ok

p1
a.prep(80):ok b.prep(90):ok

accept(80,blue) can
anyway not get majority,
as P2b guarantees every
higher proposal issued

would have same value!

KTH-2023

ID2203

SUMMARY OF OPTIMIZATIONS (2)
• Necessary

• Reject accept(n,v) if answered prepare(m) : m>n

• i.e. prepare extracts promise to reject lower accept

• Optimizations

a) Reject prepare(n) if answered prepare(m) : m>n

i.e. prepare extracts promise to reject lower prepare

b) Reject accept(n,v) if answered accept(m,u) : m>n

i.e. accept extracts promise to reject lower accept

c) Reject prepare(n) if answered accept(m,u) : m>n

i.e. accept extracts promise to reject lower prepare

56

KTH-2023

ID2203

POSSIBLE SCENARIO #3
Caveat

57

p1 prep(1)

p2

p3

p4

p5

ok
ok

ok
acpt(1,red)

ok
ok

ok

ok

ok

Opt: ignore old
responses

KTH-2023

ID2203

SUMMARY OF OPTIMIZATIONS (3)
• Necessary

• Reject accept(n,v) if answered prepare(m) : m>n

 i.e. prepare extracts promise to reject lower accept

• Optimizations

a) Reject prepare(n) if answered prepare(m) : m>n

i.e. prepare extracts promise to reject lower prepare

b) Reject accept(n,v) if answered accept(m,u) : m>n

i.e. accept extracts promise to reject lower accept

c) Reject prepare(n) if answered accept(m,u) : m>n

i.e. accept extracts promise to reject lower prepare

d) Ignore old messages to proposals that got majority
58

KTH-2023

ID2203

STATE TO REMEMBER

• Each acceptor remembers

• Highest proposal (n,v) accepted

• Needed when proposers ask prepare(m)

• Lower prepares anyway ignored (optimization a & c)

• Highest prepare it has promised

• It has promised to ignore accept(m) with lower number

• Can be saved to stable storage (recovery)

59

KTH-2023

ID2203

OMITTING ACCEPT

• Paxos requires 2 round-trips (with no contention)

• Prepare(n) : prepare phase (read phase)

• Accept(n, v): accept phase (write phase)

• P2. If v is chosen, every higher proposal chosen has value v

• Improvement

• Proposer skips the accept phase if a majority of
acceptors return the same value v

60

KTH-2023

ID2203

PERFORMANCE

• Paxos requires 4 messages delays (2 round-trips)

• Prepare(n) needs 2 delays (Broadcast & Get Majority)

• Accept(n,v) needs 2 delays (Broadcast & Get Majority)

• In many cases only accept phase is run

• Paxos only needs 2 delays to terminate

• (Believed to be) optimal - more on that later

61

ID2203

KTH-2023

 Paxos Correctness

KTH-2020

ID2203

P2b. If v is chosen, every higher proposal issued has value v

P2c. If any prop (n,v) is issued, there is a set S of a majority of acceptors s.t. either

(a) no one in S has accepted any proposal numbered less than n

(b) v is the value of the highest proposal among all proposals less than n accepted by acceptors in S

Lemma: P2c => P2b

Proof map:

Prove lemma by assuming P2c, prove P2b follows

Prove P2b follows by assuming v is chosen, prove every higher proposal
issued has value v

Thus: if P2c is true, and prop (n,v) chosen

Show by induction every higher proposal issued has value v
63

KTH-2020

ID2203

It suffices to show that all
proposals (m,u), where m≥n,
have value u=v

64

● P2b. If v is chosen, every higher proposal issued has value v

● P2c. If any prop (n,v) is issued, there is a set S of a majority of acceptors s.t. either

● (a) no one in S has accepted any proposal numbered less than n

● (b) v is the value of the highest proposal among all proposals less than n accepted by

acceptors in S

Round a1 a2 a3

5

4
3
2 v v
1 w ⊥ ⊥

0 ⊥ ⊥ ⊥

KTH-2023

ID2203

“All proposals (m,u), where m≥n,
have value u=v”

Induction base

Inspect proposal (n,u). Since (n,v)
chosen & proposals are unique, u=v

65

● P2b. If v is chosen, every higher proposal issued has value v

● P2c. If any prop (n,v) is issued, there is a set S of a majority of acceptors s.t. either

● (a) no one in S has accepted any proposal numbered less than n

● (b) v is the value of the highest proposal among all proposals less than n accepted by

acceptors in S

Round a1 a2 a3

5

4
3
2 v v
1 w ⊥ ⊥

0 ⊥ ⊥ ⊥

KTH-2020

ID2203

Induction step

• Assume proposals n, n+1, n+2,…, m have value v

(ind.hypothesis)

• Show proposal (m+1,u) has u=v

• u is the value of the highest proposal among all
proposals less than m+1 accepted by acceptors in S

• By the induction hypothesis, all proposals n,…,m have
value v. Majority of prop m+1 intersects with majority
of prop n, thus u=v

66

Round a1 a2 a3

5

4 v
3 v
2 v v
1 w ⊥ ⊥

0 ⊥ ⊥ ⊥

KTH-2023

ID2203

AGREEMENT SATISFIED

This algorithm satisfies P2c

• accept(n,v) only issued if a majority S responded to
prepare(n), s.t. for each pi in S:

• a) either: pi hadn’t accepted any prop less than n, or

• b) v is value of highest proposal less than n accepted by pi

• By their promise, a) and b) will not change

• prepare(n) often called read(n)

• accept(n,v) often called write(n,v)

67

KTH-2023

ID2203

AGREEMENT

• P2c. If (n,v) is issued, there is a majority of acceptors S s.t.

• a) no one in S has accepted any proposal numbered less than n, or

• b) v is the value of the highest proposal among all proposals less

than n accepted by acceptors in S

• P2. If (n,v) is chosen, every higher proposal chosen has value v

• We proved that if P2c is satisfied, then P2 is satisfied

• P2c => P2

• Thus the algorithm satisfies agreement (safety)

68

KTH-2023

ID2203

OBSTRUCTION FREEDOM AND VALIDITY

• P1. An acceptor accepts first “proposal” it receives

• P1 is satisfied because we accept

• if prepare(n) & accept(n,v) received first

• Thus the algorithm satisfies obstruction-free progress (liveness)

69

